TESTING OF BELIMO PRESSURE INDEPENDENT CHARACTERIZED CONTROL VALVES

Size: px
Start display at page:

Download "TESTING OF BELIMO PRESSURE INDEPENDENT CHARACTERIZED CONTROL VALVES"

Transcription

1 TESTING OF BELIMO PRESSURE INDEPENDENT CHARACTERIZED CONTROL VALVES November, 25 Submitted by: Iowa Energy Center Address: DMACC, 26 S. Ankeny Blvd. Ankeny, IA 521 Phone: Fax: Web Site:

2 Conditions Iowa State University, the Iowa Energy Center, and the National Building Controls Information Program (NBCIP) logos may not be used in any advertising or publicity, or otherwise to indicate Iowa State University s, the Iowa Energy Center s or NBCIP s endorsement of or affiliation with any Belimo product or service. ii

3 Executive Summary The objective of the testing described in this report was to evaluate the performance of Belimo pressure independent characterized control valves () against conventional globe control valves for terminal reheat and chilled water cooling coil applications in a commercial office building. Testing compared the to Siemens Powermite MT series globe valves. Testing was performed at the Iowa Energy Center Energy Resource Station (ERS). A brief description of the testing and findings are provided below. Terminal Reheat Open Loop Test: The purpose of this test was to measure the water flow rate through the test valves as a function of the valve position (i.e., % open) and the differential pressure across the valve. Open-loop tests were conducted on a Belimo and a correctly sized Siemens Powermite MT globe valve. Consistent with the manufacturer s literature, for a differential pressure range of 5 to 3 psi (34.5 to 26.8 kpa), the flow rate through the Belimo was essentially independent of differential pressure for a fixed valve position. As expected, the flow rate through the Siemens valve increased as the differential pressure increased for a fixed valve position; however, the flow rate though the Siemens valve with the valve fully open was 13 to 15% higher than expected based on the manufacturer s literature. Testing also revealed that the Belimo valve has an equal percentage characteristic curve, while the Siemens valve has a nearly linear characteristic curve. Terminal Reheat Closed Loop Test Effect of Valve Sizing on Valve Performance: The purpose of this test was to evaluate the control performance of the in comparison to a correctly sized and two oversized conventional globe valves. The three Siemens valves included a correctly sized valve (Powermite MT with C v = 1.6), an oversized valve (Powermite MT with C v = 2.5), and a very oversized valve (Powermite MT with C v = 4.). Control performance was evaluated in terms of the temperature control, actuator travel, actuator starts and stops, actuator reversals, and the cumulative change in the water flow rate. Actuator travel, actuator reversals, and the cumulative change in the water flow rate were consistently and significantly less for the Belimo valve in comparison to the Siemens valves. The Belimo valve also tended to have fewer starts and stops, although there were three cases out of seven where the Belimo valve had a slightly higher number of starts and stops. These results confirm what can be visually observed from plots of the feedback signals of the valves, flow rates through the valves, and temperature responses associated with the valves. Specifically, the Belimo valve control was more stable than the Siemens valve control for the tests conducted and the tuning parameters utilized. The temperature control of the Belimo and Siemens valves was similar, with the exception occurring for operation at low flow rates. The Belimo valve provided stable control under all test conditions (even for the test designated CL 2.4 in which the inlet pressure to the Belimo valve was much more oscillatory than the inlet pressure to the Siemens valve) and was capable of producing stable flow rates below.2 GPM (.13 L/s). By contrast, the Siemens valve had difficulty providing stable flow at low flow rates and instead would tend to open and close periodically with resultant flow rates that fluctuated between and.25 GPM (.16 L/s). As a result, the temperature being controlled tended to fluctuate as well. iii

4 The impact of valve sizing on control performance was made especially apparent by considering the cumulative change in the water flow rate. This parameter, which represents the sum of the change in the water flow rate from the current sampling time to the previous sampling time, increased significantly as the flow coefficient of the Siemens valve increased and the valve authority decreased. Terminal Reheat Closed Loop Test System Performance Test: The purpose of this test was to compare energy use, control stability, start-up time and other relevant performance characteristics of Belimo s to correctly sized Siemens Powermite MT globe valves under normal system operating conditions. Based on 19 days of test data, the temperature control of the two valves was comparable, although the Siemens valves were more aggressive and resulted in temperatures that fluctuated around the room setpoint temperature to a greater extent than was seen for the Belimo valves. The difference in the control performance was quantified using the cumulative change in the flow rate. For the perimeter rooms, this parameter was generally two to five times greater for the Siemens valves than for the Belimo valves, indicating superior control on the part of the Belimo valves. There was not a significant difference seen in energy use of the terminal reheat coils controlled by the different brands of valves. The heating water loop pump energy was directly affected by the system differential pressure setpoint. In CL 3.1 and CL 3.2, a higher setpoint was used on the system equipped with Belimo valves and higher energy use resulted. In CL 3.3, the setpoint was the same for the two systems and the energy use was also the same. At low loads, the system equipped with Belimo s had heating water temperature drops across the reheat coils of the perimeter rooms that were 5 to 9ºF (2.8 to 5ºC) higher than the system with Siemens globe valves with the same system differential setpoint was used for the two heating water loops. The higher temperature drops associated with the Belimo system were accompanied by lower heating water flow rates, although the differences in the flow rates between the Belimo and Siemens systems were small when compared to the design flow rate of the systems. Finally, there was no difference observed in the system startup time between the Belimo and Siemens systems. This finding and the lack of any pumping energy difference may be due in part to the small number of zones served by the ERS test systems and the fact that the ERS systems have a reverse return piping arrangement. AHU Chilled Water Open Loop Test: The purpose of this test was to quantify the water flow rate through the AHU chilled water cooling coil test valves as a function of the valve position (i.e., % open) and the differential pressure across the valve. This test mimicked the Terminal Reheat Open Loop Test. Open-loop tests were conducted on a Belimo PT and a correctly sized Siemens Powermite MT globe valve. Consistent with the manufacturer s literature, for a differential pressure range of 7 to 15 psi (48.3 to 13.4 kpa), the flow rate through the Belimo was nearly independent of differential pressure for a fixed valve position. As expected, the flow rate through the Siemens valve increased as the differential pressure increased for a fixed valve position; however, the flow rate though the Siemens valve iv

5 with the valve fully open was 21% lower than expected based on the manufacturer s literature. Testing also revealed that, like the smaller valves used for the terminal reheat application, the Belimo valve has an equal percentage characteristic curve, while the Siemens valve has a nearly linear characteristic curve. AHU Chilled Water Closed Loop Test Control Performance: The purpose of this test was to evaluate the control performance of the Belimo in comparison to a correctly sized conventional globe valve for an AHU chilled water cooling coil application. Testing was conducted on a Belimo PT and a correctly sized Siemens Powermite MT globe valve. Control performance was evaluated in terms of the temperature control, actuator travel, actuator starts and stops, actuator reversals, and the cumulative change in the water flow rate as disturbances were introduced via changes to the supply air temperature setpoint and primary chilled water pump speed. The test was performed twice, first with the Belimo installed in AHU-A and the Siemens valve in AHU-B for CL 5.1, and then with the Siemens valve installed in AHU-A and the Belimo in AHU-B for CL 5.2. In both CL 5.1 and CL 5.2, the Belimo exhibited stable control over the entire test and was capable of providing stable flow as low as.99 GPM (.62 L/s), whereas the Siemens valve exhibited unstable control at flow rates below 4 GPM (.252 L/s). The inability of the Siemens valve to provide stable flow at low loads resulted in significantly higher values of certain control performance parameters compared to the Belimo valve. For instance, the Siemens valve made three to six times more reversals than the Belimo valve, and the cumulative change in water flow rate associated with the Siemens valve was four or more times that for the Belimo. The temperature control of the Belimo and Siemens valves was similar, with the exception occurring for operation at low flow rates, where unstable flow rates associated with the Siemens valve led to unstable supply air temperatures. In addition, although the Belimo demonstrated more stable control than the Siemens valve and produced slightly higher temperature rises across the cooling coil at low load conditions, any pumping energy savings resulting from the improved control performance was not distinguishable in this test. Overall Findings: The tests described above were performed to verify performance characteristics of the Belimo in comparison to conventional globe valves. A summary of those characteristics and findings from the tests are provided in the table on the following pages. v

6 Performance Characteristic Ability to maintain perfect valve authority Decreased start-up time (i.e., time required to bring the temperature in all rooms up to the occupied heating setpoint from night setback conditions) resulting from the prevention of overflow and underflow to individual terminal reheat coils Reduction in pumping costs Findings The provided stable control under all operating conditions, even in circumstances where the inlet pressure was very unstable due to unstable control of the heating water loop pump (see Figure 3-14 and accompanying results, particularly the stable water flow rate in Figure 3-15a), and even at very low flow rates (see Figures 3-5a and 3-16a for the terminal reheat application, and Figure 6-8a for the chilled water cooling coil application). In contrast, the conventional globe valve was unable to provide stable flow at low flow rates and instead cycled between closed and slightly open at low flow rates (see Figures 3-5b and 3-16b for the terminal reheat application, and Figure 6-8b for the chilled water cooling coil application), with resultant temperature responses that also cycled (see Figures 3-6b, 3-17b and Figure 6-9b). For the globe valves, the control performance deteriorated as the valve size increased and the valve authority decreased. There was no difference observed in the start-up time between the system equipped with for the terminal reheat valves and the system equipped with conventional globe valves. This may be due in part to the small test system and the fact that the test system is a reverse return system. Plots of the room temperatures for the two systems are provided in Figure 4-3 and the corresponding heating water flow rates to the rooms are shown in Figure 4-4. Terminal Reheat Application: When the heating water loop pumps were controlled to maintain equivalent differential pressure setpoints between the supply and return mains, the pumping energy use of the system equipped with s was approximately equal to that of the system equipped with conventional globe valves. Although a reduction in water flow rate was seen at low loads in the system with s, the reduction was small and did not produce measurable pumping energy savings. This may be due in part to the small test system and the fact that the test system is a reverse return system. A comparison of the system heating water flow rate and heating water loop pumping power is shown in Figure 4-6. Chilled Water Cooling Coil Application: Although the Belimo demonstrated more stable control than the Siemens valve and produced slightly higher temperature rises across the cooling coil at low load conditions, any pumping energy savings resulting from the improved control performance was indistinguishable. A comparison of the pumping energy use is shown in Figure vi

7 Increased water-side temperature differential across the terminal reheat coil and AHU chilled water cooling coil, and resulting effect on boiler and chiller efficiency Automatic, dynamic system balancing, particularly at low loads Terminal Reheat Application: At low loads, the system equipped with s had heating water temperature drops across the reheat coils of the perimeter rooms that were 5 to 9ºF (2.8 to 5ºC) higher than the system with globe valves. It was not possible to measure any improvement in the boiler efficiency because the system performance of the s and globe valves was evaluated simultaneously and the heating water loops on the two systems was served by a common boiler. Chilled Water Cooling Coil Application: At low loads, the AHU equipped with the generally had a slightly higher chilled water temperature rise across the cooling coil on average than the AHU equipped with the globe valve. The temperature rise across each coil is plotted in Figure 6-15 for CL 5.1 and CL 5.2. The difference in the temperature rise is approximately 1 to 2ºF (.56 to 1.11ºC) at low loads (the second half of the test). It was not possible to measure any improvement in the chiller efficiency because the performance of the and globe valve was evaluated simultaneously and the chilled water loops on the two AHUs was served by a common chiller. This characteristic actually produces the three previous characteristics (i.e., decreased start-up time, reduced pumping costs, and increased water-side temperature differential), although the start-up time phenomenon is associated with high loads, whereas the pumping cost savings and increased temperature differential are expected to be more pronounced at low loads. The increased temperature differential was observed in this testing, but the other two characteristics were not. vii

8 Table of Contents Table of Contents...viii List of Figures... x List of Tables... xiv 1 Introduction Objective Scope Test Facility Terminal Reheat Open Loop Test Test Valves Test Set-Up Test Conditions and Procedure Instrumentation Results Conclusions Terminal Reheat Closed Loop Test Effect of Valve Sizing on Valve Performance Test Units Test Set-Up Room Temperature Control with Fixed Inlet Pressure to Control Valve Discharge Air Temperature Control with Fixed Inlet Pressure to Control Valve Room Temperature Control with Variable Inlet Pressure to Control Valve Test Conditions and Procedure Instrumentation Results Conclusions Terminal Reheat Closed Loop Test System Performance Test Test Units Test Set-Up Test Conditions and Procedure Instrumentation Results Conclusions Air-Handling Unit Chilled Water Open Loop Test Test Units Test Set-Up Test Conditions and Procedure viii

9 5.4 Instrumentation Results Conclusions Air-Handling Unit Chilled Water Closed Loop Test Control Performance Test Units Test Set-Up Test Conditions and Procedure Instrumentation Results Conclusions A. Appendix A: Test Suite 2 Results A.1. Plotted Results for CL A.2. Plotted Results for CL A.3. Plotted Results for CL A.4. Plotted Results for CL A.5. Plotted Results for CL A.6. Plotted Results for CL A.7. Plotted Results for CL B. Appendix B: Test Suite 3 Results B.1. Tabulated Results for CL B.2. Tabulated Results for CL B.3. Tabulated Results for CL C. Appendix C: Test Suite 5 Results C.1. Plotted Results for CL C.2. Plotted Results for CL ix

10 List of Figures Figure 1-1: Schematic of the side-by-side test rooms of the Energy Resource Station... 3 Figure 2-1: Schematic of heating water Loop-A and instrumentation setup for Test Suite Figure 2-2: Flow rate through the Belimo as a function of differential pressure and commanded signal to the valve... 8 Figure 2-3: Relationship between the commanded and scaled feedback signals for the Belimo... 9 Figure 2-4: Flow rate through the Siemens Powermite MT globe valve as a function of differential pressure and commanded signal to the valve Figure 2-5: Relationship between the commanded and scaled feedback signals for the Siemens Powermite MT globe valve. The unscaled feedback signal ranges from.2 to 13.98% closed. The scaled feedback signal ranges from to 1% open Figure 2-6: Flow rate through the Belimo and Siemens Powermite MT globe valve as a function of the scaled valve feedback signal at a differential pressure of 5 psi (34.5 kpa) Figure 3-1: Schematic of heating water Loop-A and Loop-B and instrumentation setup for Test Suite Figure 3-2: Typical control sequence at the ERS for a pressure- independent VAV box with hydronic reheat Figure 3-3: Room airflow setpoint and room temperature setpoint schedules for CL 2.1, CL 2.2 and CL Figure 3-4: Valve position feedback signal for CL Figure 3-5: Heating water flow rate for CL Figure 3-6: Room temperature control for CL Figure 3-7: Room airflow control for CL Figure 3-8: Inlet pressure to control valves for CL Figure 3-9: Entering air temperature to reheat coil for CL Figure 3-1: Accumulated room temperature error for CL Figure 3-11: Accumulated actuator travel for CL Figure 3-12: Accumulated starts and stops for CL Figure 3-13: Accumulated reversals for CL Figure 3-14: Inlet pressure to control valves for CL Figure 3-15: Valve position feedback signal for CL Figure 3-16: Heating water flow rate for CL Figure 3-17: Discharge air temperature control for CL Figure 3-18: Accumulated discharge air temperature error for CL Figure 3-19: Accumulated actuator travel for CL Figure 3-2: Accumulated starts and stops for CL Figure 3-21: Accumulated reversals for CL Figure 4-1: Schematic of heating water Loop-A and Loop-B and instrumentation setup for Test Suite Figure 4-2: Pumping performance for January 18, 25 (CL 3.1) Figure 4-3: Room temperature control for January 18, 25 (CL 3.1) x

11 Figure 4-4: Heating water flow rate for January 18, 25 (CL 3.1) Figure 4-5: Cumulative change in heating water flow rate for January 18, 25 (CL 3.1) Figure 4-6: Pumping performance for February 6, 25 (CL 3.3) Figure 5-1: Schematic of chilled water loop and instrumentation setup for Test Suite Figure 5-2: Flow rate through the Belimo as a function of differential pressure and commanded signal to the valve... 5 Figure 5-3: Flow rate through the Siemens Powermite MT globe valve as a function of differential pressure and commanded signal to the valve Figure 5-4: Flow rate through the Belimo and Siemens Powermite MT globe valve as a function of the scaled valve feedback signal at a differential pressure of 7 psi (48.3 kpa) Figure 6-1: Schematic of chilled water system and instrumentation setup for Test Suite Figure 6-2: Supply air temperature setpoint and primary chilled water pump speed profiles for CL 5.1 and CL Figure 6-3: Chilled water cooling coil entering air temperatures for CL Figure 6-4: Airflow rates across the chilled water cooling coils for CL Figure 6-5: Chilled water cooling coil entering water temperatures for CL Figure 6-6: Chilled water cooling coil valve control signal for CL Figure 6-7: Chilled water cooling coil valve feedback signal for CL Figure 6-8: Chilled water flow rate for CL Figure 6-9: Supply air temperature control for CL Figure 6-1: Accumulated supply air temperature error for CL Figure 6-11: Accumulated actuator travel for CL Figure 6-12: Accumulated starts and stops for CL Figure 6-13: Accumulated reversals for CL Figure 6-14: Cumulative change in chilled water flow rate for CL Figure 6-15: Temperature rise across the chilled water cooling coil for CL 5.1 and CL Figure 6-16: Averaged chilled water flow rate for CL 5.1 and CL Figure 6-17: Secondary chilled water pump power for CL 5.1 and CL Figure A-1: Valve control signal for CL Figure A-2: Valve position feedback signal for CL Figure A-3: Heating water flow rate for CL Figure A-4: Room temperature control for CL Figure A-5: Room airflow control for CL Figure A-6: Inlet pressure to valve for CL Figure A-7: Differential pressure across valve for CL Figure A-8: Accumulated room temperature error for CL Figure A-9: Accumulated actuator travel for CL Figure A-1: Accumulated starts and stops for CL Figure A-11: Accumulated reversals for CL Figure A-12: Valve control signal for CL Figure A-13: Valve position feedback signal for CL Figure A-14: Heating water flow rate for CL Figure A-15: Room temperature control for CL Figure A-16: Room airflow control for CL Figure A-17: Inlet pressure to valve for CL xi

12 Figure A-18: Differential pressure across valve for CL Figure A-19: Accumulated room temperature error for CL Figure A-2: Accumulated actuator travel for CL Figure A-21: Accumulated starts and stops for CL Figure A-22: Accumulated reversals for CL Figure A-23: Valve control signal for CL Figure A-24: Valve position feedback signal for CL Figure A-25: Heating water flow rate for CL Figure A-26: Room temperature control for CL Figure A-27: Room airflow control for CL Figure A-28: Inlet pressure to valve for CL Figure A-29: Differential pressure across valve for CL Figure A-3: Accumulated room temperature error for CL Figure A-31: Accumulated actuator travel for CL Figure A-32: Accumulated starts and stops for CL Figure A-33: Accumulated reversals for CL Figure A-34: Valve control signal for CL Figure A-35: Valve position feedback signal for CL Figure A-36: Heating water flow rate for CL Figure A-37: Discharge air temperature control for CL Figure A-38: Inlet pressure to valve for CL Figure A-39: Differential pressure across valve for CL Figure A-4: Accumulated room temperature error for CL Figure A-41: Accumulated actuator travel for CL Figure A-42: Accumulated starts and stops for CL Figure A-43: Accumulated reversals for CL Figure A-44: Valve control signal for CL Figure A-45: Valve position feedback signal for CL Figure A-46: Heating water flow rate for CL Figure A-47: Discharge air temperature control for CL Figure A-48: Inlet pressure to valve for CL Figure A-49: Differential pressure across valve for CL Figure A-5: Accumulated room temperature error for CL Figure A-51: Accumulated actuator travel for CL Figure A-52: Accumulated starts and stops for CL Figure A-53: Accumulated reversals for CL Figure A-54: Valve control signal for CL Figure A-55: Valve position feedback signal for CL Figure A-56: Heating water flow rate for CL Figure A-57: Room temperature control for CL Figure A-58: Room airflow control for CL Figure A-59: Inlet pressure to valve for CL Figure A-6: Differential pressure across valve for CL Figure A-61: Accumulated room temperature error for CL Figure A-62: Accumulated actuator travel for CL Figure A-63: Accumulated starts and stops for CL xii

13 Figure A-64: Accumulated reversals for CL Figure A-65: Valve control signal for CL Figure A-66: Valve position feedback signal for CL Figure A-67: Heating water flow rate for CL Figure A-68: Room temperature control for CL Figure A-69: Room airflow control for CL Figure A-7: Inlet pressure to valve for CL Figure A-71: Differential pressure across valve for CL Figure A-72: Accumulated room temperature error for CL Figure A-73: Accumulated actuator travel for CL Figure A-74: Accumulated starts and stops for CL Figure A-75: Accumulated reversals for CL Figure C-1: Valve control signal for CL Figure C-2: Valve position feedback signal for CL Figure C-3: Chilled water flow rate for CL Figure C-4: Supply air temperature control for CL Figure C-5: Sum of room airflow rates for CL Figure C-6: Temperature rise across cooling coil for CL Figure C-7: Inlet pressure to valve for CL Figure C-8: Differential pressure across valve for CL Figure C-9: Accumulated supply air temperature error for CL Figure C-1: Accumulated actuator travel for CL Figure C-11: Accumulated starts and stops for CL Figure C-12: Accumulated reversals for CL Figure C-13: Cumulative change in flow rate for CL Figure C-14: Secondary pump power for CL Figure C-15: Valve control signal for CL Figure C-16: Valve position feedback signal for CL Figure C-17: Chilled water flow rate for CL Figure C-18: Supply air temperature control for CL Figure C-19: Sum of room airflow rates for CL Figure C-2: Temperature rise across cooling coil for CL Figure C-21: Inlet pressure to valve for CL Figure C-22: Differential pressure across valve for CL Figure C-23: Accumulated supply air temperature error for CL Figure C-24: Accumulated actuator travel for CL Figure C-25: Accumulated starts and stops for CL Figure C-26: Accumulated reversals for CL Figure C-27: Cumulative change in flow rate for CL Figure C-28: Secondary pump power for CL xiii

14 List of Tables Table 1-1: Summary of tests performed for the VAV terminal reheat application... 2 Table 1-2: Summary of tests performed for the AHU chilled water cooling coil application Table 2-1: Specifications for valves used for Test Suite Table 3-1: Valve specifications for Test Suite Table 3-2: Test set-up for room air temperature control with constant inlet pressure to control valve and variable heating water loop pump speed Table 3-3: Test set-up for discharge air temperature control with constant inlet pressure Table 3-4: to control valve and variable heating water loop pump speed Test set-up for room air temperature control with variable inlet pressure to control valve and constant heating water loop pump speed Table 3-5: Summary of control performance parameters for Test Suite Table 4-1: Valve specifications for Test Suite Table 4-2: Test set-up for Test Suite Table 4-3: Daily average energy use and temperature control characterization for the occupied period of Test Suite Table 4-4: Daily average heating water flow control characterization for Test Suite Table 4-5: Summary of system balancing performance at low loads for CL 3.3. The A test rooms are served by Belimo and the B test rooms by Siemens globe valves Table 5-1: Specifications for valves used for Test Suite 4 and Test Suite Table 6-1: Summary of control performance parameters for Test Suite Table B-1: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms East-A and East-B for CL Table B-2: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms Interior-A and Interior-B for CL Table B-3: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms South-A and South-B for CL Table B-4: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms West-A and West-B for CL Table B-5: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms East-A and East-B for CL Table B-6: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms Interior-A and Interior-B for CL Table B-7: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms South-A and South-B for CL Table B-8: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms West-A and West-B for CL Table B-9: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms East-A and East-B for CL Table B-1: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms Interior-A and Interior-B for CL Table B-11: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms South-A and South-B for CL xiv

15 Table B-12: Daily reheat energy use, cumulative temperature error, and cumulative change in water flow rate for test rooms West-A and West-B for CL xv

16 1 Introduction 1.1 Objective The objective of the testing described in this report was to evaluate the performance of Belimo pressure independent characterized control valves () against conventional globe control valves for terminal reheat and air-handling unit (AHU) chilled water cooling coil applications in a commercial office building. Specifically, testing was performed to verify the performance of the with respect to the following characteristics: Ability to maintain perfect valve authority; Decreased start-up time (i.e., time required to bring the temperature in all rooms up to the occupied heating setpoint from night setback conditions) resulting from the prevention of overflow and underflow to individual terminal reheat coils; Reduction in pumping costs; Increased water-side temperature differential across the terminal reheat coil and AHU chilled water cooling coil, and resulting effect on boiler efficiency; and Automatic, dynamic system balancing, particularly at low loads. 1.2 Scope This report describes the results of a series of tests undertaken to evaluate the performance of the Belimo in comparison to a conventional globe valve. Tests were performed for a variable-air-volume (VAV) terminal reheat application and an AHU chilled water cooling coil application. The tests consisted of the following: 1. Terminal Reheat Open Loop Test: The purpose of this test was to quantify the water flow rate through the terminal reheat test valves as a function of valve position (i.e., % open) and the differential pressure across the valves. 2. Terminal Reheat Closed Loop Test Effect of Valve Sizing on Valve Performance: The purpose of this test was to evaluate the control performance of the in comparison to a correctly sized and two oversized conventional globe valves for a terminal reheat application. 3. Terminal Reheat Closed Loop Test System Performance Test: The purpose of this test was to compare energy use, control stability, start-up time and other relevant performance characteristics as the test valves were utilized under normal system operating conditions for a terminal reheat application. 4. AHU Chilled Water Open Loop Test: The purpose of this test was to quantify the water flow rate through the AHU chilled water cooling coil test valves as a function of valve position (i.e., % open) and the differential pressure across the valves. 5. AHU Chilled Water Closed Loop Test Control Performance: The purpose of this test was to evaluate the control performance of the in comparison to a correctly sized conventional globe valve for an AHU chilled water cooling coil application. Summaries of the tests are provided for reference in Table 1-1 and Table

17 Table 1-1: Summary of tests performed for the VAV terminal reheat application. Test Description Test Number System A Test Room Configuration System B Test Room Configuration Open-loop test to determine flow rate through test valve as a function of the differential pressure across the valve and the degree to which the valve is open. Tests performed in South A Test Room. OL 1.2 Closed-loop room air temperature control with constant inlet pressure to control valve and variable heating water loop pump speed. Tests performed in South A and South B Test Rooms. OL 1.1 Belimo Not used CL 2.1 CL 2.2 CL 2.3 Correctly sized globe valve: Siemens Powermite MT (C v = 1.6) Belimo Belimo Belimo Correctly sized globe valve: Closed-loop discharge air temperature CL 2.4 Siemens Powermite control with constant inlet pressure to MT (C v = 1.6) control valve and variable heating water loop pump speed. Tests performed in South A and South B Test Rooms. CL 2.5 Belimo Closed-loop room air temperature control CL 2.6 with variable inlet pressure to control valve and constant heating water loop pump speed. Tests performed in South A and South B Test Rooms. CL 2.7 Correctly sized globe valve: Siemens Powermite MT (C v = 1.6) Very oversized globe valve: Siemens Powermite MT (C v = 4.) Not used Correctly sized globe valve: Siemens Powermite MT (C v = 1.6) Oversized globe valve: Siemens Powermite MT (C v = 2.5) Very oversized globe valve: Siemens Powermite MT (C v = 4.) Belimo Correctly sized globe valve: Siemens Powermite MT (C v = 1.6) Belimo Belimo Closed-loop system comparison under normal operation with installed in one system and correctly sized globe valves installed in second system. Tests performed using all test rooms for System A and System B. CL 3.1 Perimeter Rooms: Belimo Interior Room: Belimo Perimeter Rooms: Siemens Powermite MT Interior Room: Siemens Powermite MT Same as CL 3.1, except s are installed in System B and globe valves are installed in System A. Tests performed using all test rooms for System A and System B. CL 3.2 Perimeter Rooms: Siemens Powermite MT Interior Room: Siemens Powermite MT Perimeter Rooms: Belimo Interior Room: Belimo Same as CL 3.1, except the differential pressure setpoint (used to control the heating water loop pump) between the supply and return lines for the heating water loop is the same for both systems, whereas in CL 3.1 and CL 3.2 it was not. Tests performed using all test rooms for System A and System B. CL 3.3 Perimeter Rooms: Siemens Powermite MT Interior Room: Siemens Powermite MT Perimeter Rooms: Belimo Interior Room: Belimo

18 Table 1-2: Summary of tests performed for the AHU chilled water cooling coil application. Test Description Open-loop test to determine flow rate through test valve as a function of the differential pressure across the valve and the degree to which the valve is open. Tests performed using AHU-A chilled water cooling coil. Test Number AHU-A Chilled Water Cooling Coil Set-up AHU-B Chilled Water Cooling Coil Set-up OL 4.1 Belimo PT Not used OL 4.2 Closed-loop supply air temperature control with a variable inlet pressure to CL 5.1 control valve. Tests performed using chilled water cooling coils for AHU-A and AHU-B. CL 5.2 Correctly sized globe valve: Siemens Powermite MT (C v = 1.) Belimo PT Correctly sized globe valve: Siemens Powermite MT (C v = 1.) Not used Correctly sized globe valve: Siemens Powermite MT (C v = 1.) Belimo PT 1.3 Test Facility Testing was performed at the Iowa Energy Center, Energy Resource Station (ERS). A schematic of the facility is shown in Figure 1-1. The facility consists of four matched pairs ( A and B ) of test rooms facing east, south, west and in the interior. Side A of each test room pair is isolated from side B and is served by a separate heating, ventilating and air-conditioning system. The Figure 1-1: Schematic of the side-by-side test rooms of the Energy Resource Station. 3

19 paired rooms are identical in their construction and heating and cooling loads. This design enables side-by-side comparisons of the systems and/or the algorithms that control them. Additional information on the ERS, including an online virtual tour of the facility, can be viewed at the following web site: 4

20 2 Terminal Reheat Open Loop Test The purpose of this suite of tests, which is designated Test Suite 1, was to evaluate the pressure independent feature of the Belimo. The test consisted of measuring the water flow rate through the test valve as a function of valve position and pressure drop across the valve for a VAV terminal reheat application. 2.1 Test Valves Testing compared the performance of one Belimo and one correctly sized Siemens Powermite MT series globe valve and actuator assembly. The selection of the valves was based on the design flow rate of the terminal reheat coil of an exterior room in the ERS. This design flow rate is 3 GPM (.19 L/s). The globe valve was sized to produce a pressure drop of 4 psi (27.6 kpa) with the valve wide open. Detailed specifications for the valve and actuator assemblies are provided in Table 2-1. Table 2-1: Specifications for valves used for Test Suite 1. Valve Designation Belimo Siemens Powermite MT Manufacturer Belimo Siemens Model Powermite MT Type Globe (Stroke 7/32") Line Size 1/2 " 1/2 " Cv N/A 1.6 Design Flow Rate 3 GPM (.19 L/s) N/A Close-Off Pressure 2 PSI (1379 kpa) 16 PSI (113 kpa) Manufacturer Belimo Siemens LR24-MFT US+NO+P- Model 128 SQS65U Fail-in-Place, DA/RA Type (adjustable) Fail-in-Place, RA Actuator 35 in-lb f (4 N-m) min. Force torque 9 lb f (4 N) Run-Time 1 seconds 3 second Input Signal - 1 VDC - 1 VDC Feedback Output - 1 VDC - 1 VDC Power 24VAC±2%, 24VDC±1% 24VAC, +2%, -15% The valves are normally open and the actuators do not have spring return. 2.2 Test Set-Up The test valve was installed on the return side of the reheat coil in the South-A test room as shown in Figure 2-1. An Endress Hauser model Cerabar M PMC 41 single-point pressure 5

21 Interior A Test Room T H C T A Existing valve CLOSED LEGEND - Pressure Independent Characterized Control Valve F CGCV - Conventional Globe Control Valve A - Actuator (Analog) F - Flow Meter East A Test Room T H C T A Existing valve CLOSED T P DP - Temperature Sensor - Pressure Sensor - Differential Pressure Sensor F VFD - Variable Frequency Drive C - Controller H C South A Test Room T T A Test valve: - Belimo - CGCV F P1 DP H C West A Test Room T T A Existing valve CLOSED F C VFD Heating Water Boiler Figure 2-1: Schematic of heating water Loop-A and instrumentation setup for Test Suite 1. transducer ( 1 psig [ kpa] calibrated span; accuracy of ±.2 % of calibrated span) was used to measure the valve inlet pressure. An Endress Hauser model Deltabar S PMD 235 differential pressure transducer ( 43 psig [ kpa] calibrated span; accuracy of ±.1 % of calibrated span) was used to measure the pressure drop across the valve. The water flow rate was measured using a Badger Meter model Magnetoflow TM electromagnetic flow meter (.1 33 fps [ m/s]; accuracy of ±.25% of flow rate). The reheat coil in South-A (and all other perimeter test rooms) is a single-row plate fin type coil with a design water flow rate of 3 GPM (.19 L/s) and a design water pressure drop through the coil of 1.4 ft. of water (4.19 kpa). Two pumps were used to achieve the desired pressure drop across the test valve for each test condition. The Loop-A heating water pump is normally used to circulate water to the VAV 6

22 terminal reheat coils. A second pump, designated the booster pump, was installed to enable higher pressures to be achieved. The speed of each pump was controlled via a variable frequency drive. To minimize pressure disturbances during testing, the reheat coil valves for the remaining three test rooms on Loop-A (East-A, West-A and Interior-A) were overridden to remain closed for the duration of the test. 2.3 Test Conditions and Procedure The first test was performed on the Belimo on November 24, 24. The valve was tested at all combinations of the following conditions: Commanded Signal to Valve: 1, 15, 2, 25, 3, 35, 4, 6, 8, 1, and 4% open (2% open corresponds to a commanded signal to the valve of 2 VDC for a to 1 VDC output range) Differential Pressure Across Valve: 5, 1, 15, 2, and 3 psi (34.5, 69, 13.4, 137.9, and 26.9 kpa); achieved by adjusting the speeds of the circulating and booster pumps for Loop-A The initial test point was a commanded signal of 1% open and a differential pressure across the valve of 5 psi (34.5 kpa). The commanded signal was then increased to the next test condition (i.e., 15% open) while the differential pressure was held constant. Conditions were typically allowed to stabilize for three to five minutes between test points. Testing continued in this way until the commanded signal was 1% open. The final test point at a given differential pressure was a commanded signal of 4% open. This point was recorded to enable the test valve hysteresis to be evaluated. The procedure was then repeated at differential pressures of 1, 15, 2, and 3 psi (69, 13.4, 137.9, and 26.9 kpa). After completing the test of the Belimo, the Siemens Powermite MT globe valve was installed in its place and the test procedure repeated on November 28-29, 24. The two tests were designated as follows: OL1.1 Belimo OL1.2 Siemens Powermite MT 2.4 Instrumentation The following list of measurement and control points were monitored and recorded during the test: 1. Inlet pressure to test valve (psig); note that throughout this report, inlet pressures are measured relative to atmospheric pressure 2. Differential pressure across the test valve (psi) 3. Water flow rate (gallons per minute) 4. Commanded signal to test valve (% open) 5. Valve position feedback (% open) 6. Heating water pump speed (% of maximum or Hz) 7. Reheat coil entering water temperature ( F) 8. Reheat coil leaving water temperature (i.e., temperature at the valve, F) 7

23 Each of these eight points was recorded at 1 second intervals using a National Instruments data acquisition system. 2.5 Results The water flow rate through the Belimo as a function of the differential pressure across the valve and the commanded (or input) signal to the valve is shown in Figure 2-2. The commanded signal has units of % open ; for example, 35% open corresponds to a commanded signal of 3.5 VDC. The data points in Figure 2-2 and subsequent figures in this chapter are one minute averages obtained from the 1 second data. The curves in Figure 2-2 indicate that the flow rate through the Belimo is nearly independent of the differential pressure across the valve for a given commanded signal to the valve. At the design condition (i.e., commanded signal of 1% open), the flow rate varies from 3.12 GPM at 5 psi to 3.19 GPM at 3 psi (.197 L/s at 34.5 kpa to.21 L/s at 26.9 kpa). The maximum flow rate over this pressure range is 3.21 GPM at 15 psi (.23 L/s at 13.4 kpa). In general, the flow rate varies by less than.11 GPM (.7 L/s) over the range of pressures tested for a given commanded signal. The only exception occurs at a commanded signal of 4% open, where the variation in flow rate is slightly greater. Figure 2-2 contains two curves corresponding to a commanded signal of 4% open. The first curve corresponds to data obtained with the commanded signal increasing from 35% open to Differential Pressure Across Valve (kpa) Heating Water Flow Rate (GPM) Heating Water Flow Rate (L/s) 1% open 15% open 2% open 25% open 3% open 35% open 4% open 6% open 8% open 1% open 4% open.5.4 hysteresis data Differential Pressure Across Valve (psi) Figure 2-2: Flow rate through the Belimo as a function of differential pressure and commanded signal to the valve. 8

24 4% open and the second curve (labeled hysteresis data) corresponds to data obtained with the commanded signal decreasing from 1% open to 4% open. The flow rates are significantly different for the two curves (.28 to.43 GPM [.18 to.27 L/s] for the first curve and.45 to.65 GPM [.28 to.41 L/s] for the second curve). Based on the feedback signal from the actuator, a commanded signal results in consistent positioning of the valve (i.e., the position feedback corresponding to a commanded signal of 35% open is 43.8% open, independent of the differential pressure across the valve). The relationship between the commanded signal and the feedback signal is shown in Figure 2-3. The feedback signal has been scaled to range from to 1% open. The unscaled feedback ranges from approximately 4.9 to 73% open. Note in Figure 2-3 that there are five data points corresponding to five differential pressures for each commanded signal. The only exception is a commanded signal of 4% open, which has ten data points. Because they overlap one another, multiple data points appear to be a single point in Figure 2-3. The data in Figure 2-3 indicates that the hysteresis observed in the data in Figure 2-2 is not due to inconsistent positioning of the control valve. With this assumption, the most likely source of the hysteresis is the pressure regulator device in the, which must respond to pressure changes that occur as the valve is opened and closed. Although some hysteresis is observed, it could be argued that it is unimportant because a feedback application will simply reposition the valve as necessary to achieve the desired process condition. 1 Scaled Valve Feedback Signal (% Open) Valve Commanded Signal (% Open) Figure 2-3: Relationship between the commanded and scaled feedback signals for the Belimo. 9

25 The performance of the valve is consistent with Belimo literature on the. Although some slight pressure dependencies can be observed in the data (the flow rate increases slightly at higher differential pressures), the variations are less than 6.5% of the design flow of 3 GPM (.19 L/s). The water flow rate through the Siemens Powermite MT globe valve as a function of the differential pressure across the valve and the commanded signal to the valve is shown in Figure 2-4. The commanded signal again has units of % open and 35% open corresponds to a commanded signal of 3.5 VDC. Figure 2-4 consists of data obtained with the balancing valve 42% closed (solid lines) as well as data obtained with the balancing valve fully open (dashed lines). Because the balancing valve is located upstream of locations where the inlet pressure and differential pressure measurements are made, the balancing valve will not affect the flow rate through the control valve at a specific differential pressure and valve position. Partially closing the balancing valve will, however, limit the ability of the pumps to achieve high differential pressures when the valve is fully open or nearly fully open. Specifically, the pumps were unable to provide enough head to produce the higher pressure drops when the Siemens valve was 8% open (2 and 3 psi [137.9 and 26.9 kpa] could not be achieved) and 1% open (15, 2 and 3 psi [13.4, and 26.9 kpa] could not be achieved) and the balancing valve was 42% closed. As a consequence, these curves are incomplete. The missing data points were obtained through retesting with the balancing valve 1% open. Additional data points were also collected with the balancing valve 1% open (dashed curves in Figure 2-4) to demonstrate that the balancing valve does not influence the flow rate at a specific differential pressure and commanded signal to the valve. This assertion is borne out by the data. The curves in Figure 2-4 indicate that the flow rate through the Siemens valve increases as the differential pressure across the valve increases for a fixed commanded signal to the valve. This is consistent with Siemens literature on the Powermite MT series valve. The flow rates measured when the valve was fully open are 13 to 15% higher than expected based on Siemens literature. For example, for a differential pressure of 5 psi (34.5 kpa), a flow rate of 4.14 GPM (.261 L/s) was measured and for a differential pressure of 1 psi (69 kpa), a flow rate of 5.76 GPM (.363 L/s) was measured. The Siemens literature indicates the flow rates should be approximately 3.6 GPM at 5 psi and 5.1 GPM at 1 psi (.227 L/s at 34.5 kpa and.322 L/s at 69 kpa). Based on the measured flow rates, the Siemens valve has a flow coefficient (C v ) of approximately 1.82, whereas the manufacturer stated flow coefficient is 1.6. It was noted in Section 2.1 that the globe valve was sized to produce a 4 psi (27.6 kpa) pressure drop across the valve when it is fully open. This sizing practice is common in the field and the calculated flow coefficient based on this criteria is C v = 1.5. The Siemens Powermite MT , with a flow coefficient of 1.6, was closest to the desired value of C v = 1.5. ASHRAE sizing criteria, which states that the control valve pressure drop should be at least 25 to 5 percent of the system loop pressure drop, suggests a valve with a flow coefficient of C v = 1.14 is appropriate for this application. Thus, based on actual performance, the correctly sized conventional globe valve was 21 to 6% oversized depending on which of these two criteria are used for selection. 1

The Advancement of Pressure Independent Technology

The Advancement of Pressure Independent Technology The Advancement of Pressure Independent Technology This session will look at the new pressure independent technology and its energy savings potential. Topics include: A brief review of the differences

More information

Hydronic Systems Balance

Hydronic Systems Balance Hydronic Systems Balance Balancing Is Misunderstood Balancing is application of fundamental hydronic system math Balance Adjustment of friction loss location Adjustment of pump to requirements By definition:

More information

2005 CERTIFICATE OF ACCEPTANCE (Part 1 of 3) MECH-1-A

2005 CERTIFICATE OF ACCEPTANCE (Part 1 of 3) MECH-1-A 2005 CERTIFICATE OF ACCEPTANCE (Part 1 of 3) MECH-1-A PROJECT ADDRESS TESTING AUTHORITY TELEPHONE Checked by/date Enforcement Agency Use GENERAL INFORMATION OF BLDG. PERMIT PERMIT # BLDG. CONDITIONED FLOOR

More information

Gerald D. Anderson. Education Technical Specialist

Gerald D. Anderson. Education Technical Specialist Gerald D. Anderson Education Technical Specialist The factors which influence selection of equipment for a liquid level control loop interact significantly. Analyses of these factors and their interactions

More information

Figure 4 Figure 5 Figure 6

Figure 4 Figure 5 Figure 6 PICCV versus conventional two-way control s A with an equal percentage characteristic has historically been used to counteract the nonlinear heat emission of the coils. The result is a linear heat emission

More information

Application Block Library Fan Control Optimization

Application Block Library Fan Control Optimization Application Block Library Fan Control Optimization About This Document This document gives general description and guidelines for wide range fan operation optimisation. Optimisation of the fan operation

More information

Simple Set. Pressure Independent Control Valves 2 Way 1/2-2

Simple Set. Pressure Independent Control Valves 2 Way 1/2-2 The Bray Simple Set is a threaded pressure independent control (PIC) valve designed for a wide variety of hot water and chilled water control applications. The SS Series combines high rangeability control

More information

Smart Water Application Technologies (SWAT)

Smart Water Application Technologies (SWAT) Smart Water Application Technologies (SWAT) Turf and Landscape Irrigation Equipment PRESSURE REGULATING SPRAY HEAD SPRINKLERS Equipment Functionality Test Testing Protocol Version 3.0 (May 2012) Developed

More information

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration Paper 2.2 Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration Mr William Freund, Daniel Measurement and Control Mr Klaus Zanker, Daniel Measurement and Control Mr Dale Goodson,

More information

HAP e-help. Obtaining Consistent Results Using HAP and the ASHRAE 62MZ Ventilation Rate Procedure Spreadsheet. Introduction

HAP e-help. Obtaining Consistent Results Using HAP and the ASHRAE 62MZ Ventilation Rate Procedure Spreadsheet. Introduction Introduction A key task in commercial building HVAC design is determining outdoor ventilation airflow rates. In most jurisdictions in the United States, ventilation airflow rates must comply with local

More information

AUTOMATIC FLOW CARTRIDGES. Competition Analysis Not All Automatics Are Created Equal

AUTOMATIC FLOW CARTRIDGES. Competition Analysis Not All Automatics Are Created Equal - AUTOMATIC FLOW CARTRIDGES Competition Analysis Not All Automatics Are Created Equal IMI FLOW DESIGN / AUTOMATIC FLOW CARTRIDGES / F345.0 COMPETITION ANALYSIS Improve the of your Premium System Components...

More information

LABORATORY EXERCISE 1 CONTROL VALVE CHARACTERISTICS

LABORATORY EXERCISE 1 CONTROL VALVE CHARACTERISTICS Date: Name: LABORATORY EXERCISE 1 CONTROL VALVE CHARACTERISTICS OBJECTIVE: To demonstrate the relation between valve stem position and the fluid flow through a control valve, for both linear and equal

More information

Simple Set Max. Pressure Independent Control Valves 2 Way 2-1/ /09/18

Simple Set Max. Pressure Independent Control Valves 2 Way 2-1/ /09/18 The Bray Simple Set Max is a flanged pressure independent control (PIC) valve designed for a wide variety of hot water and chilled water control applications. The SSM Series combines high rangeability

More information

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

International Journal of Technical Research and Applications e-issn: ,  Volume 4, Issue 3 (May-June, 2016), PP. DESIGN AND ANALYSIS OF FEED CHECK VALVE AS CONTROL VALVE USING CFD SOFTWARE R.Nikhil M.Tech Student Industrial & Production Engineering National Institute of Engineering Mysuru, Karnataka, India -570008

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Exercise 8. Closed-Loop Pressure Control, Proportional-Plus-Integral Mode EXERCISE OBJECTIVE

Exercise 8. Closed-Loop Pressure Control, Proportional-Plus-Integral Mode EXERCISE OBJECTIVE Exercise 8 Closed-Loop Pressure Control, EXERCISE OBJECTIVE To understand open and closed-loop pressure control; To learn how to sense the pressure in a pneumatic circuit; To control the pressure in a

More information

Heat Pump Connections and Interior Piping

Heat Pump Connections and Interior Piping Job Sheet 3 Heat Pump Connections and Interior Piping OBJECTIVES In this job sheet, you will observe how the presence of air in the ground loop affects the geothermal heat pump performance. You will also

More information

Practical Guide. By Steven T. Taylor, P.E., Member ASHRAE

Practical Guide. By Steven T. Taylor, P.E., Member ASHRAE ractical Guide The following article was published in ASHRAE Journal, March 2003. Copyright 2003 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented for educational

More information

Digital Level Control One and Two Loops Proportional and Integral Control Single-Loop and Cascade Control

Digital Level Control One and Two Loops Proportional and Integral Control Single-Loop and Cascade Control Digital Level Control One and Two Loops Proportional and Integral Control Single-Loop and Cascade Control Introduction This experiment offers a look into the broad field of process control. This area of

More information

COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS

COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS APPLICATION NOTE LC-136 Introduction Specialized spaces often times must

More information

Constant Pressure Inlet (CCN) Operator Manual

Constant Pressure Inlet (CCN) Operator Manual Constant Pressure Inlet (CCN) Operator Manual DOC-0125 Revision J 2545 Central Avenue Boulder, CO 80301-5727 USA C O P Y R I G H T 2 0 1 1 D R O P L E T M E A S U R E M E N T T E C H N O L O G I E S, I

More information

Outside Air Nonresidential HVAC Stakeholder Meeting #2 California Statewide Utility Codes and Standards Program

Outside Air Nonresidential HVAC Stakeholder Meeting #2 California Statewide Utility Codes and Standards Program 1 Outside Air Nonresidential HVAC Stakeholder Meeting #2 California Statewide Utility Codes and Standards Program Jim Meacham, CTG Energetics Agenda 2 In Situ Testing Results Reduced Ventilation after

More information

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller CHEMICAL ENGINEERING LABORATORY CHEG 239W Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller Objective The experiment involves tuning a commercial process controller for temperature

More information

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE Proceedings of FEDSM 98 1998 ASME Fluids Engineering

More information

SINGLE VALVE WITH LOW-FLOW BYPASS

SINGLE VALVE WITH LOW-FLOW BYPASS CONTROL VALVES Pressure Reducing Valve Sizing Guide Sizing pilot operated reducing valves is not a complicated process. It starts with determining requirements and following these guidelines in valve size

More information

Measuring range Δp (span = 100%) Pa

Measuring range Δp (span = 100%) Pa 4.4/ RLE 5: Volume-flow controller, continuous How energy efficiency is improved Enables demand-led volume flow control for the optimisation of energy consumption in ventilation systems. Areas of application

More information

RadKits (Piping Packages)

RadKits (Piping Packages) Product nformation Models RadKit Option Overview here are six (6) RadKit options available for Price Active & Passive Beam Products. hey vary in features according to application requirements, from a basic

More information

Fisher FIELDVUE DVC6200f Digital Valve Controller PST Calibration and Testing using ValveLink Software

Fisher FIELDVUE DVC6200f Digital Valve Controller PST Calibration and Testing using ValveLink Software Instruction Manual Supplement DVC6200f Digital Valve Controller Fisher FIELDVUE DVC6200f Digital Valve Controller PST Calibration and Testing using ValveLink Software The test procedure contained in this

More information

Technical vs. Process Commissioning Final Exam: Functional Performance Testing

Technical vs. Process Commissioning Final Exam: Functional Performance Testing ASHRAE www.ashrae.org. Used with permission from ASHRAE Journal, June 2014 at www.atkinsglobal.com. This article may not be copied nor distributed in either paper or digital form without ASHRAE s permission.

More information

Pressure Independent Control Series

Pressure Independent Control Series Document No. 155-522 Pressure Independent Control Series Two-Way Cast Iron Flanged Bodies, ANSI 125 and 250 Description Siemens Pressure Independent Control Valves integrate three functions into a single

More information

Characterizers for control loops

Characterizers for control loops Characterizers for control loops By: F. G. Shinskey (May 1999) Introduction Commercial controllers such as the PID series (proportional, integral, derivative, and their combinations) are linear devices

More information

Cover Page for Lab Report Group Portion. Head Losses in Pipes

Cover Page for Lab Report Group Portion. Head Losses in Pipes Cover Page for Lab Report Group Portion Head Losses in Pipes Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 February 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

ELECTRONIC VALVE SIZING AND SELECTION

ELECTRONIC VALVE SIZING AND SELECTION ctuators for heating, ventilation, air-conditioning ELECTRONIC VLVE SIZING ND SELECTION V4.1 ir Handling Unit Reheat, Fan, Baseboard Pressure drop 1 psi 5 psi 10 psi 0.7 1.7 2.3 1.2 2.7 3.8 1.9 4.2 6.0

More information

Product Sheet Pre-Fabricated Flushing Bypass Assembly for Terminal Applications Mini-Flush 40

Product Sheet Pre-Fabricated Flushing Bypass Assembly for Terminal Applications Mini-Flush 40 Product Sheet Pre-Fabricated Flushing Bypass Assembly for Terminal Applications Mini-Flush 40 Description Miniflush 40 is a pre-fabricated, flushing bypass arrangement for balance, control, isolation,

More information

2007 Gas-Lift Workshop

2007 Gas-Lift Workshop 2007 Gas-Lift Workshop Field Application of Automation and Control Equipment by Cleon Dunham Oilfield Automation Consulting 2/11/2007 2007 Gas-Lift Workshop 1 Gas-Lift Automation & Control Equipment Outline

More information

MIL-STD-883G METHOD

MIL-STD-883G METHOD STEADY-STATE LIFE 1. PURPOSE. The steady-state life test is performed for the purpose of demonstrating the quality or reliability of devices subjected to the specified conditions over an extended time

More information

ISQB1 INTRINSICALLY SAFE ELECTRO-PNEUMATIC CONTROL VALVE INSTALLATION & MAINTENANCE INSTRUCTIONS HAZARDOUS AREA CLASSIFICATION

ISQB1 INTRINSICALLY SAFE ELECTRO-PNEUMATIC CONTROL VALVE INSTALLATION & MAINTENANCE INSTRUCTIONS HAZARDOUS AREA CLASSIFICATION PROPORTION AIR ISQB1 INTRINSICALLY SAFE ELECTRO-PNEUMATIC CONTROL VALVE INSTALLATION & MAINTENANCE INSTRUCTIONS Hazardous area classification Description / identification General specifications Connection

More information

CONTROL VALVE WHAT YOU NEED TO LEARN?

CONTROL VALVE WHAT YOU NEED TO LEARN? CONTROL VALVE WHAT YOU NEED TO LEARN? i) The control valve characteristics refers to the relationship between the volumetric flowrate F (Y-axis) through the valve AND the valve travel or opening position

More information

PEAPOD. Pneumatically Energized Auto-throttled Pump Operated for a Developmental Upperstage. Test Readiness Review

PEAPOD. Pneumatically Energized Auto-throttled Pump Operated for a Developmental Upperstage. Test Readiness Review PEAPOD Pneumatically Energized Auto-throttled Pump Operated for a Developmental Upperstage Test Readiness Review Customer: Special Aerospace Services Chris Webber and Tim Bulk 1 Overview Project Overview

More information

Application Notes. SLP85xD Load Cells

Application Notes. SLP85xD Load Cells Application Notes Load Cells Table of Contents 1 Introduction 3 2 Description of the Filling Cycle 4 3 Filling Optimization 7 4 Filling Monitor 8 4.1 Weight-Based Filling Monitor... 8 4.2 Time-Based Filling

More information

Hill PHOENIX Second Nature Medium Temperature Secondary Refrigeration Start-Up Guide

Hill PHOENIX Second Nature Medium Temperature Secondary Refrigeration Start-Up Guide Hill PHOENIX Second Nature Medium Temperature Secondary Refrigeration Start-Up Guide Secondary Coolant System Start-Up Procedures June 2006 Produced by the Hill PHOENIX Learning Center DISCLAIMER This

More information

Process Dynamics, Operations, and Control Lecture Notes - 20

Process Dynamics, Operations, and Control Lecture Notes - 20 Lesson 0. Control valves 0.0 Context Controller output is a signal that varies between 0 and 100%. Putting this signal to use requires a final control element, a device that responds to the controller

More information

CENTER PIVOT EVALUATION AND DESIGN

CENTER PIVOT EVALUATION AND DESIGN CENTER PIVOT EVALUATION AND DESIGN Dale F. Heermann Agricultural Engineer USDA-ARS 2150 Centre Avenue, Building D, Suite 320 Fort Collins, CO 80526 Voice -970-492-7410 Fax - 970-492-7408 Email - dale.heermann@ars.usda.gov

More information

Preparation for Salinity Control ME 121

Preparation for Salinity Control ME 121 Preparation for Salinity Control ME 121 This document describes a set of measurements and analyses that will help you to write an Arduino program to control the salinity of water in your fish tank. The

More information

WMO LABORATORY INTERCOMPARISON OF RAIN INTENSITY GAUGES

WMO LABORATORY INTERCOMPARISON OF RAIN INTENSITY GAUGES WMO LABORATORY INTERCOMPARISON OF RAIN INTENSITY GAUGES Christophe ALEXANDROPOULOS and Muriel LACOMBE Météo-France, Direction des Systèmes d Observation, BP 202-78195 Trappes France christophe.alexandropoulos@meteo.fr

More information

Process Simulator Evaluates Blower and Valve Control Strategies for WWTP Aeration

Process Simulator Evaluates Blower and Valve Control Strategies for WWTP Aeration Process Simulator Evaluates Blower and Valve Control Strategies for WWTP Aeration inshare By Steve Kestel and Tilo Stahl (BioChem Technology) and Matthew Gray (Keystone Engineering Group) Introduction

More information

This ASHRAE Distinguished Lecturer is brought to you by the Society Chapter Technology Transfer Committee

This ASHRAE Distinguished Lecturer is brought to you by the Society Chapter Technology Transfer Committee ASHRAE WILL ILL G IVE Y OU THE W ORLD This ASHRAE Distinguished Lecturer is brought to you by the Society Chapter Technology Transfer Committee Complete the Distinguished Lecturer Event Summary Critique

More information

Installation and Operation Manual

Installation and Operation Manual Manual Static pressure transducer with controller Differential static pressure transducer with analog output and optional PI control mode Large diaphragm element with differential transformer Transducer

More information

Back to Basics: Pumping Systems RM ASHRAE TECH CONFERENCE

Back to Basics: Pumping Systems RM ASHRAE TECH CONFERENCE Back to Basics: Pumping Systems RM ASHRAE TECH CONFERENCE 4/29/2016 1 AGENDA Closed loop heating and cooling piping systems Expansion Tanks Pumps 2 BASIC PUMPING LOOP Nice and simple too simple? Constant

More information

Fail Operational Controls for an Independent Metering Valve

Fail Operational Controls for an Independent Metering Valve Group 14 - System Intergration and Safety Paper 14-3 465 Fail Operational Controls for an Independent Metering Valve Michael Rannow Eaton Corporation, 7945 Wallace Rd., Eden Prairie, MN, 55347, email:

More information

Sizing Pulsation Dampeners Is Critical to Effectiveness

Sizing Pulsation Dampeners Is Critical to Effectiveness Sizing Pulsation Dampeners Is Critical to Effectiveness Pressure variation is an important consideration when determining the appropriate size pulsation dampener needed for an application. by David McComb,

More information

RICK FAUSEL, BUSINESS DEVELOPMENT ENGINEER TURBOMACHINERY CONTROL SYSTEM DESIGN OBJECTIVES

RICK FAUSEL, BUSINESS DEVELOPMENT ENGINEER TURBOMACHINERY CONTROL SYSTEM DESIGN OBJECTIVES RICK FAUL, BUSINESS DEVELOPMENT ENGINEER TURBOMACHINERY CONTROL SYSTEM DESIGN OBJECTIVES The primary design objective for any turbomachinery control system should be to maintain or maximize machine and

More information

Comparative Tests on Differential Pressure Control Valves

Comparative Tests on Differential Pressure Control Valves Comparative Tests on Differential Pressure Control Valves Final Report 56148/1 Edition 2 This report supersedes Final Report No: 56148/1 dated 10 October 2013 Carried out for Danfoss A/S Hydronic Balancing

More information

UBEC 1AT. AUTO TANK Fill System Installation, Operation, & Setup Instructions

UBEC 1AT. AUTO TANK Fill System Installation, Operation, & Setup Instructions Document Number: XE-ATA5PM-R1A UBEC 1AT AUTO TANK Fill System 08899155 Installation, Operation, & Setup Instructions Rev170906-EB-FRC PHYSICAL: 1302 WEST BEARDSLEY AVE ELKHART, IN 46514 WWW.ELKHARTBRASS.COM

More information

Design Envelope Booster. Sequence of operation

Design Envelope Booster. Sequence of operation Design Envelope Booster Sequence of operation File No: 62.835 Date: february 11, 2015 Supersedes: 62.835 Date: july 11, 2014 sequence of operation Design Envelope Booster 2 general The packaged domestic

More information

REASONS FOR THE DEVELOPMENT

REASONS FOR THE DEVELOPMENT 7 Series 7 Series +24VDC VDC OUTPUT MICROPROCESS. E P IN EXH OUT 7 Series 7 ø,8 8 7 Series 9 5 8 9 7 Series Display features The proportional regulator has a 3 /2 digit display and a three-pushbutton

More information

TR Electronic Pressure Regulator. User s Manual

TR Electronic Pressure Regulator. User s Manual TR Electronic Pressure Regulator Page 2 of 13 Table of Contents Warnings, Cautions & Notices... 3 Factory Default Setting... 4 Quick Start Procedure... 5 Configuration Tab... 8 Setup Tab... 9 Internal

More information

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI GP1 & GP2 Electropneumatic Regulators FOR PRESSURE CONTROL TO 1, PSI GP1 & GP2 Functional Description The GP series control valve is an electronic pressure regulator designed to precisely control the pressure

More information

MACH ONE MASS FLOW CONTROLLER. MACH ONE SERIES flow control. MASS FLOW CONTROLLERS at the speed of sound.

MACH ONE MASS FLOW CONTROLLER. MACH ONE SERIES flow control. MASS FLOW CONTROLLERS at the speed of sound. MACH ONE MASS FLOW CONTROLLER MACH ONE SERIES flow control MASS FLOW CONTROLLERS at the speed of sound. MACH ONE SERIES MASS FLOW CONTROLLER FLOW CONTROL AT THE SPEED OF SOUND The Mach One revolutionary

More information

The Use of a Process Simulator to Model Aeration Control Valve Position and System Pressure

The Use of a Process Simulator to Model Aeration Control Valve Position and System Pressure The Use of a Process Simulator to Model Aeration Control Valve Position and System Pressure Matthew Gray 1 * and Steve Kestel 1 1 BioChem Technology, King of Prussia, PA *Email: mgray@biochemtech.com ABSTRACT

More information

Modeling a Pressure Safety Valve

Modeling a Pressure Safety Valve Modeling a Pressure Safety Valve Pressure Safety Valves (PSV), Pressure Relief Valves (PRV), and other pressure relieving devices offer protection against overpressure in many types of hydraulic systems.

More information

Operators of petroleum plants

Operators of petroleum plants Validating anti-surge control systems At a gas processing plant, real time simulation was used to analyse the design of a surge protection scheme for a natural gas compressor, after questions arose over

More information

The benefits of the extended diagnostics feature. Compact, well-proven, and flexible

The benefits of the extended diagnostics feature. Compact, well-proven, and flexible ABB MEASUREMENT & ANALYTICS TECHNICAL INFORMATION PositionMaster EDP300 Extended Diagnostics Compact, well-proven, and flexible The benefits of the extended diagnostics feature The PositionMaster EDP300

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

Space Pressurization: Concept and Practice ASHRAE Distinguished Lecture Series

Space Pressurization: Concept and Practice ASHRAE Distinguished Lecture Series Space Pressurization: Concept and Practice ASHRAE Distinguished Lecture Series Jim Coogan Siemens Building Technologies ASHRAE, St. Louis Chapter November10, 2014 Agenda Introduction (concept, purpose,

More information

Chapter 10: Bidirectional Flow Controls

Chapter 10: Bidirectional Flow Controls Chapter 10: Bidirectional Flow Controls Objectives Learn about the patented, bidirectional flow control valves. Understand how the flow force affects the performance of the ZL70-36. Learn why there is

More information

WaterSense Specification for Spray Sprinkler Bodies. Version 1.0

WaterSense Specification for Spray Sprinkler Bodies. Version 1.0 Version 1.0 September 21, 2017 WaterSense Specification for Spray Sprinkler Bodies 1.0 Scope and Objective This specification establishes the criteria for labeling bodies of spray sprinklers 1 under the

More information

MEASUREMENT BEST PRACTICES FORIMPROVEDREFINERY SAFETY, AVAILABILITY & EFFICIENCY

MEASUREMENT BEST PRACTICES FORIMPROVEDREFINERY SAFETY, AVAILABILITY & EFFICIENCY MEASUREMENT BEST PRACTICES FORIMPROVEDREFINERY SAFETY, AVAILABILITY & EFFICIENCY Mark Menezes, PlantWeb Marketing Manager Rosemount Inc. Eric Wickberg, Pressure Applications Marketing Manager Rosemount

More information

APPLYING VARIABLE SPEED PRESSURE LIMITING CONTROL DRIVER FIRE PUMPS. SEC Project No

APPLYING VARIABLE SPEED PRESSURE LIMITING CONTROL DRIVER FIRE PUMPS. SEC Project No APPLYING VARIABLE SPEED PRESSURE LIMITING CONTROL DRIVER FIRE PUMPS SEC Project No. 1803007-000 November 20, 2006 TABLE OF CONTENTS I. ABSTRACT...1 II. INTRODUCTION...1 III. HISTORY...2 IV. VARIABLE SPEED

More information

Mitos Fluika Pressure and Vacuum Pumps Datasheet

Mitos Fluika Pressure and Vacuum Pumps Datasheet Unit 1, Anglian Business Park, Orchard Road, Royston, Hertfordshire, SG8 5TW, UK T: +44 (0)1763 242491 F: +44 (0)1763 246125 E: sales@dolomite-microfluidics.com W: www.dolomite-microfluidics.com Dolomite

More information

AIAA Brush Seal Performance Evaluation. P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND

AIAA Brush Seal Performance Evaluation. P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND AIAA 98-3172 Brush Seal Performance Evaluation P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND BRUSH SEAL PERFORMANCE EVALUATION AIAA-98-3172 P. F. Crudgington Cross Manufacturing Co. Ltd

More information

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions L 100 Bubble-Tube Level System Installation, Operation and Maintenance Instructions Figure 1 Contents Section Description Page 1.0 Introduction 2 2.0 Specifications 3 3.0 Installation 3 4.0 Warranty 6

More information

Balancing HVAC Hydronic Systems Part 3: Flow Measurement Valves

Balancing HVAC Hydronic Systems Part 3: Flow Measurement Valves Balancing HVAC Hydronic Systems Part 3: Flow Measurement Valves Monday Morning Minutes by Norm Hall, August 20, 2018 The flow balance of a hydronic system is a critical component in the commissioning of

More information

Cascade control. Cascade control. 2. Cascade control - details

Cascade control. Cascade control. 2. Cascade control - details Cascade control Statistical Process Control Feedforward and ratio control Cascade control Split range and selective control Control of MIMO processes 1 Structure of discussion: Cascade control Cascade

More information

ONSITE PROVING OF GAS METERS. Daniel J. Rudroff WFMS Inc West Bellfort Sugar Land, Texas. Introduction

ONSITE PROVING OF GAS METERS. Daniel J. Rudroff WFMS Inc West Bellfort Sugar Land, Texas. Introduction ONSITE PROVING OF GAS METERS Daniel J. Rudroff WFMS Inc. 13901 West Bellfort Sugar Land, Texas Introduction With the increased use of Natural Gas as a fuel, and higher natural gas prices buyers and sellers

More information

7250 Sys. Ruska Multi-Range Pressure Calibration System. GE Sensing & Inspection Technologies. Features. Applications

7250 Sys. Ruska Multi-Range Pressure Calibration System. GE Sensing & Inspection Technologies. Features. Applications GE Sensing & Inspection Technologies 7250 Sys Ruska Multi-Range Pressure Calibration System Features Fully integrated multi-range pressure test and calibration systems Select either an eight range or the

More information

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications Application Description AG/266PILD-EN Rev. C 2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic Pressure Measurement Engineered solutions for all applications Increase plant productivity

More information

Wind Flow Validation Summary

Wind Flow Validation Summary IBHS Research Center Validation of Wind Capabilities The Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test facility provides opportunities to simulate natural wind conditions

More information

CHAPTER 1 INTRODUCTION TO RELIABILITY

CHAPTER 1 INTRODUCTION TO RELIABILITY i CHAPTER 1 INTRODUCTION TO RELIABILITY ii CHAPTER-1 INTRODUCTION 1.1 Introduction: In the present scenario of global competition and liberalization, it is imperative that Indian industries become fully

More information

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW AC 2010-2145: MEASUREMENT OF HYDROGEN IN HELIUM FLOW Randy Buchanan, University of Southern Mississippi Christopher Winstead, University of Southern Mississippi Anton Netchaev, University of Southern Mississippi

More information

Title: Standard Operating Procedure for Elemental and Organic Carbon (EC and OC) using Non-Dispersive Infrared Detection (NDIR)

Title: Standard Operating Procedure for Elemental and Organic Carbon (EC and OC) using Non-Dispersive Infrared Detection (NDIR) Procedure No: SOP-025 Revision No: 1.0 (January 21, 2011) Page No.: 1 of 8 1. INTRODUCTION AND SCOPE To obtain timely data for the purpose of air quality assessment, air quality trend reporting and to

More information

BAROMETER PRESSURE STANDARD PRESSURE CONTROLLER

BAROMETER PRESSURE STANDARD PRESSURE CONTROLLER BAROMETER PRESSURE STANDARD PRESSURE CONTROLLER Features ±0.01% FS Measurement & Control Accuracy ±0.001% /ºC Thermal Stability Pressure Ranges from ±1 psid to 1200 psia Applications Barometric Measurement

More information

OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply

OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply 4.1.1 General The primary function of a system for handling fuel oil is to transfer oil from the storage tank to the oil burner at specified conditions

More information

Valve Communication Solutions Axiom

Valve Communication Solutions Axiom Axiom Detect automated valve problems... before they shut down your process Reasons for Automated On/Off Valve Failures Monitor Fail Solenoid Fail Actuator Fail Coupling Break Too Slow Leaking Sticking

More information

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 CEE 331 Lab 1 Page 1 of 9 SAFETY Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 Laboratory exercise based on an exercise developed by Dr. Monroe Weber-Shirk The major safety hazard in this

More information

BACK PRESSURE / SUSTAINING

BACK PRESSURE / SUSTAINING In many liquid piping systems, it is vital that line pressure is maintained within relatively narrow limits. This is the function of the 108 Pressure Relief / Back Pressure Series of the OCV control valves.

More information

Consider the design of a central chilled water cooling system for a clubhouse and

Consider the design of a central chilled water cooling system for a clubhouse and EXAMPLE CD10-1 Consider the design of a central chilled water cooling system for a clubhouse and residential lodges for a prestigious golf club. The clubhouse is large with a 75 ton cooling load. It is

More information

RC 195 Receiver-Controller

RC 195 Receiver-Controller Document No. 129-082 RC 195 Receiver-Controller Product Description The POWERS RC 195 Receiver-Controller is a pneumatic instrument that receives one, two or three pneumatic inputs. It produces a pneumatic

More information

A Semi-Automated Functional Test Data Analysis Tool

A Semi-Automated Functional Test Data Analysis Tool A Semi-Automated Functional Test Data Analysis Tool Peng Xu, Philip Haves, Moosung Kim Lawrence Berkeley National Lab Synopsis The growing interest in commissioning is creating a demand that will increasingly

More information

PIG MOTION AND DYNAMICS IN COMPLEX GAS NETWORKS. Dr Aidan O Donoghue, Pipeline Research Limited, Glasgow

PIG MOTION AND DYNAMICS IN COMPLEX GAS NETWORKS. Dr Aidan O Donoghue, Pipeline Research Limited, Glasgow PIG MOTION AND DYNAMICS IN COMPLEX GAS NETWORKS Dr Aidan O Donoghue, Pipeline Research Limited, Glasgow A model to examine pigging and inspection of gas networks with multiple pipelines, connections and

More information

SUMMARY PROBLEMS CAUSED BY BACKFLOW IN PIPE SYSTEMS.

SUMMARY PROBLEMS CAUSED BY BACKFLOW IN PIPE SYSTEMS. Page 1 of 11 SUMMARY There are many problems derived from a reverse flow in a piping system. A solution presented in this paper is the WaStop inline check valve. The paper aims to explain some of the important

More information

BACK PRESSURE / SUSTAINING

BACK PRESSURE / SUSTAINING SPECIFICATIONS DIMENSIONS In many liquid piping systems, it is vital that line pressure is maintained within relatively narrow limits. This is the function of the 108 Pressure Relief / Back Pressure Series

More information

KEM Scientific, Inc. Instruments for Science from Scientists

KEM Scientific, Inc. Instruments for Science from Scientists KEM Scientific, Inc. Instruments for Science from Scientists J-KEM Scientific, Inc. 6970 Olive Blvd. St. Louis, MO 63130 (314) 863-5536 Fax (314) 863-6070 E-Mail: jkem911@jkem.com Precision Vacuum Controller,

More information

STUDY OF SLUG CONTROL TECHNIQUES IN PIPELINE SYSTEMS

STUDY OF SLUG CONTROL TECHNIQUES IN PIPELINE SYSTEMS STUDY OF SLUG CONTROL TECHNIQUES IN PIPELINE SYSTEMS JOSÉ L. A,VIDAL Petrobrás Research Center - CENPES/PDEP/TOOL Av.Horácio de Macedo 95- Cidade Universitária 191-915 -Rio de Janeiro-RJ E-mail:josearias@petrobras.com.br

More information

TWO PHASE FLOW METER UTILIZING A SLOTTED PLATE. Acadiana Flow Measurement Society

TWO PHASE FLOW METER UTILIZING A SLOTTED PLATE. Acadiana Flow Measurement Society TWO PHASE FLOW METER UTILIZING A SLOTTED PLATE Acadiana Flow Measurement Society Gerald L. Morrison Presented by: Mechanical Engineering Department Daniel J. Rudroff 323 Texas A&M University Flowline Meters

More information

The Ins and Outs of I/P Transducers

The Ins and Outs of I/P Transducers The Ins and Outs of I/P Transducers By Mark B. Levine, ControlAir Inc. General description I/P transducers are versatile instruments that use an electrical control signal to proportionally regulate gas

More information

Spring Loaded Regulators Constant Loaded Regulators Twin Parallel Flow Regulators Field Service Regulators

Spring Loaded Regulators Constant Loaded Regulators Twin Parallel Flow Regulators Field Service Regulators Product Line Brochure J0B Effective Date 2/01 Spring Loaded Regulators Constant Loaded Regulators Twin Parallel Flow Regulators Field Service Regulators P R O D U C T L I N E O V E R V I E W Regulator

More information

Gas Gathering System Modeling The Pipeline Pressure Loss Match

Gas Gathering System Modeling The Pipeline Pressure Loss Match PETROLEUM SOCIETY CANADIAN INSTITUTE OF MINING, METALLURGY & PETROLEUM PAPER 2005-230 Gas Gathering System Modeling The Pipeline Pressure Loss Match R.G. MCNEIL, P.ENG. Fekete Associates Inc. D.R. LILLICO,

More information

Pressure and/or Temperature Pilot Operated Steam Regulators Series 2000

Pressure and/or Temperature Pilot Operated Steam Regulators Series 2000 Hoffman Specialty Regulators Regulators Pressure and/or Temperature Operated Regulators Series 2000 The Hoffman Specialty Series 2000 consists of main valves, pilot valves, wells and hardware kits. They

More information

The Discussion of this exercise covers the following points: Range with an elevated or suppressed zero Suppressed-zero range Elevated-zero range

The Discussion of this exercise covers the following points: Range with an elevated or suppressed zero Suppressed-zero range Elevated-zero range Exercise 4-3 Zero Suppression and Zero Elevation EXERCISE OBJECTIVE In this exercise, you will learn the effect that mounting a pressure transmitter above or below the reference level has on the hydrostatic

More information