Enter your parameter set number (1-27)

Size: px
Start display at page:

Download "Enter your parameter set number (1-27)"

Transcription

1 1- Helium balloons fly and balloons with air sink. Assume that we want to get a balloon that is just floating in the air, neither rising nor falling, when a small weight is placed hanging in the balloon. This may be accomplished by mixing air and helium in the right proportions. Assume that the balloon and the weight have a total mass of m (g) and that the balloon is inflated to a volume of V (liter). What is the necessary volume concentration and mass concentration of helium and air in the balloon to make it float? The temperature in the air and in the balloon is T ( C), the ambient air pressure is 1 bar, the pressure in the balloon is 1.05 bar. The molecular weight of air is M air = 29 kg/kmol and for helium M helium = 4 kg/kmol. The general gas constant is J/(kmol K). Acceleration of gravity is 9.81 m/s 2. The mixture can be treated as an ideal gas. Enter your parameter set number (1-27) your answer with 4 decimals.

2 volume concentration of air is volume concentration of helium is mass concentration of air is mass concentration of helium is 2- A cycle consists of three internally reversible processes with a gaseous medium according to following: a-b: Isothermal compression b-c: Heat transfer at constant pressure c-a: Isentropic expansion Compression ratio Va/Vb and κ is given according to your personal number. Calculate thermal efficiency.

3 Enter your parameter set number (1-27) thermal efficiency is % 3- A compressor is used to compress air of the temperature T ( C) from P1 bar to P2 bar. The compressor can be as adiabatic but not isentropic. Measurements show that the compressor work is 350 kj/kg. What is the isentropic thermodynamic efficiency of the compressor and by how many percent would the compressor work decrease if it was possible to arrange an ideal isothermal compression? The air may be treated as an ideal gas with κ=1.4, the molar mass 29 kg/kmol. The value of the general gas constant is J/(kmol K).

4 Enter your parameter set number (1-27) isentropic thermodynamic efficiency is percent would the compressor work decrease is 4- A cycle consists of three internally reversible processes with air as working medium according to following: a-b: Isentropic compression b-c: Heat transfer at constant pressure

5 c-a: Heat is rejected at constant volume Calculate: a) Work and heat transfer for each sub-process (expressed per unit mass) b) Thermal efficiency of the cycle p a ( bar), T a (K) and p b (bar) are given according to your personal data. Assume air as ideal gas with M=29 and κ=1.4 Enter your parameter set number (1-27) Work for a-b is KJ/Kg

6 Work for b-c is KJ/Kg Work for c-a is KJ/Kg Heat for a-b is KJ/Kg Heat for b-c is KJ/Kg Heat for c-a is KJ/Kg Thermal efficiency is % 5- You are asked to help installing a water line from the basement to a new bathroom on the second floor. The elevation difference between the basement and the second floor is H (m). To get from the connection point in the basement to the wash basin in the bathroom you need to install five bends with the loss coefficient ζ =0,3. You also install a valve in the basement with ζ=1. The tap in the wash basin also has ζ=1. The total tube length is 10 m. The available water pressure in the basement is 2 bar (gage). You would like to have a water flow of V (liters per minute). Is it then sufficient to install a tube with d (mm) inner diameter? The kinematic viscosity could be assumed to be m 2 /s and the density to be 1000 kg/m 3. a) Calculate the total pressure drop. b) Is available pressure (2 bar) sufficient to overcome the pressure drop?

7 Enter your parameter set number (1-27) total pressure drop is bar Enter "1" for yes and "0" for no 6- Through a pipe with d 1 =120 mm and L 1 =120 m, water is flowing from reservoir A to ramification at D from where a pipe with d 2 =75 mm and L 2 =60 m leads to reservoir B in which water level is H a-b (m) below reservoir A. Third pipe with d 3 =60 mm and L 3 =40 m connect D to reservoir C with a water level of H a-c (m) under the reservoir A according to the figure. Calculate volume flow (m 3 /kg) in those three pipes if they have same friction coefficient f, which is given from your personal number. Assume

8 other losses negligible and the reservoir are enough large and open to the ambient. Enter your parameter set number (1-27)

9 your answer with 4 decimals. volume flow in 1 is volume flow in 2 is volume flow in 3 is (m 3 /kg) (m 3 /kg) (m 3 /kg) 7- In a large container pressure is P 2 bar. 1. Calculate mass flow of the air (g/s) flowing into the container if an opening is a converging nozzle with an isentropic process 2. Assume that the opening is a converging-diverging nozzle, calculate for isentropic process, required A 2 /A min where sound velocity is occurred and also the mass flow of the air through the nozzle (g/s) A=1 mm 2 for both cases. Ambient air (M=29 and κ=1.4) has a pressure of 1 bar and temperature of T 0 ( C).

10 Enter your parameter set number (1-27) mass flow of the air for part 1 is (g/s) A 2 /A min is mass flow of the air for part 2 is (g/s) 8- Now you are planning to increase the insulation of the house and the question is how thick the insulation should be. You know that the wall at present has a U-value of 0.6 W/(m 2 K). You would like the wall to get a U- value of 0.2 W/(m 2 K) after the additional insulation. The insulation you use has a thermal conductivity of k (W/(m K)). The heat transfer coefficients on the outside (h out ) and inside (h in ) are given from your personal number.

11 Enter your parameter set number (1-27) The insulation is cm 9- Steel balls at diameter D meter are annealed by heating to Ti and then slowly cooling to 400 K in an air environment for which T=325 K and at given heat transfer coefficient of h. Assuming the properties of the steel to be k=40 W/m.K, density=7800 kg/m 3, and Cp=600 J/kg.K. Estimate the time required for the cooling process. (Negligible radiaition effects and constant properties)

12 Enter your parameter set number (1-27) time is s 10- Two large parallel planes having emissivities of epsilon 1 and epsilon 3 are maintained at temperatures of T1 (K) and T3 (K), respectively. A radiation shield having an emissivity of epsilon 2 on both sides is placed between the two planes. Calculate: 1- the heat transfer rate per unit area if the shield were not present. 2- the heat transfer rate per unit area with the shield present.

13 3- the temperature of the shield. Enter your parameter set number (1-27) heat transfer rate per unit area without shield is W/m 2 heat transfer rate per unit area with shield is W/m 2 the temperature of the shield K

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

S.A. Klein and G.F. Nellis Cambridge University Press, 2011 16-1 A flow nozzle is to be used to determine the mass flow rate of air through a 1.5 inch internal diameter pipe. The air in the line upstream of the meters is at 70 F and 95 psig. The barometric pressure

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Basic and Applied Thermodynamics First Law of Thermodynamics Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India)

More information

ENGG. THERMODYNAMICS

ENGG. THERMODYNAMICS ENGG. THERMODYNAMICS Unit-1 [8 hrs] Introduction To Thermodynamics: Basic concepts of Thermodynamics, Closed & Open Systems, Forms of energy, Properties of a system, State and Equilibrium, Processes and

More information

Problems of Chapter 3

Problems of Chapter 3 Problems of Chapter 3 Section 3.1 Molecular Model of an Ideal Gas 3. A sealed cubical container 20 cm on a side contains three times Avogadro s number of molecules at a temperature of 20 C. Find the force

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope.

HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope. HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope. The solar cell/solar panel shown above depict how a semiconductor can transform solar power into electrical power. Consider the solar panel

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 95 CHIEF

More information

ASSIGNMENT 2 CHE 3473

ASSIGNMENT 2 CHE 3473 DUE: May 23 ASSIGNMENT 2 CHE 3473 #Problem 1: 3.3 #Problem 2: 3.4 #Problem 3: 3.5 #Problem 4: 3.6 #Problem 5: 3.7 #Problem 6: 3.8 #Problem 7: 3.11 #Problem 8: 3.15 #Problem 9: 3.22 #Problem 10: 3.32 #Problem

More information

Chapter 4, Problem 30.

Chapter 4, Problem 30. Chapter 4, Problem 30. A well-insulated rigid tank contains 5 kg of a saturated liquid vapor mixture of water at l00 kpa. Initially, three-quarters of the mass is in the liquid phase. An electric resistor

More information

Old-Exam.Questions-Ch-14 T072 T071

Old-Exam.Questions-Ch-14 T072 T071 Old-Exam.Questions-Ch-14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

ENGINEERING FLUID MECHANICS

ENGINEERING FLUID MECHANICS DEPARTMENT of MECHANICAL ENGINEERING FLUID MECHANICS Subject code: 10ME46B Faculty name: Naveen H E QUESTION BANK UNIT-1: FLUID PROPERTIES 1. Define the following: i) density, ii) weight density, iii)

More information

ME 200 Thermodynamics I Spring 2010 (Last) (First) Thermo Number: CIRCLE YOUR LECTURE BELOW

ME 200 Thermodynamics I Spring 2010 (Last) (First) Thermo Number: CIRCLE YOUR LECTURE BELOW ME 200 Thermodynamics I Name: Spring 2010 Thermo Number: CIRCLE YOUR LECTURE BELOW Div. 1 8:30 am Div. 2 10:30 am Div. 3 12:30 pm Naik Tree Clark Div. 4 1:30 pm Kim Div. 5 3:30 pm Mathison EXAM 2 INSTRUCTIONS

More information

Tutorial. BOSfluids. Relief valve

Tutorial. BOSfluids. Relief valve Tutorial Relief valve The Relief valve tutorial describes the theory and modeling process of a pressure relief valve or safety valve. It covers the algorithm BOSfluids uses to model the valve and a worked

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

ASSIGNMENT 2 CHE 3473

ASSIGNMENT 2 CHE 3473 DUE: May 21 ASSIGNMENT 2 CHE 3473 #Problem 1 Read Chapter 3. ALL OF IT. Time yourself and report the time. #Problem 2: 3.2 #Problem 3: 3.3 #Problem 4: 3.5 #Problem 5: 3.6 #Problem 6: 3.7 #Problem 7: 3.8

More information

MATHEMATICAL MODELING OF PERFORMANCE OF A LIQUD PISTON COMPRESSOR

MATHEMATICAL MODELING OF PERFORMANCE OF A LIQUD PISTON COMPRESSOR 9. Pompa Vana Kompressör Kongresi 5-7 Mayıs 2016, İstanbul MATHEMATICAL MODELING OF PERFORMANCE OF A LIQUD PISTON COMPRESSOR Süleyman Doğan Öner Email: oner@ug.bilkent.edu.tr İbrahim Nasuh Yıldıran Email:

More information

Figure 1 Schematic of opposing air bearing concept

Figure 1 Schematic of opposing air bearing concept Theoretical Analysis of Opposing Air Bearing Concept This concept utilizes air bearings to constrain five degrees of freedom of the optic as shown in the figure below. Three pairs of inherently compensated

More information

Constant-Volume Process

Constant-Volume Process Constant-Volume Process A constant-volume process is called an isochoric process. Consider the gas in a closed, rigid container. Warming the gas with a flame will raise its pressure without changing its

More information

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. Fluids 1a. [1 mark] The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. State the difference in terms of the velocity of the

More information

My Website:

My Website: PH202 Recitation Week 06 Problem Set Winter 2015 Ryan Scheirer Email: scheirer@onid.orst.edu My Website: http://people.oregonstate.edu/~scheirer/ph202_rec.html Problem 01 If you double the speed of molecules

More information

Write important assumptions used in derivation of Bernoulli s equation. Apart from an airplane wing, give an example based on Bernoulli s principle

Write important assumptions used in derivation of Bernoulli s equation. Apart from an airplane wing, give an example based on Bernoulli s principle HW#3 Sum07 #1. Answer in 4 to 5 lines in the space provided for each question: (a) A tank partially filled with water has a balloon well below the free surface and anchored to the bottom by a string. The

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

More information

Earlier Lecture. In the earlier lecture, we have seen Kapitza & Heylandt systems which are the modifications of the Claude System.

Earlier Lecture. In the earlier lecture, we have seen Kapitza & Heylandt systems which are the modifications of the Claude System. 17 1 Earlier Lecture In the earlier lecture, we have seen Kapitza & Heylandt systems which are the modifications of the Claude System. Collins system is an extension of the Claude system to reach lower

More information

ANALYSIS OF HEAT TRANSFER THROUGH EXTERNAL FINS USING CFD TOOL

ANALYSIS OF HEAT TRANSFER THROUGH EXTERNAL FINS USING CFD TOOL ANALYSIS OF HEAT TRANSFER THROUGH EXTERNAL FINS USING CFD TOOL B. Usha Rani 1 and M.E Thermal 2 1,2 Asst.Professor, Dadi Institute of Engineering and Technology, India Abstract-The rate of heat transfer

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown

More information

5.0 Neutral Buoyancy Test

5.0 Neutral Buoyancy Test 5.0 Neutral Buoyancy Test Montgolfier balloons use solar energy to heat the air inside the balloon. The balloon used for this project is made out of a lightweight, black material that absorbs the solar

More information

CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University. Final Exam

CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University. Final Exam CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University Final Exam 8 pages, front & back, not including reference sheets; 21 questions An excerpt from the NCEES Fundamentals

More information

Activity 15 The First Law of the Thermodynamics F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL Name

Activity 15 The First Law of the Thermodynamics F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL Name Activity 15 The First Law of the Thermodynamics F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL Name MULTIPLE CHOICE. Choose the one alternative that best

More information

RESIDENTIAL WATER DISTRIBUTION

RESIDENTIAL WATER DISTRIBUTION RESIDENTIAL WATER DISTRIBUTION This case study demonstrates the steady-state simulation of the fresh water (drinking water) reticulation system in a small village. WATER RETICULATION Page1 WATER RETICULATION

More information

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book.

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book. Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections 10.1 10.2 of your book. Convert the following to Celsius and Kelvin temperatures: 1. 80.0 o F Early E. C.:

More information

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Sophie

More information

Quiz #1 Thermodynamics Spring, 2018 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS

Quiz #1 Thermodynamics Spring, 2018 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS Quiz #1 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS An astronaut has a mass of 161 lbm on the surface of the earth. Calculate his weight (in lbf) on planet Rigel 4 where g = 20.0 ft/s

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

An Experimental Performance Study of Vortex Tube Refrigeration System

An Experimental Performance Study of Vortex Tube Refrigeration System An Experimental Performance Study of Vortex Tube Refrigeration System Sankar Ram T. Department Of Industrial Refrigeration and Cryogenics T. K. M. College of Engineering Karicode, Kollam, Kerala sankarram9@gmail.com

More information

Automatically or individually calculated.

Automatically or individually calculated. GASCalc 5.0 GASCalc 5.0 is a Windows based suite of calculation tools for the natural gas professional. Routines are provided for calculating numerous parameters associated with the design and operation

More information

A B isothermal compression at a temperature of 300 K. The work done on the air is 104 J.

A B isothermal compression at a temperature of 300 K. The work done on the air is 104 J. Q1. In an ideal hot air engine, a fixed mass of air is continuously taken through the following four processes: A B isothermal compression at a temperature of 300 K. The work done on the air is 104 J.

More information

Meteorology & Air Pollution. Dr. Wesam Al Madhoun

Meteorology & Air Pollution. Dr. Wesam Al Madhoun Meteorology & Air Pollution Dr. Wesam Al Madhoun Dispersion = Advection (Transport) + Dilution (Diffusion) Source Transport Receptor Re-entrainment Fick s law of diffusion J= - D * D C/Dx Where, J= Mass

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

A centrifugal pump consists of an impeller attached to and rotating with the shaft and a casing that encloses the impeller.

A centrifugal pump consists of an impeller attached to and rotating with the shaft and a casing that encloses the impeller. Centrifugal pump How centrifugal pumps work A centrifugal pump consists of an impeller attached to and rotating with the shaft and a casing that encloses the impeller. In centrifugal pump, liquid is forced

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3 1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate

More information

ALICE SPD cooling system

ALICE SPD cooling system ALICE SPD cooling system Requirements: To remove a nominal power of 1380 W distributed per 60 staves (cooling channels) at a nominal duct temperature of C 1 To ensure as much as possible a temperature

More information

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser

More information

CHAPTER 31 IDEAL GAS LAWS

CHAPTER 31 IDEAL GAS LAWS CHAPTER 31 IDEAL GAS LAWS EXERCISE 144, Page 317 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

More information

DIMENSIONING WATER SUPPLY SYSTEM IN BUILDING

DIMENSIONING WATER SUPPLY SYSTEM IN BUILDING 1 Mamk Department of Energy and Environmental Technology, ET Double Degree Programme in Building Services 6.02.2015 T6615KA JukkaRäisä Water and sewage services in buildings DIMENSIONING WATER SUPPLY SYSTEM

More information

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum? AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a water-filled container. The

More information

FLOATING AND SINKING

FLOATING AND SINKING NAME SCHOOL INDEX NUMBER DATE FLOATING AND SINKING 1. 1994 Q5a P2 (a) State Archimedes s principal (1 mark) 2. 1996 Q29 P1 A solid copper sphere will sink in water while a hollow copper sphere of the same

More information

This guide is designed to assist the user in becoming quickly familiar with the capabilities of PEW, its interface and how the program is used.

This guide is designed to assist the user in becoming quickly familiar with the capabilities of PEW, its interface and how the program is used. PEW User Guide About this document This guide is designed to assist the user in becoming quickly familiar with the capabilities of PEW, its interface and how the program is used. It has been produced to

More information

Vibration-Free Joule-Thomson Cryocoolers for Distributed Microcooling

Vibration-Free Joule-Thomson Cryocoolers for Distributed Microcooling Vibration-Free Joule-Thomson Cryocoolers for Distributed Microcooling W. Chen, M. Zagarola Creare Inc. Hanover, NH, USA ABSTRACT This paper reports on an innovative concept for a space-borne Joule-Thomson

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

Chapter 9 Fluids and Buoyant Force

Chapter 9 Fluids and Buoyant Force Chapter 9 Fluids and Buoyant Force In Physics, liquids and gases are collectively called fluids. 3/0/018 8:56 AM 1 Fluids and Buoyant Force Formula for Mass Density density mass volume m V water 1000 kg

More information

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles International Journal of Engineering Research and Development e-issn: 7-067X, p-issn: 7-00X, www.ijerd.com Volume 3, Issue 4 (August ), PP. 33-39 Experimental Analysis on Vortex Tube Refrigerator Using

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

More information

PHYS 102 Quiz Problems Chapter 19 : Kinetic Theory of Gases Dr. M. F. Al-Kuhaili

PHYS 102 Quiz Problems Chapter 19 : Kinetic Theory of Gases Dr. M. F. Al-Kuhaili PHYS 102 Quiz Problems Chapter 19 : Kinetic Theory of Gases Dr. M. F. Al-Kuhaili 1. (TERM 001) Two moles of an ideal gas initially at 300 K and 0.40 atm are compressed isothermally to 1.2 atm. (a) Find

More information

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

More information

CHEM 3351 Physical Chemistry I, Fall 2017

CHEM 3351 Physical Chemistry I, Fall 2017 CHEM 3351 Physical Chemistry I, Fall 2017 Problem set 1 Due 9/15/2017 (Friday) 1. An automobile tire was inflated to a pressure of 24 lb in -2 (1.00 atm = 14.7 lb in -2 ) on a winter s day when the temperature

More information

I. CHEM. E. SYMPOSIUM SERIES NO. 85

I. CHEM. E. SYMPOSIUM SERIES NO. 85 FIRE SURVIVAL OF PROCESS VESSELS CONTAINING GAS J. Nylund * The present work is a theoretical evaluation of the ability of process vessels to survive hydrocarbon fires when the vessels are designed and

More information

GAS MIXTURES. Department of Mechanical Engineering

GAS MIXTURES. Department of Mechanical Engineering Chapter 13 GAS MIXTURES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Develop rules for determining nonreacting gas mixture properties from knowledge of mixture

More information

[2] After a certain time, the temperature of the water has decreased to below room temperature.

[2] After a certain time, the temperature of the water has decreased to below room temperature. 1 (a) Explain, in terms of molecules, why it is possible to compress a gas, but not a liquid. (b) Two containers made of insulating material contain the same volume of water at room temperature. The containers

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 11 AIR COMPRESSORS AND DISTRIBUTION SYSTEM The material needed for outcome 2 is

More information

The exit velocity of a compressed air cannon

The exit velocity of a compressed air cannon The exit velocity of a compressed air cannon Z. J. Rohrbach, T. R. Buresh, and M. J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: June 16, 2011) Abstract AirCannonPlans.Com

More information

Natural Gas Gathering

Natural Gas Gathering Natural Gas Gathering Course No: R04-002 Credit: 4 PDH Jim Piter, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info@cedengineering.com

More information

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases

More information

Bicycles 2. Bicycles 1. Bicycles 4. Bicycles 3. Bicycles 5. Bicycles 6

Bicycles 2. Bicycles 1. Bicycles 4. Bicycles 3. Bicycles 5. Bicycles 6 Bicycles 1 Bicycles 2 Reading Question 4.1a How would raising the height of a sport utility vehicle affect its turning stability? A. Make it less likely to tip over B. Make it more likely to tip over C.

More information

Actual volumetric efficiency, ƞvol Displacement volume Vd=π/4*D 2 L*N m3/min. pv n = c. FAD=mRT1/p m3/min ƞvol=fad/vd

Actual volumetric efficiency, ƞvol Displacement volume Vd=π/4*D 2 L*N m3/min. pv n = c. FAD=mRT1/p m3/min ƞvol=fad/vd Following data relate to a performance test of a single acting 14 cm 10 cm reciprocating compressor are given: suction pressure = 1 bar, suction temperature = 0 C, discharge pressure = 6 bar, discharge

More information

Overview of Earlier Lecture

Overview of Earlier Lecture 4 1 Overview of Earlier Lecture Hydrogen Helium Phase Diagram of Helium Super fluid Helium 2 Outline of the Lecture Uses of Helium 4 Thermomechanical, Mechanocaloric, Fountain, Rollin Film Effects. Sound

More information

EXAM # 2. First Name Last Name CIRCLE YOUR LECTURE BELOW: INSTRUCTIONS

EXAM # 2. First Name Last Name CIRCLE YOUR LECTURE BELOW: INSTRUCTIONS CIRCLE YOUR LECTURE BELOW: First Name Last Name Div. 1 08:30 am Prof. Chen Div. 2 11:30 am Prof. Braun EXAM # 2 INSTRUCTIONS 1. This is a closed book examination. You are allowed to have two single sheets

More information

Thermodynamics 1 MECH 240:

Thermodynamics 1 MECH 240: Thermodynamics 1 MECH 240: Homework Assignment 1 Friday, Jan. 10, 2014 Due: Friday, Jan. 24, 2014 at end of the tutorial Assigned Problems to be handed in: Review of mechanical work: 1. Consider the following

More information

Types of Forces. Pressure Buoyant Force Friction Normal Force

Types of Forces. Pressure Buoyant Force Friction Normal Force Types of Forces Pressure Buoyant Force Friction Normal Force Pressure Ratio of Force Per Unit Area p = F A P = N/m 2 = 1 pascal (very small) P= lbs/in 2 = psi = pounds per square inch Example: Snow Shoes

More information

CHAPTER-2 IMPACT OF JET

CHAPTER-2 IMPACT OF JET CHAPTER-2 IMPACT OF JET FLUID POWER ENGINEERING (2151903) 1. A jet of water of diameter 5cm moving with a velocity of 25 m/sec impinges on a fixed curved plate tangentially at one end at an angle of 30

More information

Flow in a shock tube

Flow in a shock tube Flow in a shock tube April 30, 05 Summary In the lab the shock Mach number as well as the Mach number downstream the moving shock are determined for different pressure ratios between the high and low pressure

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

Chapter 10. When atmospheric pressure increases, what happens to the absolute pressure at the bottom of a pool?

Chapter 10. When atmospheric pressure increases, what happens to the absolute pressure at the bottom of a pool? When atmospheric pressure increases, what happens to the absolute pressure at the bottom of a pool? A) It does not change B) It increases by an amount less than the atmospheric change. C) It increases

More information

Key Terms Chapter 7. boiling boiling point change of state concentration condensation deposition evaporation flow rate fluid freezing point

Key Terms Chapter 7. boiling boiling point change of state concentration condensation deposition evaporation flow rate fluid freezing point Foldable Activity Using the instructions on page 267 in your textbook on how to make foldables, write a key term on each front tab, and the definition on the inside (see example that I made up). You will

More information

AP Physics B Ch 10 Fluids. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

AP Physics B Ch 10 Fluids. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: AP Physics B Ch 10 Fluids 1) The three common phases of matter are A) solid, liquid, and vapor. B) solid, plasma, and gas. C) condensate, plasma, and gas. D) solid, liquid, and gas.

More information

Scott Denning CSU CMMAP 1

Scott Denning CSU CMMAP 1 Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic Lapse Rates Dry and Moist Convective Motions Present Atmospheric Composition What

More information

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation.

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation. Chapter 6: Stability Concept of Stability Concept of Stability Lapse Rates Determine Stability and Stability Indices Air Parcel Expands as It Rises Air Parcel Expands As It Rises Air pressure decreases

More information

Figure 1: You and Your Elephant

Figure 1: You and Your Elephant INSTRUCTORS NOTE (Dr. Jack Blumenthal) The thought experiment or problem described herein, together with the accompanying approach and calculations was developed by two seniors and their instructor at

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Cooling Characteristics of GM-type Pulse Tube Refrigerator with Neon as Working Gas

Cooling Characteristics of GM-type Pulse Tube Refrigerator with Neon as Working Gas Cooling Characteristics of GM-type Pulse Tube Refrigerator with Neon as Working Gas J. Ko, Y.J. Hong, H. Kim, H. Yeom, S.J. Park, D.Y. Koh Korea Institute of Machinery & Materials Daejeon, Korea (S), 305-343

More information

Pressure is defined as force per unit area. Any fluid can exert a force

Pressure is defined as force per unit area. Any fluid can exert a force Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary

More information

Part 6: Critical flow orifices

Part 6: Critical flow orifices Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 6145-6 Third edition 2017-07 Gas analysis Preparation of calibration gas mixtures using dynamic methods Part 6: Critical flow orifices Analyse

More information

University of Cincinnati

University of Cincinnati Mapping the Design Space of a Recuperated, Recompression, Precompression Supercritical Carbon Dioxide Power Cycle with Intercooling, Improved Regeneration, and Reheat Andrew Schroder Mark Turner University

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

Chapter 3 Atmospheric Thermodynamics

Chapter 3 Atmospheric Thermodynamics Chapter 3 Atmospheric Thermodynamics Spring 2017 Partial Pressure and Dalton Dalton's law of partial pressure: total pressure exerted by a mixture of gases which do not interact chemically is equal to

More information

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. A Law for Scuba Divers

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. A Law for Scuba Divers 1/6 2009/11/14 上午 11:12 Manage this Assignment: Chapter 18 Due: 12:00am on Saturday, July 3, 2010 Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy

More information

Procedure of Xenon Transfer

Procedure of Xenon Transfer Procedure of Xenon Transfer Feng Zhou,MIT CC: Martina Green February 28, 2005 In this write up, we discuss the procedure on how to transfer xenon to a designed gas storage vessel that supplies xenon to

More information

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant.

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant. PTT 04/ Applied Fluid Mechanics Sem, Session015/016 ASSIGNMENT 1 CHAPTER AND CHAPTER 1. The air in an automobile tire with a volume of 0.0740 m is at 0 C and 140 kpa. Determine the amount of air that must

More information

1Pressure 2 21Volume 2 2. or Temperature 2. where the subscript 1 signifies the initial conditions and the subscript 2 signifies the final conditions.

1Pressure 2 21Volume 2 2. or Temperature 2. where the subscript 1 signifies the initial conditions and the subscript 2 signifies the final conditions. 10-4 Gases The ideal gas law expresses the relationship between the pressure, volume, and temperature of a gas. In the exercises in this chapter, the mass of the gas remains constant. You will be examining

More information

Chapter 9. Forces and Fluids

Chapter 9. Forces and Fluids Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces

More information

Quiz name: Chapter 13 Test Review - Fluids

Quiz name: Chapter 13 Test Review - Fluids Name: Quiz name: Chapter 13 Test Review - Fluids Date: 1. All fluids are A gases B liquids C gasses or liquids D non-metallic E transparent 2. 1 Pa is A 1 N/m B 1 m/n C 1 kg/(m s) D 1 kg/(m s 2 ) E 1 N/m

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17421 15116 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?

2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force? CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How

More information

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model Fluid Flow Equipment: Water reservoir, output tubes of various dimensions (length, diameter), beaker, electronic scale for each table. Computer and Logger Pro software. Lots of ice.temperature probe on

More information