Enter your parameter set number (127)


 Heather Wilkins
 1 years ago
 Views:
Transcription
1 1 Helium balloons fly and balloons with air sink. Assume that we want to get a balloon that is just floating in the air, neither rising nor falling, when a small weight is placed hanging in the balloon. This may be accomplished by mixing air and helium in the right proportions. Assume that the balloon and the weight have a total mass of m (g) and that the balloon is inflated to a volume of V (liter). What is the necessary volume concentration and mass concentration of helium and air in the balloon to make it float? The temperature in the air and in the balloon is T ( C), the ambient air pressure is 1 bar, the pressure in the balloon is 1.05 bar. The molecular weight of air is M air = 29 kg/kmol and for helium M helium = 4 kg/kmol. The general gas constant is J/(kmol K). Acceleration of gravity is 9.81 m/s 2. The mixture can be treated as an ideal gas. Enter your parameter set number (127) your answer with 4 decimals.
2 volume concentration of air is volume concentration of helium is mass concentration of air is mass concentration of helium is 2 A cycle consists of three internally reversible processes with a gaseous medium according to following: ab: Isothermal compression bc: Heat transfer at constant pressure ca: Isentropic expansion Compression ratio Va/Vb and κ is given according to your personal number. Calculate thermal efficiency.
3 Enter your parameter set number (127) thermal efficiency is % 3 A compressor is used to compress air of the temperature T ( C) from P1 bar to P2 bar. The compressor can be as adiabatic but not isentropic. Measurements show that the compressor work is 350 kj/kg. What is the isentropic thermodynamic efficiency of the compressor and by how many percent would the compressor work decrease if it was possible to arrange an ideal isothermal compression? The air may be treated as an ideal gas with κ=1.4, the molar mass 29 kg/kmol. The value of the general gas constant is J/(kmol K).
4 Enter your parameter set number (127) isentropic thermodynamic efficiency is percent would the compressor work decrease is 4 A cycle consists of three internally reversible processes with air as working medium according to following: ab: Isentropic compression bc: Heat transfer at constant pressure
5 ca: Heat is rejected at constant volume Calculate: a) Work and heat transfer for each subprocess (expressed per unit mass) b) Thermal efficiency of the cycle p a ( bar), T a (K) and p b (bar) are given according to your personal data. Assume air as ideal gas with M=29 and κ=1.4 Enter your parameter set number (127) Work for ab is KJ/Kg
6 Work for bc is KJ/Kg Work for ca is KJ/Kg Heat for ab is KJ/Kg Heat for bc is KJ/Kg Heat for ca is KJ/Kg Thermal efficiency is % 5 You are asked to help installing a water line from the basement to a new bathroom on the second floor. The elevation difference between the basement and the second floor is H (m). To get from the connection point in the basement to the wash basin in the bathroom you need to install five bends with the loss coefficient ζ =0,3. You also install a valve in the basement with ζ=1. The tap in the wash basin also has ζ=1. The total tube length is 10 m. The available water pressure in the basement is 2 bar (gage). You would like to have a water flow of V (liters per minute). Is it then sufficient to install a tube with d (mm) inner diameter? The kinematic viscosity could be assumed to be m 2 /s and the density to be 1000 kg/m 3. a) Calculate the total pressure drop. b) Is available pressure (2 bar) sufficient to overcome the pressure drop?
7 Enter your parameter set number (127) total pressure drop is bar Enter "1" for yes and "0" for no 6 Through a pipe with d 1 =120 mm and L 1 =120 m, water is flowing from reservoir A to ramification at D from where a pipe with d 2 =75 mm and L 2 =60 m leads to reservoir B in which water level is H ab (m) below reservoir A. Third pipe with d 3 =60 mm and L 3 =40 m connect D to reservoir C with a water level of H ac (m) under the reservoir A according to the figure. Calculate volume flow (m 3 /kg) in those three pipes if they have same friction coefficient f, which is given from your personal number. Assume
8 other losses negligible and the reservoir are enough large and open to the ambient. Enter your parameter set number (127)
9 your answer with 4 decimals. volume flow in 1 is volume flow in 2 is volume flow in 3 is (m 3 /kg) (m 3 /kg) (m 3 /kg) 7 In a large container pressure is P 2 bar. 1. Calculate mass flow of the air (g/s) flowing into the container if an opening is a converging nozzle with an isentropic process 2. Assume that the opening is a convergingdiverging nozzle, calculate for isentropic process, required A 2 /A min where sound velocity is occurred and also the mass flow of the air through the nozzle (g/s) A=1 mm 2 for both cases. Ambient air (M=29 and κ=1.4) has a pressure of 1 bar and temperature of T 0 ( C).
10 Enter your parameter set number (127) mass flow of the air for part 1 is (g/s) A 2 /A min is mass flow of the air for part 2 is (g/s) 8 Now you are planning to increase the insulation of the house and the question is how thick the insulation should be. You know that the wall at present has a Uvalue of 0.6 W/(m 2 K). You would like the wall to get a U value of 0.2 W/(m 2 K) after the additional insulation. The insulation you use has a thermal conductivity of k (W/(m K)). The heat transfer coefficients on the outside (h out ) and inside (h in ) are given from your personal number.
11 Enter your parameter set number (127) The insulation is cm 9 Steel balls at diameter D meter are annealed by heating to Ti and then slowly cooling to 400 K in an air environment for which T=325 K and at given heat transfer coefficient of h. Assuming the properties of the steel to be k=40 W/m.K, density=7800 kg/m 3, and Cp=600 J/kg.K. Estimate the time required for the cooling process. (Negligible radiaition effects and constant properties)
12 Enter your parameter set number (127) time is s 10 Two large parallel planes having emissivities of epsilon 1 and epsilon 3 are maintained at temperatures of T1 (K) and T3 (K), respectively. A radiation shield having an emissivity of epsilon 2 on both sides is placed between the two planes. Calculate: 1 the heat transfer rate per unit area if the shield were not present. 2 the heat transfer rate per unit area with the shield present.
13 3 the temperature of the shield. Enter your parameter set number (127) heat transfer rate per unit area without shield is W/m 2 heat transfer rate per unit area with shield is W/m 2 the temperature of the shield K
Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us
Problems of Practices Of Basic and Applied Thermodynamics First Law of Thermodynamics Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India)
More informationOldExam.QuestionsCh14 T072 T071
OldExam.QuestionsCh14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density
More informationPHYS 101 Previous Exam Problems
PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep
More informationASSIGNMENT 2 CHE 3473
DUE: May 23 ASSIGNMENT 2 CHE 3473 #Problem 1: 3.3 #Problem 2: 3.4 #Problem 3: 3.5 #Problem 4: 3.6 #Problem 5: 3.7 #Problem 6: 3.8 #Problem 7: 3.11 #Problem 8: 3.15 #Problem 9: 3.22 #Problem 10: 3.32 #Problem
More informationChapter 4, Problem 30.
Chapter 4, Problem 30. A wellinsulated rigid tank contains 5 kg of a saturated liquid vapor mixture of water at l00 kpa. Initially, threequarters of the mass is in the liquid phase. An electric resistor
More informationASSIGNMENT 2 CHE 3473
DUE: May 21 ASSIGNMENT 2 CHE 3473 #Problem 1 Read Chapter 3. ALL OF IT. Time yourself and report the time. #Problem 2: 3.2 #Problem 3: 3.3 #Problem 4: 3.5 #Problem 5: 3.6 #Problem 6: 3.7 #Problem 7: 3.8
More informationWrite important assumptions used in derivation of Bernoulli s equation. Apart from an airplane wing, give an example based on Bernoulli s principle
HW#3 Sum07 #1. Answer in 4 to 5 lines in the space provided for each question: (a) A tank partially filled with water has a balloon well below the free surface and anchored to the bottom by a string. The
More informationEnd of Chapter Exercises
End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water
More informationProcess Nature of Process
AP Physics Free Response Practice Thermodynamics 1983B4. The pvdiagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the
More informationFigure 1 Schematic of opposing air bearing concept
Theoretical Analysis of Opposing Air Bearing Concept This concept utilizes air bearings to constrain five degrees of freedom of the optic as shown in the figure below. Three pairs of inherently compensated
More information. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid
IIT JEE Achiever 2014 Ist Year Physics2: Worksheet1 Date: 20140626 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of
More informationFluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey
Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define
More informationEarlier Lecture. In the earlier lecture, we have seen Kapitza & Heylandt systems which are the modifications of the Claude System.
17 1 Earlier Lecture In the earlier lecture, we have seen Kapitza & Heylandt systems which are the modifications of the Claude System. Collins system is an extension of the Claude system to reach lower
More informationmass of container full of air = g mass of container with extra air = g volume of air released = cm 3
1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate
More informationMeteorology & Air Pollution. Dr. Wesam Al Madhoun
Meteorology & Air Pollution Dr. Wesam Al Madhoun Dispersion = Advection (Transport) + Dilution (Diffusion) Source Transport Receptor Reentrainment Fick s law of diffusion J=  D * D C/Dx Where, J= Mass
More informationPURE SUBSTANCE. Nitrogen and gaseous air are pure substances.
CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and
More informationCVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University. Final Exam
CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University Final Exam 8 pages, front & back, not including reference sheets; 21 questions An excerpt from the NCEES Fundamentals
More informationTHERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)
THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the
More informationDIMENSIONING WATER SUPPLY SYSTEM IN BUILDING
1 Mamk Department of Energy and Environmental Technology, ET Double Degree Programme in Building Services 6.02.2015 T6615KA JukkaRäisä Water and sewage services in buildings DIMENSIONING WATER SUPPLY SYSTEM
More information3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?
AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a waterfilled container. The
More informationChapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.
Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely
More informationAutomatically or individually calculated.
GASCalc 5.0 GASCalc 5.0 is a Windows based suite of calculation tools for the natural gas professional. Routines are provided for calculating numerous parameters associated with the design and operation
More informationName: Class: Date: SHORT ANSWER Answer the following questions in the space provided.
CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)
More informationGas Vapor Injection on Refrigerant Cycle Using Piston Technology
Purdue University Purdue epubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Sophie
More informationand its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.
1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to
More informationPressure is defined as force per unit area. Any fluid can exert a force
Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary
More informationThermodynamics 1 MECH 240:
Thermodynamics 1 MECH 240: Homework Assignment 1 Friday, Jan. 10, 2014 Due: Friday, Jan. 24, 2014 at end of the tutorial Assigned Problems to be handed in: Review of mechanical work: 1. Consider the following
More informationBicycles 2. Bicycles 1. Bicycles 4. Bicycles 3. Bicycles 5. Bicycles 6
Bicycles 1 Bicycles 2 Reading Question 4.1a How would raising the height of a sport utility vehicle affect its turning stability? A. Make it less likely to tip over B. Make it more likely to tip over C.
More informationApplications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure
Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases
More informationActual volumetric efficiency, ƞvol Displacement volume Vd=π/4*D 2 L*N m3/min. pv n = c. FAD=mRT1/p m3/min ƞvol=fad/vd
Following data relate to a performance test of a single acting 14 cm 10 cm reciprocating compressor are given: suction pressure = 1 bar, suction temperature = 0 C, discharge pressure = 6 bar, discharge
More informationAPPENDIX A: SENSITIVITY TESTS INPUTS AND SETUP TABLES
APPENDIX A: SENSITIVITY TESTS INPUTS AND SETUP TABLES This appendix contains two tables for each case and model; the first outlines the assumptions and inputs that were kept constant for each case, and
More informationFigure 1: You and Your Elephant
INSTRUCTORS NOTE (Dr. Jack Blumenthal) The thought experiment or problem described herein, together with the accompanying approach and calculations was developed by two seniors and their instructor at
More informationCP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory
CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular
More informationHomework of chapter (3)
The Islamic University of Gaza, Civil Engineering Department, Fluid mechanicsdiscussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Hasan Almassri T.A: Eng. Mahmoud AlQazzaz First semester, 2013. Homework
More informationProcedure of Xenon Transfer
Procedure of Xenon Transfer Feng Zhou,MIT CC: Martina Green February 28, 2005 In this write up, we discuss the procedure on how to transfer xenon to a designed gas storage vessel that supplies xenon to
More information1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:
University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same
More informationKey Terms Chapter 7. boiling boiling point change of state concentration condensation deposition evaporation flow rate fluid freezing point
Foldable Activity Using the instructions on page 267 in your textbook on how to make foldables, write a key term on each front tab, and the definition on the inside (see example that I made up). You will
More informationNote: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. A Law for Scuba Divers
1/6 2009/11/14 上午 11:12 Manage this Assignment: Chapter 18 Due: 12:00am on Saturday, July 3, 2010 Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy
More informationDNVGLCP0187 Edition March 2016
CLASS PROGRAMME Type approval DNVGLCP0187 Edition March 2016 The electronic pdf version of this document, available free of charge from http://www.dnvgl.com, is the officially binding version. FOREWORD
More informationPlease do not write on this test. Please use the answer sheet. 1) Please choose all conditions that would allow a gas sample to behave ideally.
AP Chemistry Test (Chapter 5) Please do not write on this test. Please use the answer sheet. Multiple Choice (50%) 1) Please choose all conditions that would allow a gas sample to behave ideally. I) Nonpolar
More informationChapter 9. Forces and Fluids
Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces
More informationHarmonics and Sound Exam Review
Name: Class: _ Date: _ Harmonics and Sound Exam Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following is not an example
More information2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?
CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How
More informationChapter 15 Fluid. Density
Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid
More informationCRYOGENICS LIQUID NITROGEN AS A NON POLLUTING FUEL
CRYOGENICS LIQUID NITROGEN AS A NON POLLUTING FUEL 1 INTRODUCTION: In 1997, the University of North Texas (UNT) and University of Washington (UW) independently developed liquid nitrogen powered vehicles
More informationFundamentals of Turboexpanders Basic Theory and Design
Fundamentals of Turboexpanders Basic Theory and Design Edited Date: September 16, 2015 Presented By: Mr. James Simms Simms Machinery International, Inc. 2357 A Street Santa Maria, CA 93455 U.S.A. About
More informationMET Lecture 8 Atmospheric Stability
MET 4300 Lecture 8 Atmospheric Stability Stability Concept Stable: Ball returns to original position Neutral: Ball stays wherever it is placed Unstable: Displacement grows with time. Atmospheric Stability
More information4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation.
Chapter 6: Stability Concept of Stability Concept of Stability Lapse Rates Determine Stability and Stability Indices Air Parcel Expands as It Rises Air Parcel Expands As It Rises Air pressure decreases
More informationB outflow. Outflow. B1 Introduction. introduction
B outflow introduction B1 Introduction The subject of this chapter is the release, or better the incidental release of hazardous materials. It is obvious that this topic is much broader than just a chapter.
More information1Pressure 2 21Volume 2 2. or Temperature 2. where the subscript 1 signifies the initial conditions and the subscript 2 signifies the final conditions.
104 Gases The ideal gas law expresses the relationship between the pressure, volume, and temperature of a gas. In the exercises in this chapter, the mass of the gas remains constant. You will be examining
More informationPre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School
Pre AP Physics: Unit 7 Vibrations, Waves, and Sound Clear Creek High School Simple Harmonic Motion Simple Harmonic Motion Constant periodic motion of an object. An object oscillates back and forth along
More informationTHE WAY THE VENTURI AND ORIFICES WORK
Manual M000 rev0 03/00 THE WAY THE VENTURI AND ORIFICES WORK CHAPTER All industrial combustion systems are made up of 3 main parts: ) The mixer which mixes fuel gas with combustion air in the correct ratio
More informationPSI Chemistry: Gases Multiple Choice Review
PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kineticmolecular theory, particles of matterare in constant motion (A) have different shapes (B) have different
More informationSlide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ
Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the
More information12 fa. eel), Ara, Fl eat Mobi eu) r V14,:srholki CV 65 P 1 1). e2r 46. ve, lactogin. 1 V eil  (  t Teo. c 1 4 d 4. .'= tit/ (4 nit) 6 )
1). e2r 46 h eel), /pea lactogin Yd / In 1 V eil  (  Cw ve, P 1 Ara, Fl eat Mobi eu) r V14,:srholki 5e 0 (44,4 ci4) CV 65 So 0 t Teo.'= tit/ (4 nit) 6 ) ci Seco (df_ 1 c 1 4 d 4 540 C 12 fa 4)
More informationCHAPTER 15 Fluids and Elasticity
CHAPTER 15 Fluids and Elasticity INCLASS PROBLEMS Slide 1 Problem #1: Broken Glass RDK STT. 15.1 15.XX A piece of glass is broken into two pieces of different size. Rank pieces a, b, and c in order of
More informationClasses at:  Topic: Gaseous State
PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at:  SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Topic:
More informationIncrease in Evaporation Caused by Running Spa Jets swhim.com
Increase in Evaporation Caused by Running Spa Jets swhim.com Nomenclature A pipe crosssection area, m D water inlet diameter of the venturi tube nozzle, mm diameter of small end of the throat of the venturi
More informationPressure Measurement
Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid
More information1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg
Score 1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg 2. [Chang7 5.P.019.] The volume of a gas is 5.80 L, measured at 1.00 atm. What is the pressure of the gas in mmhg if
More informationAvailable online at ScienceDirect
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 62 ( 203 ) 29 225 The 9 th AsiaOceania Symposium on Fire Science and Technology An experimental study on buoyant spilled thermal
More informationACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy
LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY
More informationDec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned?
Over the last two periods we discussed/observed the concept of density. What have we learned? is a ratio of mass to volume describes how much matter is packed into a space is a property of both solids
More informationVocabulary: Solid has a definite shape and volume.
Chapter 2.1 States of Matter Vocabulary: Solid Crystalline solid Amorphous solid Liquid Fluid Surface tension Viscosity Gas Pressure LCD in a TV or cell phone stands for Liquid Crystal Display. They have
More informationA New Way to Handle Changing Fluid Viscosity and the Fulltoempty Effect
A New Way to Handle Changing Fluid Viscosity and the Fulltoempty Effect Nordson EFD, 40 Catamore Blvd., East Providence RI 02914 www.nordsonefd.com A New Way to Handle Changing Fluid Viscosity And the
More informationReactor Networks. D. G. Goodwin Division of Engineering and Applied Science California Institute of Technology. Cantera Workshop July 25, 2004
Reactor Networks D. G. Goodwin Division of Engineering and Applied Science California Institute of Technology Cantera Workshop July 25, 2004 A Batch Reactor ContinuouslyStirred Tank Reactors In a CSTR,
More informationExperiment 8: Minor Losses
Experiment 8: Minor Losses Purpose: To determine the loss factors for flow through a range of pipe fittings including bends, a contraction, an enlargement and a gatevalve. Introduction: Energy losses
More informationFontes Renováveis NãoConvencionais. Parte II
Fontes Renováveis NãoConvencionais Parte II Prof. Antonio Simões Costa Prof. Tom Overbye, U. of Illinois Power in the Wind Consider the kinetic energy of a packet of air with mass m moving at velocity
More informationSection 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.
Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure
More information1. All fluids are: A. gases B. liquids C. gases or liquids D. nonmetallic E. transparent ans: C
Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D nonmetallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights
More information2. Practical way of realization of adiabatic process 2.1 Introduction
2. Practical way of realization of adiabatic process 2.1 Introduction Adiabatic process is carried out when amount of heat transfer is zero Q12 = 0 for each of state (i.e. 1 and 2) during the process
More informationOilLubricated Compressors for Regenerative Cryocoolers Using an Elastic Membrane
OilLubricated Compressors for Regenerative Cryocoolers Using an Elastic Membrane E.C. Luo, Z.H. Wu, G.Y. Yu, J.Y. Hu, and W. Dai Technical Institute of Physics and Chemistry Chinese Academy of Sciences
More informationH16 Losses in Piping Systems
H16 Losses in Piping Systems The equipment described in this manual is manufactured and distributed by TECQUIPMENT LIMITED Suppliers of technological laboratory equipment designed for teaching. BONSALL
More informationTHE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.
Unit 4 THE GAS STATE CHAPTER KEY TERMS HOME WORK 9. Kinetic Molecular Theory States of Matter Solid, Liquid, gas Page 4 # to 4 9. Boyles Law P α /V PV = Constant P V = P V Pressure Atmospheric Pressure
More informationCh 12 Homework. Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. 1.
Ch 12 Homework Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. 1. (Problem 1) An ideal gas is enclosed in a cylinder with a movable
More informationTime Pressure Dispensing
Time Pressure Dispensing by Doug Dixon, GDM Product Manager What is time pressure dispensing? Time pressure is a method of dispensing liquid materials (surface mount adhesives and gasketing materials)
More informationBubble Elimination Device in Hydraulic Systems
Bubble Elimination Device in Hydraulic Systems Ryushi SUZUKI 1, Yutaka TANAKA 2, Shinichi YOKOTA 3 1 President, Opus Corp. 652 Todoroki, Setagayaku, Tokyo 158, Japan 2 Associate Professor, Department
More informationUniversity of Cincinnati
Mapping the Design Space of a Recuperated, Recompression, Precompression Supercritical Carbon Dioxide Power Cycle with Intercooling, Improved Regeneration, and Reheat Andrew Schroder Mark Turner University
More informationChapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity
Chapter 10 Fluids 101 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can
More informationNumerical Simulation of Instability of Geothermal Production Well
GRC Transactions, Vol. 37, 2013 Numerical Simulation of Instability of Geothermal Production Well Ryuichi Itoi 1, Yasunari Katayama 3, Toshiaki Tanaka 1, Naoto Kumagai 2, and Takaichi Iwasaki 3 1 Department
More informationA Numerical Study of the Performance of a Heat Exchanger for a Miniature JouleThomson Refrigerator
A Numerical Study of the Performance of a Heat Exchanger for a Miniature JouleThomson Refrigerator YongJu Hong 1, SeongJe Park 1, and YoungDon Choi 2 1 Korea Institute of Machinery & Materials, Daejeon,
More informationDRINKING WATER  LAB EXPERIMENTS LAB EXPERIMENTS. Nanofiltration
DRINKING WATER  LAB EXPERIMENTS LAB EXPERIMENTS Nanofiltration nanofiltration lab experiments Framework This module explains the lab experiment on nanofiltration. Contents This module has the following
More informationChapter 13: The Behavior of Gases
Chapter 13: The Behavior of Gases I. First Concepts a. The 3 states of matter most important to us: solids, liquids, and gases. b. Real Gases and Ideal Gases i. Real gases exist, ideal gases do not ii.
More informationMASS TRANSFER LAB. Make & Model. S. No. Equipment
MASS TRANSFER LAB S. No. Equipment Make & Model Manufacture Qty 1 Liquid / Liquid Extraction Unit UOP5A Armfield 1 2 Gas Liquid Absorption UOP7A Armfield 1 3 Diffusion of a Liquid Apparatus CER AA Armfield
More informationArgon Injection Optimization in Continuous Slab Casting
Argon Injection Optimization in Continuous Slab Casting Tiebiao Shi and Brian G. Thomas Department of Mechanical Engineering University of Illinois at UrbanaChampaign March 25, 2001 University of Illinois
More informationEDEXCEL NATIONALS UNIT 6 MECHANICAL PRINCIPLES and APPLICATIONS. ASSIGNMENT No. 4
EDEXCEL NATIONALS UNIT 6 MECHANICAL PRINCIPLES and APPLICATIONS ASSIGNMENT No. 4 NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is my own work. Signature
More informationMicro Channel Recuperator for a Reverse Brayton Cycle Cryocooler
Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler C. Becnel, J. Lagrone, and K. Kelly Mezzo Technologies Baton Rouge, LA USA 70806 ABSTRACT The Missile Defense Agency has supported a research
More informationAIRMOUNT VIBRATION ISOLATION
MOUNT VIBRATION ISOLATION SELECTION AND ISOLATION FORMULA Refer to the selection guide on page 33 for Airmount load and isolation capabilities. Follow this procedure: 1. LOAD CAPACITY Select one or two
More informationLoss of Vacuum Experiments on a Superfluid Helium Vessel
1 Loss of Vacuum Experiments on a Superfluid Helium Vessel Stephen M. Harrison 1 Abstract The Alpha Magnetic Spectrometer (AMS) is a particle physics experiment for use on the International Space Station
More informationInvestigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle
RESEARCH ARTICLE OPEN ACCESS Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle Shyamshankar.M.B*, Sankar.V** *(Department of Aeronautical
More informationHeat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams.
Heat Engine Equipment: Capstone, 2 large glass beakers (one for ice water, the other for boiling water), temperature sensor, pressure sensor, rotary motion sensor, meter stick, calipers, set of weights,
More informationGas Laws. Introduction
Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as
More informationThomas Jefferson National Accelerator Facility Newport News, Virginia, 23606, USA
PROCESS OPTIONS FOR NOMINAL 2K HELIUM REFRIGERATION SYSTEM DESIGNS P. Knudsen, V. Ganni Thomas Jefferson National Accelerator Facility Newport News, Virginia, 23606, USA ABSTRACT Nominal 2K helium refrigeration
More informationOptimizing natural gas fueling station reservoirs pressure based on ideal gas model
88 Pol. J. Chem. Tech., Polish Vol. Journal 15, No. of Chemical 1, 2013 Technology, 15, 1, 88 96, 10.2478/pjct20130015 Optimizing natural gas fueling station reservoirs pressure based on ideal gas model
More informationTo play movie you must be in Slide Show Mode CLICK HERE EXERCISE! EXERCISE! To play movie you must be in Slide Show Mode CLICK HERE
Boyle s Law Boyle s law Pressure and volume are inversely related (constant T, temperature, and n, # of moles of gas). PV k (kis a constant for a given sample of air at a specific temperature) P V P V
More informationResearch and optimization of intake restrictor for Formula SAE car engine
International Journal of Scientific and Research Publications, Volume 4, Issue 4, April 2014 1 Research and optimization of intake restrictor for Formula SAE car engine Pranav Anil Shinde Mechanical Engineering,
More informationChapter 13 Gases, Vapors, Liquids, and Solids
Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,
More informationChapter 3 PRESSURE AND FLUID STATICS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGrawHill
More informationGases and Pressure SECTION 11.1
SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.
More information