EDEXCEL NATIONALS UNIT 6 MECHANICAL PRINCIPLES and APPLICATIONS. ASSIGNMENT No. 4

 Barnard Arnold
 10 months ago
 Views:
Transcription
1 EDEXCEL NATIONALS UNIT 6 MECHANICAL PRINCIPLES and APPLICATIONS ASSIGNMENT No. 4 NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is my own work. Signature Date submitted Learning outcomes On completion of this unit a learner should: 1 Be able to determine the effects of loading in static engineering systems 2 Be able to determine work, power and energy transfer in dynamic engineering systems 3 Be able to determine the parameters of fluid systems 4 Be able to determine the effects of energy transfer in thermodynamic systems. FEEDBACK COMMENTS This assignment only assesses P7, P8, P9, M3 and M4. Grade Awarded: Assessor Signature Date: Internal verifier Signature Date:
2 Grading grid In order to pass this unit, the evidence that the learner presents for assessment needs to demonstrate that they can meet all of the learning outcomes for the unit. The criteria for a pass grade describe the level of achievement required to pass this unit. Grading criteria To achieve a pass grade the evidence must show that the learner is able to: P1 calculate the magnitude, direction and position of the line of action of the resultant and equilibrant of a nonconcurrent coplanar force system containing a minimum of four forces acting in different directions. P2 calculate the support reactions of a simply supported beam carrying at least two concentrated loads and a uniformly distributed load To achieve a merit grade the evidence must show that, in addition to the pass criteria, the learner is able to: M1 calculate the factor of safety in operation for a component subjected to combined direct and shear loading against given failure criteria. M2 determine the retarding force on a freely falling body when it impacts upon a stationary object and is brought to rest without rebound, in a given distance. To achieve a distinction grade the evidence must show that, in addition to the pass and merit criteria, the learner is able to: D1 compare and contrast the use of D Alembert s principle with the principle of conservation of energy to solve an engineering problem. D2 evaluate the methods that might be used to determine the density of a solid material and the density of a liquid. P3 calculate the induced direct stress, strain and dimensional change in a component subjected to direct uniaxial loading and the shear stress and strain in a component subjected to shear loading. M3 determine the thermal efficiency of a heat transfer process from given values of flow rate, temperature change and input power. P4 solve three or more problems that require the application of kinetic and dynamic principles to determine unknown system parameters. M4 determine the force induced in a rigidly held component that undergoes a change in temperature. P5 calculate the resultant thrust and overturning moment on a vertical rectangular retaining surface with one edge in the free surface of a liquid. P6 determine the upthrust on an immersed body. P7 use the continuity of volume and mass flow for an incompressible fluid to determine the design characteristics of a gradually tapering pipe. P8 calculate dimensional change when a solid material undergoes a change in temperature and the heat transfer that accompanies a change of temperature and phase. P9 solve two or more problems that require application of thermodynamic process equations for a perfect gas to determine unknown parameters of the problems.
3 ASSIGNMENT DETAILS The diagram shows two tanks of liquid. Tank 1 is heated by hot gas passing through a heating coil as shown. When the liquid is at the right temperature, a tap is opened and the hot liquid passes along to tank 2 through an insulated pipe. PART 1 At a given moment in time, the flow rate is 5 kg/s. Calculate the following. 1. The velocity of liquid flowing in the pipe. 2. The velocity of the surface of tank 1 as it falls. 3. The velocity of the surface of tank 2 as it rises. Tank 1 has a cross sectional area of 6 m 2. Tank 2 has a cross sectional area of 4 m 2. The pipe has a bore of 80 mm. The liquid has a density of 920 kg/m 3. PART 2 The liquid in tank 1 is heated up and released into the pipe. Calculate the following. 1. The change in length of the pipe if it is free to expand. 2. The stress and strain in the pipe if it is not free to expand. The pipe length is 5 m. The modulus of elasticity for the pipe is 200 GPa The coefficient of linear expansion for the pipe is 15 x 106 K 1 The temperature of pipe before the liquid is released is 20 o C The temperature of pipe after the liquid is released is 160 o C
4 PART 3 The liquid in tank 1 is heated from 20 o C to 160 o C in 40 minutes. Calculate the following. 1. The heat transfer 2. The average rate of heat transfer. The specific heat capacity of the liquid is 1970 J/kg K. The mass heated up in the tank is 400 kg. PART 4 The heating coil uses hot gas that becomes cooled as it passes through the coil. Calculate the following. 1. The volume of hot gas flowing at inlet. 2. The velocity of the gas at entrance. 3. The volume of the cool gas at exit. 4. The velocity of the cool gas at exit. The inlet temperature of the gas is 500 o C. The absolute inlet pressure is 5 bar (500 kpa). The exit temperature of the gas is 110 o C. The absolute pressure at exit is 1.2 bat (120 kpa) The mass flow rate of the gas is 0.15 kg/s. The characteristic gas constant is 190 J/kg K The bore of the coil is 50 mm.
5 STUDENT and TUTOR GUIDE TO DOING THIS ASSIGNMENT If you are unable to get started or make progress you should seek assistance from your tutor and your grades will be determined by how much assistance you need. Tutors may purchase the full solution from This also includes a Mathcad file for solving variations of the problem by changing the data. This will enable tutors to set different assignments and so reduce the risk of copying. TO OBTAIN A DISTINCTION You should do all parts correctly with the minimum of assistance. Your solutions should be exceptionally clear and accurate and the symbols used should be clearly indicated in the formula you create to evaluate your answers. Your answers should be checked for accuracy by for example, calculating the original data from your answers to see that it is the same. You should show clearly all the principles involved in the solution and state who they are attributed to. You should make correct use of units and multiples. TO OBTAIN A MERIT You should do all parts with only minor errors. You should not require more than basic assistance to complete the assignment. You should draw clear diagrams illustrating the principles used to arrive at your solutions. You should make correct use of units and multiples. TO OBTAIN A PASS You should attempt all parts and demonstrate that you understand the principles involved to solve the answers. You will probably have asked for help in drawing a free body diagram and in resolving the forces appropriately. You should demonstrate that your calculations are accurate and use the correct units and multiples.
Unit code: H/ QCF level: 5 Credit value: 15 OUTCOME 3  STATIC AND DYNAMIC FLUID SYSTEMS TUTORIAL 2  STATIC FLUID SYSTEMS
Unit 43: Plant and Process Principles Unit code: H/601 44 QCF level: 5 Credit value: 15 OUTCOME 3  STATIC AN YNAMIC FLUI SYSTEMS TUTORIAL  STATIC FLUI SYSTEMS 3 Understand static and dnamic fluid sstems
More informationthen the work done is, if the force and the displacement are in opposite directions, then the work done is.
1. What is the formula for work? W= x 2. What are the 8 forms of energy? 3. Write the formula for the following: Kinetic Energy Potential Energy 4. If the force and the displacement are in the same direction,
More informationLecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy
More informationand its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.
1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to
More informationChapter 15 Fluid. Density
Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid
More informationPHYS 101 Previous Exam Problems
PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep
More informationIrrigation &Hydraulics Department lb / ft to kg/lit.
CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering
More informationInternational Journal of Technical Research and Applications eissn: , Volume 4, Issue 3 (MayJune, 2016), PP.
DESIGN AND ANALYSIS OF FEED CHECK VALVE AS CONTROL VALVE USING CFD SOFTWARE R.Nikhil M.Tech Student Industrial & Production Engineering National Institute of Engineering Mysuru, Karnataka, India 570008
More informationASSIGNMENT 2 CHE 3473
DUE: May 23 ASSIGNMENT 2 CHE 3473 #Problem 1: 3.3 #Problem 2: 3.4 #Problem 3: 3.5 #Problem 4: 3.6 #Problem 5: 3.7 #Problem 6: 3.8 #Problem 7: 3.11 #Problem 8: 3.15 #Problem 9: 3.22 #Problem 10: 3.32 #Problem
More informationASSIGNMENT 2 CHE 3473
DUE: May 21 ASSIGNMENT 2 CHE 3473 #Problem 1 Read Chapter 3. ALL OF IT. Time yourself and report the time. #Problem 2: 3.2 #Problem 3: 3.3 #Problem 4: 3.5 #Problem 5: 3.6 #Problem 6: 3.7 #Problem 7: 3.8
More informationFluid Mechanics  Hydrostatics. AP Physics B
luid Mechanics  Hydrostatics AP Physics B States of Matter Before we begin to understand the nature of a luid we must understand the nature of all the states of matter: The 3 primary states of matter
More informationThis portion of the piping tutorial covers control valve sizing, control valves, and the use of nodes.
Piping Tutorial A piping network represents the flow of fluids through several pieces of equipment. If sufficient variables (flow rate and pressure) are specified on the piping network, CHEMCAD calculates
More information3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?
AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a waterfilled container. The
More information1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.
Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:
More informationUnit A2: List of Subjects
ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A1: Introduction to Thermodynamics A2: Engineering Properties Unit A2: List of Subjects Basic Properties and Temperature Pressure
More informationTHERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)
THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser
More informationCVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University. Final Exam
CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University Final Exam 8 pages, front & back, not including reference sheets; 21 questions An excerpt from the NCEES Fundamentals
More informationAdditional Information
Buoyancy Additional Information Any object, fully or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes of Syracuse Archimedes principle
More information1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:
University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same
More informationChapter 15 Fluids. Copyright 2010 Pearson Education, Inc.
Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle Fluid Flow and Continuity
More informationFigure 1 Schematic of opposing air bearing concept
Theoretical Analysis of Opposing Air Bearing Concept This concept utilizes air bearings to constrain five degrees of freedom of the optic as shown in the figure below. Three pairs of inherently compensated
More informationOldExam.QuestionsCh14 T072 T071
OldExam.QuestionsCh14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density
More informationOPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD
http:// OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD Anand Kumar S malipatil 1, Anantharaja M.H 2 1,2 Department of Thermal Power Engineering, VTURO Gulbarga,
More informationPressure is defined as force per unit area. Any fluid can exert a force
Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary
More informationIn the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationChapter 4, Problem 30.
Chapter 4, Problem 30. A wellinsulated rigid tank contains 5 kg of a saturated liquid vapor mixture of water at l00 kpa. Initially, threequarters of the mass is in the liquid phase. An electric resistor
More informationIn the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationPlease welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us
Problems of Practices Of Basic and Applied Thermodynamics First Law of Thermodynamics Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India)
More informationTutorial 5 Relative equilibrium
Tutorial 5 Relative equilibrium 1. n open rectangular tank 3m long and 2m wide is filled with water to a depth of 1.5m. Find the slope of the water surface when the tank moves with an acceleration of 5m/s
More informationPURE SUBSTANCE. Nitrogen and gaseous air are pure substances.
CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and
More informationThe Discussion of this exercise covers the following points:
Exercise 32 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop
More informationOIL AND GAS INDUSTRY
This case study discusses the sizing of a coalescer filter and demonstrates its fouling life cycle analysis using a Flownex model which implements two new pressure loss components:  A rated pressure loss
More informationChapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle
Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle Fluids in Motion The Equation of Continuity DEFINITION OF MASS DENSITY The mass density ρ is
More informationChapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams
Chapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams In this chapter we consider the property values and relationships of a pure substance (such as water) which can exist in three phases
More informationSPH 4C Unit 4 Hydraulics and Pneumatic Systems
SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that
More information1. All fluids are: A. gases B. liquids C. gases or liquids D. nonmetallic E. transparent ans: C
Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D nonmetallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights
More informationChapter 3 PRESSURE AND FLUID STATICS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGrawHill
More informationOperational Settings:
instrucalc features more than 70 routines associated with control valves, ISO flow elements, relief valves and rupture disks, and calculates process data at flow conditions for a comprehensive range of
More informationMicro Channel Recuperator for a Reverse Brayton Cycle Cryocooler
Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler C. Becnel, J. Lagrone, and K. Kelly Mezzo Technologies Baton Rouge, LA USA 70806 ABSTRACT The Missile Defense Agency has supported a research
More informationSTABILITY OF MULTIHULLS Author: Jean Sans
STABILITY OF MULTIHULLS Author: Jean Sans (Translation of a paper dated 10/05/2006 by Simon Forbes) Introduction: The capsize of Multihulls requires a more exhaustive analysis than monohulls, even those
More informationHeat Pump Connections and Interior Piping
Job Sheet 3 Heat Pump Connections and Interior Piping OBJECTIVES In this job sheet, you will observe how the presence of air in the ground loop affects the geothermal heat pump performance. You will also
More informationCh. 11 Mass transfer principles
Transport of chemical species in solid, liquid, or gas mixture Transport driven by composition gradient, similar to temperature gradients driving heat transport We will look at two mass transport mechanisms,
More informationPressure Measurement
Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid
More informationOPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL. Rehan Yousaf 1, Oliver Scherer 1
OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL Rehan Yousaf 1, Oliver Scherer 1 1 Pöyry Infra Ltd, Zürich, Switzerland ABSTRACT Gotthard Base Tunnel with its 57 km
More informationThe Discussion of this exercise covers the following points:
Exercise 53 Wet Reference Leg EXERCISE OBJECTIVE Learn to measure the level in a vessel using a wet reference leg. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Measuring
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the
More informationLiquid Level Measurement
Technical Article Liquid Level Measurement A pressure transmitter can be used to determine the liquid level in a tank, well, river or other body of liquid. The pressure at the bottom of a liquid filled
More information. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid
IIT JEE Achiever 2014 Ist Year Physics2: Worksheet1 Date: 20140626 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of
More informationExperiment 8: Minor Losses
Experiment 8: Minor Losses Purpose: To determine the loss factors for flow through a range of pipe fittings including bends, a contraction, an enlargement and a gatevalve. Introduction: Energy losses
More information1.2 Example 1: A simple hydraulic system
Note: It is possible to use more than one fluid in the Hydraulic library. This is important because you can model combined cooling and lubrication systems of a library. The hydraulic library assumes a
More informationApplications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure
Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases
More informationDesign and Safety Document for the Vacuum Windows of the NPDGamma Liquid Hydrogen Target at SNS
Design and Safety Document for the Vacuum Windows of the NPDGamma Liquid Hydrogen Target at SNS Prepared: Checked: Approved: H. Nann W. Fox M. Snow The NPDGamma experiment is going to run at BL13 at SNS
More information2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES
Industry Guidelines Part 2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES ISSUE 5.1 Ref: POP10B 15 MAR 2010 Disclaimer In formulating this guideline PIPA has relied
More informationThe validity of a rigid body model of a cricket ballbat impact
Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 682 687 9 th Conference of the International Sports Engineering Association (ISEA) The validity of a rigid body model of a cricket
More informationEnd of Chapter Exercises
End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water
More informationFLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS. This work covers part of outcome 2 of the Edexcel standard module:
FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS This work covers part of outcome 2 of the Edexcel standard module: UNIT 21746P APPLIED PNEUMATICS AND HYDRAULICS The material needed for outcome
More informationSlide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ
Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the
More informationLesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids
Lesson : luid statics, Continuity equation (Sections 9.9.7) Chapter 9 luids States of Matter  Solid, liquid, gas. luids (liquids and gases) do not hold their shapes. In many cases we can think of liquids
More informationAPI Standard Venting Atmospheric and LowPressure Storage Tanks: Nonrefrigerated and Refrigerated
General API Standard 2000  Venting Atmospheric and LowPressure Storage Tanks: Is there any limit for the maximum allowable linear velocity or any other parameter for the roof of a floating roof tank
More informationHydrostatics Physics Lab XI
Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in
More informationFlow transients in multiphase pipelines
Flow transients in multiphase pipelines David Wiszniewski School of Mechanical Engineering, University of Western Australia Prof. Ole Jørgen Nydal Multiphase Flow Laboratory, Norwegian University of Science
More informationFluid Statics. Henryk Kudela. 1 Distribution of Pressure in the Fluid 1. 2 Hydrostatic pressure 3. 3 The Measurement of the Pressure 4
Fluid Statics Henryk Kudela Contents 1 Distribution of Pressure in the Fluid 1 2 Hydrostatic pressure 3 3 The Measurement of the Pressure 4 Fluid statics is that branch of mechanics of fluids that deals
More informationTransient Analyses In Relief Systems
Transient Analyses In Relief Systems Dirk Deboer, Brady Haneman and QuocKhanh Tran Kaiser Engineers Pty Ltd ABSTRACT Analyses of pressure relief systems are concerned with transient process disturbances
More informationLab. Manual. Fluid Mechanics. The Department of Civil and Architectural Engineering
Lab. Manual of Fluid Mechanics The Department of Civil and Architectural Engineering General Safety rules to be followed in Fluid Mechanics Lab: 1. Always wear shoes before entering lab. 2. Do not touch
More informationApplication of Simulation Technology to Mitsubishi Air Lubrication System
50 Application of Simulation Technology to Mitsubishi Air Lubrication System CHIHARU KAWAKITA *1 SHINSUKE SATO *2 TAKAHIRO OKIMOTO *2 For the development and design of the Mitsubishi Air Lubrication System
More informationChapter 9 Fluids CHAPTER CONTENTS
Flowing fluids, such as the water flowing in the photograph at Coors Falls in Colorado, can make interesting patterns In this chapter, we will investigate the basic physics behind such flow Photo credit:
More informationEnter your parameter set number (127)
1 Helium balloons fly and balloons with air sink. Assume that we want to get a balloon that is just floating in the air, neither rising nor falling, when a small weight is placed hanging in the balloon.
More informationLOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12
LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of lowpressure gases. You will make observations on the rates with which selected
More informationPractical Guide. By Steven T. Taylor, P.E., Member ASHRAE
ractical Guide The following article was published in ASHRAE Journal, March 2003. Copyright 2003 American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. It is presented for educational
More informationmass of container full of air = g mass of container with extra air = g volume of air released = cm 3
1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate
More informationWATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION
WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION Akihito MITSUHATA *, Canghai LIU *, Ato KITAGAWA * and Masato KAWASHIMA ** * Department of Mechanical and Control Engineering, Graduate school
More informationHomework of chapter (3)
The Islamic University of Gaza, Civil Engineering Department, Fluid mechanicsdiscussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Hasan Almassri T.A: Eng. Mahmoud AlQazzaz First semester, 2013. Homework
More informationApplication of Computational Fluid Dynamics to Compressor Efficiency Improvement
Purdue University Purdue epubs International Compressor Engineering Conference School of Mechanical Engineering 1994 Application of Computational Fluid Dynamics to Compressor Efficiency Improvement J.
More informationTESTING OF BELIMO PRESSURE INDEPENDENT CHARACTERIZED CONTROL VALVES
TESTING OF BELIMO PRESSURE INDEPENDENT CHARACTERIZED CONTROL VALVES November, 25 Submitted by: Iowa Energy Center Address: DMACC, 26 S. Ankeny Blvd. Ankeny, IA 521 Phone: 515.965.755 Fax: 515.965.756 Web
More informationDensity, Pressure Learning Outcomes
1 Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate
More informationDean Pump SelfPriming Chemical Process Pumps
Bulletin C 1.2.34.7 Dean Pump SelfPriming Chemical Process Pumps php Series HEAD CAPACITY RANGE CHARTS php Self Primer  2 Pole 3500 RPM 500 CAPACITY M 3 /HR 2900 RPM 50 HERTZ 25 50 75 125 150 400 TOTAL
More informationReactor Networks. D. G. Goodwin Division of Engineering and Applied Science California Institute of Technology. Cantera Workshop July 25, 2004
Reactor Networks D. G. Goodwin Division of Engineering and Applied Science California Institute of Technology Cantera Workshop July 25, 2004 A Batch Reactor ContinuouslyStirred Tank Reactors In a CSTR,
More informationLOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary
ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of lowpressure gases. You will make observations on the
More informationTWO PHASE FLOW METER UTILIZING A SLOTTED PLATE. Acadiana Flow Measurement Society
TWO PHASE FLOW METER UTILIZING A SLOTTED PLATE Acadiana Flow Measurement Society Gerald L. Morrison Presented by: Mechanical Engineering Department Daniel J. Rudroff 323 Texas A&M University Flowline Meters
More informationDesign Review Agenda
Design Review Agenda 1) Introduction, Motivation, and Previous Work a. Previous Work and Accomplishments i. Platform Launches ii. Successful Test Firings 2) More InDepth Design Overview of the Existing
More informationUnit 24: Applications of Pneumatics and Hydraulics
Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 9 ACCUMULATORS The material needed for outcome 2 is very extensive so there are
More informationCALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438
CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO. 10 Jerry Paul Smith Joel Clancy JPS Measurement Consultants, Inc Colorado Engineering Experiment Station, Inc (CEESI) 13002 Walnut Lake
More informationUniversity of Cincinnati
Mapping the Design Space of a Recuperated, Recompression, Precompression Supercritical Carbon Dioxide Power Cycle with Intercooling, Improved Regeneration, and Reheat Andrew Schroder Mark Turner University
More informationGas Vapor Injection on Refrigerant Cycle Using Piston Technology
Purdue University Purdue epubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Sophie
More informationFrequently Asked Questions Directive 056 Facilities Technical
Frequently Asked Questions Directive 056 Facilities Technical October 2017 This document clarifies and supports some of the technical requirements related to Directive 056: Energy Development Applications
More informationCHEM 355 EXPERIMENT 7. Viscosity of gases: Estimation of molecular diameter
CHEM 355 EXPERIMENT 7 Viscosity of gases: Estimation of molecular diameter Expressed most simply, the viscosity of a fluid (liquid or gas) relates to its resistance to flow. The viscosity of a gas is determined
More information44 (0) E:
FluidFlow Relief Valve Sizing Handbook Flite Software 2016 Flite Software N.I. Ltd, Block E, Balliniska Business Park, Springtown Rd, Derry, BT48 0LY, N. Ireland. T: 44 (0) 2871 279227 E: sales@fluidflowinfo.com
More informationFluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey
Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define
More informationBernoulli's Principle
Bernoulli's Principle Bernoulli's Principle states that as the speed of a moving fluid increases, the pressure within the fluid decreases. Introduction The Bernoulli's Principle explains the behavior of
More informationFLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN
FLOW CONSIDERATIONS IN INDUSTRIAL SILENCER DESIGN George Feng, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga, Ontario Vadim Akishin, Kinetics Noise Control, Inc., 3570 Nashua Drive, Mississauga,
More informationU S F O S B u o y a n c y And Hydrodynamic M a s s
1 U S F O S B u o y a n c y And Hydrodynamic M a s s 2 CONTENTS: 1 INTRODUCTION... 3 2 ACCURACY LEVELS... 3 2.1 LEVEL0... 3 2.2 LEVEL1... 3 2.3 PANEL MODEL... 3 3 EX 1. SINGLE PIPE. NON FLOODED... 4
More informationGas volume and pressure are indirectly proportional.
Section 2 The Gas Laws Key Terms Boyle s law Charles s law combined gas law absolute zero GayLussac s law Scientists have been studying physical properties of gases for hundreds of years In 1662, Robert
More informationFluids: a problem. g (L 2 d) each of the two different fluids. To find the total buoyant force, g (L 2 (Ld)) imagine that the wood block is
Fluids, elasticity, matter Newtonian mechanics of deformable media Fluids: a roblem A beaker contains a thick layer of oil (shown in green) of density ρ 2 floating on water (shown in blue), which has density
More informationExercise 42. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps
Exercise 42 Centrifugal Pumps EXERCISE OBJECTIVE Familiarize yourself with the basics of liquid pumps, specifically with the basics of centrifugal pumps. DISCUSSION OUTLINE The Discussion of this exercise
More informationVessel Weighing. Load Cells and Weigh Modules VPG TRANSDUCERS. Technical Note VPGT06. Scope. Accuracy. Mode of Operation. Mechanical Considerations
VPG TRANSDUCERS Load Cells and Weigh Modules Technical Note VPGT06 Scope Load cells may be used to weigh vessels in various installation configurations. The installation of load cells into a practical
More informationAvailable online at Procedia Engineering 200 (2010) (2009) In situ drag measurements of sports balls
Available online at www.sciencedirect.com Procedia Engineering 200 (2010) (2009) 2437 2442 000 000 Procedia Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering
More informationDetailed study 3.4 Topic Test Investigations: Flight
Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure
More informationFCCIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics
FCCIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics Civil Engineering Program, San Ignacio de Loyola University Objective Calculate the forces exerted by a fluid at rest on plane or
More informationModeling a Pressure Safety Valve
Modeling a Pressure Safety Valve Pressure Safety Valves (PSV), Pressure Relief Valves (PRV), and other pressure relieving devices offer protection against overpressure in many types of hydraulic systems.
More information5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.
Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.
More information