PRESSURE-TEMPERATURE RELATIONSHIP IN GASES

Size: px
Start display at page:

Download "PRESSURE-TEMPERATURE RELATIONSHIP IN GASES"

Transcription

1 PRESSURE-TEMPERATURE RELATIONSHIP IN GASES LAB PS2.PALM INTRODUCTION Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and the number of collisions of these molecules is affected when the temperature of the gas increases or decreases. In this experiment, you will study the relationship between the temperature of a gas sample and the pressure it exerts. Using the apparatus shown in Figure 1, you will place an Erlenmeyer flask containing an air sample in water baths of varying temperature. The pressure inside the flask will be monitored with a Pressure Sensor and temperature will be monitored using a Temperature Probe. The volume of the gas sample and the number of molecules it contains will be kept constant. Pressure and temperature data pairs will be collected during the experiment and then analyzed. From the data and graph, you will determine what kind of mathematical relationship exists between the pressure and the absolute temperature of a confined gas. You may also do the extension exercise and use your data to find a value for absolute zero on the Celsius temperature scale. Figure 1 PURPOSE The purpose of this experiment is to determine the relationship between pressure and temperature for a gas, keeping the volume of the gas and the number of gas molecules constant. Reference: Adapted from lab supplied by Vernier Software & Technology. PS2.PALM-1

2 EQUIPMENT/MATERIALS LabPro interface with AC adapter Palm handheld with Data Pro Palm LabPro interface cable Vernier Gas Pressure Sensor with the following accessories: Plastic tubing with 2 connectors Rubber stopper assembly Vernier Temperature Probe Ice 125-mL Erlenmeyer flask 1 L Beaker 200 ml Graduated cylinder (2/class) For optional data collected at 100 C: Ring stand and utility clamp Hot plate Glove or cloth SAFETY Always wear an apron and goggles in the lab. Use caution handling the hot plate and boiling-water bath. PS2.PALM-2

3 PROCEDURE 1. Prepare the LabPro, Temperature Probe and Pressure Sensor for data collection: a. Plug the Temperature Probe into Channel 1 of the LabPro. b. Plug the Pressure Sensor into Channel 2 of the LabPro. c. Obtain a rubber-stopper assembly with a piece of heavy-wall plastic tubing connected to one of its two valves. Attach the connector at the free end of the plastic tubing to the Pressure Sensor with a clockwise turn. Leave the two-way valve on the rubber stopper open (lined up with the valve stem as shown in Figure 2) until Step 6f. d. Insert the rubber-stopper assembly into a 125-mL Figure 2 Erlenmeyer flask. Important: Twist the stopper into the neck of the flask to ensure a tight fit. Figure 3 e. Close the 2-way valve above the rubber stopper do this by turning the valve handle so it is perpendicular with the valve stem itself (as shown in Figure 3). The air sample to be studied is now confined in the flask. f. Connect the Vernier AC adapter to the LabPro and plug it in. After a few seconds, you should hear the happy tones of the Lab Pro. If not, make sure that the adapter is plugged in. 2. Remove the stylus from the right side of the handheld. Connect the handheld to the LabPro using the Palm LabPro interface cable. Firmly press in the cable ends. 3. Press the power button on the top right of the handheld to turn it on. To start Data Pro, tap the Data Pro icon on the Applications screen. Choose New from the Data Pro menu or tap to reset the program. PS2.PALM-3

4 4. On the Main screen of Data Pro, Tap. If the handheld displays TEMP(C) in CH1 and PRESS(KPA) in CH2, proceed directly to Step 6. If it does not, tell your teacher. 5. Set up the data-collection mode: a. While still on the setup screen, tap, then choose Selected Events. b. Tap to return to the Main screen. 6. Tap to begin data collection. Temperature readings (in C) and pressure readings (in kpa) are displayed on the handheld screen. 7. Collect pressure vs. temperature data for your gas sample. a. Place the flask into a 1 L beaker containing about 700 ml of cold water and some ice. Make sure the entire flask is covered with water (see Figure 3). Stir the bath. b. Place the Temperature Probe into the ice-water bath. c. When the temperature and pressure readings displayed on the screen have both stabilized, tap to store the temperature-pressure data pair. d. Remove the flask and the Temperature Probe from the water bath. 8. Repeat Step 8 using just 800 ml of cold tap water. 9. Repeat Step 8 using 800 ml of cool water. 10. Repeat Step 8 using 800 ml of room temperature water. 11. Repeat Step 8 using 800 ml of hot tap water. 12. Optional: Use a ring stand and utility clamp to suspend the Temperature Probe in a 1L beaker containing about 800 ml of boiling water. CAUTION: Do not burn yourself or the probe wires with the hot plate. To keep from burning your hand, hold the tubing of the flask using a glove or a cloth. After the Temperature Probe has been in the boiling water for a few seconds, place the flask into the boilingwater bath and repeat Step Tap to stop data collection, then tap on the Event Collection screen and a graph of all data vs. time will be displayed. PS2.PALM-4

5 14. Change the axis values so that a graph of pressure vs. temperature will be displayed, then examine the displayed graph: a. On the Graph screen, tap the x-axis label, and choose CH1: TEMP(C). b. Tap the y-axis label, and choose CH2: PRESS(KPA). c. Examine the data points along the displayed graph of pressure vs. temperature ( C). To examine the data pairs on the displayed graph, tap or any data point. As you move the examine line, the temperature and pressure values of each data point are displayed to the right of the graph. d. Record the data pairs in your data table. Round pressure to the nearest 0.1 kpa and temperature to the nearest 0.1 C. 15. Use the following steps to create a new column of Kelvin temperatures: a. On the Graph screen, tap. b. Tap on the Data screen. c. Enter the column name (Temp) and unit (K). d. Tap and choose the formula, X+A. e. Choose CH1: TEMP(C) as the Column for X, and enter a value of 273 for A. f. Tap to display the graph of pressure vs. Temp (K). g. Tap or any data point to move the examine line and record the Kelvin temperature values (displayed to the lower right of the graph) in your data table. 16. Follow this procedure to calculate regression statistics and to plot a best-fit regression line on your graph of pressure vs. temperature (K): a. On the Graph screen, tap, then tap. b. Choose CH2: PRESS(KPA) as the Data to Fit. c. Choose Linear as the Fit Equation. The linear-regression statistics for these two lists are displayed for the equation in the form: y = ax + b where x is temperature (K), y is pressure (kpa), a is a proportionality constant, and b is the y-intercept. Record the linear-regression for your experiment on your Data Sheet. d. To display the linear-regression curve on the graph of pressure vs. temperature (K), tap. 17. Optional: Print a graph pressure vs. Kelvin temperature (with a regression line displayed). PS2.PALM-5

6 DATA SHEET Name Name Period Class Date PRESSURE-TEMPERATURE RELATIONSHIP IN GASES DATA TABLE Pressure (kpa) Temperature ( C) Temperature (K) LINEAR-REGRESSION QUESTIONS 1. In order to perform this experiment, what two experimental factors were kept constant? 2. Based on the data and graph that you obtained for this experiment, express in words the relationship between gas pressure and temperature. PS2.PALM-6

7 3. Explain this relationship using the concepts of molecular velocity and collisions of molecules. 4. Write an equation to express the relationship between pressure and temperature (K). Use the symbols P, T, and k. 5. Using the linear regression from step 16c above and assuming constant volume, what would the pressure of the air be at 40.0 C? 6. Use a 200 ml graduated cylinder to determine the volume of the Erlenmeyer flask when it is topped with the stopper used in this experiment. Use this volume, the ideal gas law, and your answer from Question 5 to determine the number of moles of gas in the Erlenmeyer flask during your experiment. (101.3 kpa = 1 atm) PS2.PALM-7

Introduction. Objectives. Hazards. Procedure

Introduction. Objectives. Hazards. Procedure Experiment: Exploring Gases Note to Students: Check with your instructor to see which parts of this lab (Parts A, B, or C) you will complete. Introduction Gases are made up of molecules that are in constant

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Exploring the Properties of Gases

Exploring the Properties of Gases Exploring the Properties of Gases LabQuest 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids Calculator 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Exploring the Properties of Gases

Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment and materials and some general

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure 1, it

More information

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high)

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high) Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 ELECTRONIC LABORATORY NOTEBOOK (ELN) INSTRUCTIONS Read the directions and

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW)

EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW) EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW) INTRODUCTION: In order to specify fully the condition of a gas it is necessary to know its pressure, volume, and temperature. This quantities are

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

Lab #12:Boyle s Law, Dec. 20, 2016 Pressure-Volume Relationship in Gases

Lab #12:Boyle s Law, Dec. 20, 2016 Pressure-Volume Relationship in Gases Chemistry Unit 6:States of Matter & Basic Gas Laws Name Lab Partner Lab #12:Boyle s Law, Dec. 20, 2016 Pressure-Volume Relationship in Gases Purpose: The primary objective of this experiment is to determine

More information

Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08

Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08 Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08 I. Introduction The purpose of this experiment is to test the extent real gases (to the limits of our measurements)

More information

Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we will use is air,

More information

Boyle s Law. Pressure-Volume Relationship in Gases. Figure 1

Boyle s Law. Pressure-Volume Relationship in Gases. Figure 1 Boyle s Law Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use will be air,

More information

Boyle s Law: Pressure-Volume. Relationship in Gases

Boyle s Law: Pressure-Volume. Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use will be air,

More information

Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases Computer 6 The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use

More information

Fun with Gas Laws. Prepared by Vance O. Kennedy and Ross S. Nord, Eastern Michigan University PURPOSE

Fun with Gas Laws. Prepared by Vance O. Kennedy and Ross S. Nord, Eastern Michigan University PURPOSE Experiment 2 Fun with Gas Laws Prepared by Vance O. Kennedy and Ross S. Nord, Eastern Michigan University PURPOSE The purpose of this laboratory experience is to explore the gas law relationships between

More information

Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17

Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17 Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17 Objective: The purpose of this experiment is confirm Boyle's and Amontons' Laws in the laboratory. Prelab Questions: Read through this lab handout

More information

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8. Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

More information

Ideal gas law. Introduction

Ideal gas law. Introduction Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls. The

More information

The Decomposition of Hydrogen Peroxide

The Decomposition of Hydrogen Peroxide The Decomposition of Hydrogen Peroxide Calculator 12 The decomposition of hydrogen peroxide in aqueous solution proceeds very slowly. A bottle of 3% hydrogen peroxide sitting on a grocery store shelf is

More information

Boyle s Law: Pressure-Volume Relationship in Gases. PRELAB QUESTIONS (Answer on your own notebook paper)

Boyle s Law: Pressure-Volume Relationship in Gases. PRELAB QUESTIONS (Answer on your own notebook paper) Boyle s Law: Pressure-Volume Relationship in Gases Experiment 18 GRADE LEVEL INDICATORS Construct, interpret and apply physical and conceptual models that represent or explain systems, objects, events

More information

The Gas Laws: Boyle's Law and Charles Law

The Gas Laws: Boyle's Law and Charles Law Exercise 6 Page 1 Illinois Central College CHEMISTRY 130 Name The Gas Laws: Boyle's Law and Charles Law Objective The simple laws governing the properties of gases can be readily demonstrated experimentally.

More information

Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases Experiment The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use

More information

Pre-Lab 6: Gas Law ~ 70 ~

Pre-Lab 6: Gas Law ~ 70 ~ Name: Pre-Lab 6: Gas Law Section: Answer the following questions after reading the background information at the beginning of the lab. This should be completed before coming to lab. 1. Convert the following:

More information

Name Student Activity

Name Student Activity Open the TI-Nspire document Boyles_Law.tns. In this activity, you will use a Gas Pressure Sensor to measure the pressure of an air sample inside a syringe. Using graphs, you will apply your results to

More information

Exp. 5 Ideal gas law. Introduction

Exp. 5 Ideal gas law. Introduction Exp. 5 Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls.

More information

CBL Lab GAS PRESSURE & VOLUME MATHEMATICS CURRICULUM. High School. Florida Sunshine State Mathematics Standards

CBL Lab GAS PRESSURE & VOLUME MATHEMATICS CURRICULUM. High School. Florida Sunshine State Mathematics Standards MATHEMATICS CURRICULUM High School CBL Lab Florida Sunshine State Mathematics Standards GAS PRESSURE & VOLUME John Klimek, Math Coordinator Curt Witthoff, Math/Science Specialist Dr. Benjamin Marlin Superintendent

More information

Experiment #12. Gas Laws.

Experiment #12. Gas Laws. Goal To observe gas laws in the laboratory. Experiment #12. Gas Laws. Introduction All ideal gases, regardless of molar mass or chemical properties, follow the same gas laws under most conditions. Gas

More information

CHM111 Lab Gas Laws Grading Rubric

CHM111 Lab Gas Laws Grading Rubric Name Team Name CHM111 Lab Gas Laws Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal procedures

More information

Lab 4: Transpiration

Lab 4: Transpiration Lab 4: Transpiration Water is transported in plants, from the roots to the leaves, following a decreasing water potential gradient. Transpiration, or loss of water from the leaves, helps to create a lower

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

Transpiration. DataQuest OBJECTIVES MATERIALS

Transpiration. DataQuest OBJECTIVES MATERIALS Transpiration DataQuest 13 Water is transported in plants, from the roots to the leaves, following a decreasing water potential gradient. Transpiration, or loss of water from the leaves, helps to create

More information

Physics Experiment 17 Ideal Gas Law Qualitative Study

Physics Experiment 17 Ideal Gas Law Qualitative Study Physics 210 17-1 Experiment 17 Ideal Gas Law Qualitative Study Note 1: Parts of this lab involve using a laptop computer and the PASCO ScienceWorkshop Interface to collect data. The lab also involves use

More information

LABORATORY INVESTIGATION

LABORATORY INVESTIGATION LABORATORY INVESTIGATION MEASURING THE RATE OF PHOTOSYNTHESIS Light and Photosynthesis About 2.5-3 billion years ago a new chemical process, photosynthesis, was evolved by a unicellular life form. This

More information

Experiment 11: The Ideal Gas Law

Experiment 11: The Ideal Gas Law Experiment 11: The Ideal Gas Law The behavior of an ideal gas is described by its equation of state, PV = nrt. You will look at two special cases of this. Part 1: Determination of Absolute Zero. You will

More information

APBiology Unit 2, Chapter 8

APBiology Unit 2, Chapter 8 APBiology Unit 2, Chapter 8 Research Question What factors affect the rate of cellular respiration in multicellular organisms? Background Living systems require free energy and matter to maintain order,

More information

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

More information

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

INSTRUCTOR RESOURCES

INSTRUCTOR RESOURCES Gases: Dalton s Law INSTRUCTOR RESOURCES By Dale A. Hammond, PhD LEARNING OBJECTIVES introduce the concept of ideal gases. experimentally determine the relationship between pressure and amount of gas,

More information

Evaluation copy. Wind Chill. computer OBJECTIVES MATERIALS

Evaluation copy. Wind Chill. computer OBJECTIVES MATERIALS Wind Chill Computer 28 A nice breeze can cool you down on a hot day or send a chill through you on a day that is already cold. Wind carries heat away from our bodies making us feel cooler. This phenomenon

More information

Physics 1021 Experiment 4. Buoyancy

Physics 1021 Experiment 4. Buoyancy 1 Physics 1021 Buoyancy 2 Buoyancy Apparatus and Setup Materials Force probe 1000 ml beaker Vernier Calipers Plastic cylinder String or paper clips Assorted bars and clamps Water Attach the force probe

More information

Boyle s law Verifying the relation between air pressure and volume measuring air pressure in a closed container.

Boyle s law Verifying the relation between air pressure and volume measuring air pressure in a closed container. Objective The purpose of this activity is to analyze the relationship between the pressure and volume of a confined gas at constant temperature, create a hypothesis and proceed to test it using the Labdisc

More information

Ozobot Bit Classroom Application: Boyle s Law Simulation

Ozobot Bit Classroom Application: Boyle s Law Simulation OZO AP P EAM TR T S BO RO VE D Ozobot Bit Classroom Application: Boyle s Law Simulation Created by Richard Born Associate Professor Emeritus Northern Illinois University richb@rborn.org Topics Chemistry,

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Biology Unit 2, Structure of Life, Lab Activity 2-3

Biology Unit 2, Structure of Life, Lab Activity 2-3 Biology Unit 2, Structure of Life, Lab Activity 2-3 Cellular respiration is the release of energy from organic compounds by metabolic chemical oxidation in the mitochondria within each cell. Cellular respiration

More information

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams.

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams. Heat Engine Equipment: Capstone, 2 large glass beakers (one for ice water, the other for boiling water), temperature sensor, pressure sensor, rotary motion sensor, meter stick, calipers, set of weights,

More information

Intermolecular Forces

Intermolecular Forces Experiment 2 Intermolecular Forces Prepared by Ross S. Nord, Eastern Michigan University with large parts adapted from Chemistry with Computers by Dan D. Holmquist and Donald D. Volz PURPOSE The purpose

More information

LABORATORY INVESTIGATION A Study of Yeast Fermentation - Teacher Instructions

LABORATORY INVESTIGATION A Study of Yeast Fermentation - Teacher Instructions LABORATORY INVESTIGATION A Study of Yeast Fermentation - Teacher Instructions In this laboratory investigation, students measure the rate of fermentation in yeast cells. Data are collected showing that

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

Students measure the change in pressure by varying the volume of trapped air in a syringe while:

Students measure the change in pressure by varying the volume of trapped air in a syringe while: How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students

More information

Gas Pressure and Distance The Force of the Fizz Within, By Donell Evans and Russell Peace

Gas Pressure and Distance The Force of the Fizz Within, By Donell Evans and Russell Peace Louisiana Curriculum Framework Content Strand Physical Science Chemistry Grade Level 9-12 Objective: The students will... Use a TI 83 Plus Graphing Calculator, a CBL System, a pressure sensor, and film

More information

Experiment 8 GAS LAWS

Experiment 8 GAS LAWS Experiment 8 GAS LAWS FV 6/25/2017 MATERIALS: Amontons Law apparatus, Boyle s Law apparatus, Avogadro s Corollary apparatus, four beakers (2 L), warm-water bath, ice, barometer, digital thermometer, air

More information

29 Pressure, Temperature relationship of a gas

29 Pressure, Temperature relationship of a gas Chemistry Sensors: Loggers: Gas Pressure, Temperature Any EASYSENSE Logging time: EasyLog Teacher s notes 29 Pressure, Temperature relationship of a gas Read The ideal gas laws tell us that if we keep

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 1 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

11.1 Dumas Method - Pre-Lab Questions

11.1 Dumas Method - Pre-Lab Questions 11.1 Dumas Method - Pre-Lab Questions Name: Instructor: Date: Section/Group: Show all work for full credit. 1. If a 275-mL gas container has pressure of 732.6 mm Hg at -28 C, how many moles of gas are

More information

Clean toilet plunger Sensor extension cable. Add this important safety precaution to your normal laboratory procedures:

Clean toilet plunger Sensor extension cable. Add this important safety precaution to your normal laboratory procedures: How Does a Trapped Gas Behave? Student Activity Worksheet Driving Question How does a change in volume of a confined gas affect its pressure? Materials and Equipment For each student or group: Data collection

More information

weight of the book divided by the area of the bottom of the plunger.

weight of the book divided by the area of the bottom of the plunger. Lab: Boyle s Law Datasheet Name Data: Pressure is defined as force per unit area: P = Force/Area When a book rests on top of the plunger, the pressure it exerts equals the weight of the book divided by

More information

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt Experiment 13 Molar Mass of a Gas Purpose In this experiment you will use the ideal gas law to calculate the molar mass of a volatile liquid compound by measuring the mass, volume, temperature, and pressure

More information

Lab 13: Hydrostatic Force Dam It

Lab 13: Hydrostatic Force Dam It Activity Overview: Students will use pressure probes to model the hydrostatic force on a dam and calculate the total force exerted on it. Materials TI-Nspire CAS handheld Vernier Gas Pressure Sensor 1.5

More information

Air Ball! Evaluation copy

Air Ball! Evaluation copy Air Ball! Computer 24 Do you ever wonder how the National Basketball Association (NBA) decides how much air should be in the basketballs used during a game? The NBA measures the pressure inside the ball

More information

Air Ball! LabQuest Vernier Gas Pressure Sensor Vernier Motion Detector basketball stopper with needle, stopper stem and tubing attached meter stick

Air Ball! LabQuest Vernier Gas Pressure Sensor Vernier Motion Detector basketball stopper with needle, stopper stem and tubing attached meter stick Air Ball! LabQuest 24 Do you ever wonder how the National Basketball Association (NBA) decides how much air should be in the basketballs used during a game? The NBA measures the pressure inside the ball

More information

The University of Hong Kong Department of Physics Experimental Physics Laboratory

The University of Hong Kong Department of Physics Experimental Physics Laboratory The University of Hong Kong Department of Physics Experimental Physics Laboratory PHYS2260 Heat and Waves 2260-1 LABORATORY MANUAL Experiment 1: Adiabatic Gas Law Part A. Ideal Gas Law Equipment Required:

More information

LAB 13: FLUIDS OBJECTIVES

LAB 13: FLUIDS OBJECTIVES 217 Name Date Partners LAB 13: FLUIDS Fluids are an important part of our body OBJECTIVES OVERVIEW Fluid Properties To learn how some fundamental physical principles apply to fluids. To understand the

More information

Gas Pressure Sensor (Order Code GPS-BTA)

Gas Pressure Sensor (Order Code GPS-BTA) Gas Pressure Sensor (Order Code GPS-BTA) The Vernier Gas Pressure Sensor is used to monitor pressure changes in gas-law experiments in chemistry and physics, such as Boyle s law (pressure vs. volume) and

More information

EXPERIMENT 12 BEHAVIOR OF GASES

EXPERIMENT 12 BEHAVIOR OF GASES EXPERIMENT 12 BEHAVIOR OF GASES INTRODUCTION A large number of substances of considerable chemical interest are gases. For example, CO 2 is currently in the news because it is thought to be partly responsible

More information

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book.

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book. Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections 10.1 10.2 of your book. Convert the following to Celsius and Kelvin temperatures: 1. 80.0 o F Early E. C.:

More information

LAB 13: FLUIDS OBJECTIVES

LAB 13: FLUIDS OBJECTIVES 205 Name Date Partners LAB 13: FLUIDS Fluids are an important part of our body OBJECTIVES OVERVIEW Fluid Properties To learn how some fundamental physical principles apply to fluids. To understand the

More information

Final Gas Law Review

Final Gas Law Review Name: ate: 1 t which temperature is the vapor pressure of ethanol equal to 80 kpa?. 48. 73. 80. 101 4 Gas Molecular Mass (g/mol) 2 4 17 20 The table shown lists four gases and their molecular mass. Which

More information

Studying Carbon Dioxide

Studying Carbon Dioxide Activity 3 Studying Carbon Dioxide GOALS In this activity you will: Generate CO 2 by various methods, then collect and characterize it. Explore how the volume of a gas varies with temperature. Compare

More information

Objectives. Materials TI-73 CBL 2

Objectives. Materials TI-73 CBL 2 . Objectives Activity 18 To model the cooling rate of different sizes of animals To determine the effect of skin surface area on the cooling rate of animals Materials TI-73 Body Cooling Rate of Animals

More information

Chemistry. TEKS 2D Organize, analyze, evaluate, make inferences, and predict trends from data.

Chemistry. TEKS 2D Organize, analyze, evaluate, make inferences, and predict trends from data. Chemistry TEKS 2D Organize, analyze, evaluate, make inferences, and predict trends from data. Students will be able to collect data, organize into a data table and construct a graph by the time they reach

More information

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas?

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas? MOLECULAR MASS OFA VOLATILE LIQUID A lab to study the ideal gas law Introduction The ideal gas law indicates that the observed properties of a gas sample are directly related to the number of moles of

More information

Gas Laws. Essential Learning Outcomes: 1. Change can be measured. 2. Changes can occur within a substance that alters its identity.

Gas Laws. Essential Learning Outcomes: 1. Change can be measured. 2. Changes can occur within a substance that alters its identity. Gas Laws Gas Laws: Gases and pressures affect our lives every day. From the weather we experience to the air we breathe, it all has to do with gases and pressures. Why do we have wind? Why do we have the

More information

Cell Respiration Laboratory PSI Biology

Cell Respiration Laboratory PSI Biology Cell Respiration Laboratory PSI Biology Name Objective Students will understand the relationship between temperature, pressure, and gas volume and will predict the effect of temperature and germination

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

Gas volume and pressure are indirectly proportional.

Gas volume and pressure are indirectly proportional. Section 2 The Gas Laws Key Terms Boyle s law Charles s law combined gas law absolute zero Gay-Lussac s law Scientists have been studying physical properties of gases for hundreds of years In 1662, Robert

More information

Pressure Sensor Experiment Guide

Pressure Sensor Experiment Guide Pressure Sensor Experiment Guide Pressure Sensor Introduction: Part of the Eisco series of hand held sensors, the pressure sensor allows students to record and graph data in experiments on the go. This

More information

Each gas sample has the same A) density B) mass C) number of molecules D) number of atoms

Each gas sample has the same A) density B) mass C) number of molecules D) number of atoms 1. A real gas behaves most like an ideal gas at A) low pressure and high temperature B) average potential energy of its particles C) ionization energy of its particles D) activation energy of its particles

More information

Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions

Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions Chapter 13 Gases Pressure/Temperature Conversions Convert the following: 1. 3.50 atm = kpa 2. 123 atm = mmhg 3. 970.0 mmhg = torr 4. 870.0 torr = kpa 5. 250.0 kpa = atm 6. 205.0 mmhg = kpa 7. 12.4 atm

More information

1. Photosynthesis and Light. See real-time evidence that light causes photosynthesis to occur!

1. Photosynthesis and Light. See real-time evidence that light causes photosynthesis to occur! Y OU LIGHT UP MY LIFE 1. Photosynthesis and Light You Light Up My Life Student Instruction Sheet Challenge See real-time evidence that light causes photosynthesis to occur! Equipment and Materials computer

More information

Gas Pressure and Volume Relationships *

Gas Pressure and Volume Relationships * Gas Pressure and Volume Relationships * MoLE Activities To begin this assignment you must be able to log on to the Internet (the software requires OSX for mac users). Type the following address into the

More information

Conclusions: 1. What happens to the volume of the gas inside the dropper as you put pressure on the container?

Conclusions: 1. What happens to the volume of the gas inside the dropper as you put pressure on the container? Gas Stations Chemistry Gas Station 1 Pressure Purpose: To observe the affect of pressure of a gas Safety: Wear goggles and aprons!!! Obtain an empty canister. Fill it half way with water and ½ an alka

More information

MoLE Gas Laws Activities

MoLE Gas Laws Activities MoLE Gas Laws Activities To begin this assignment you must be able to log on to the Internet using Internet Explorer (Microsoft) 4.5 or higher. If you do not have the current version of the browser, go

More information

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam.

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam. Name: Period: Unit 2 Packet Energy and States of Matter Unit 2 Packet Contents Sheet (This Paper!) Unit 2 Objectives Notes: Kinetic Molecular Theory of Gases- 3 pgs (with Behavior of Gases Reading, and

More information

9A Gas volume and pressure are indirectly proportional.

9A Gas volume and pressure are indirectly proportional. The Gas Laws Key Terms Boyle s law Charles s law combined gas law absolute zero Gay-Lussac s law Scientists have been studying physical properties of gases for hundreds of years In 1662, Robert Boyle discovered

More information

Instructions for Assembly, Installation, and Operation of the Gas Addition Kit Accessory with the CEM Discover Systems

Instructions for Assembly, Installation, and Operation of the Gas Addition Kit Accessory with the CEM Discover Systems Corporation Issued: 5/09 P/N: 600104 Rev. 2 Instructions for Assembly, Installation, and Operation of the Gas Addition Kit Accessory with the CEM Discover Systems The Gas Addition Accessory permits the

More information

Resonance in Transverse Waves. Regents Physics

Resonance in Transverse Waves. Regents Physics Title: Resonance in Transverse Waves Original: Revision: Authors: Appropriate Level: Abstract: Time Required: NY Standards Met: Special Notes: 1 July 2004 4 April 2008 Charlene Rydgren, Jeff Harbold, George

More information

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure

More information

SMALL PISTON HEAT ENGINE APPARATUS

SMALL PISTON HEAT ENGINE APPARATUS Instruction Manual and Experiment Guide for the PASCO scientific Model TD-8592 012-08375A SMALL PISTON HEAT ENGINE APPARATUS The exclamation point within an equilateral triangle is intended to alert the

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1 Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage

More information

MoLE Gas Laws Activities

MoLE Gas Laws Activities MoLE Gas Laws Activities To begin this assignment you must be able to log on to the Internet using Internet Explorer (Microsoft) 4.5 or higher. If you do not have the current version of the browser, go

More information

Lab 1. Adiabatic and reversible compression of a gas

Lab 1. Adiabatic and reversible compression of a gas Lab 1. Adiabatic and reversible compression of a gas Introduction The initial and final states of an adiabatic and reversible volume change of an ideal gas can be determined by the First Law of Thermodynamics

More information

Practice Packet: Gases. Regents Chemistry: Dr. Shanzer. Practice Packet. Chapter 5: Gases.

Practice Packet: Gases. Regents Chemistry: Dr. Shanzer. Practice Packet. Chapter 5: Gases. Practice Packet: Gases Regents Chemistry: Dr. Shanzer Practice Packet Chapter 5: Gases http://drshanzerchemistry.weebly.com 8/30/15 The Kinetic Molecular Theory (KMT), Ideal vs Real gases & Avogadro s

More information

Gases. Unit 10. How do gases behave?

Gases. Unit 10. How do gases behave? Gases Unit 10 How do gases behave? Gases are perhaps the most mysterious of all of the phases of matter. For the most part gases are invisible to us, and it was once believed that in the air there is no

More information