Gas Laws. Introduction

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as Boyle s Law. In 1787 Jacques Charles observed the linear relationship between temperature and volume at constant pressure. In the mid 1800 s after the Kelvin or absolute temperature scale was formulated, Charles Law was worded to state that at constant pressure the temperature (in K) and volume of a gas are directly proportional such that T V = constant These laws apply perfectly only to ideal gases as defined by the kinetic-molecular theory, kmt. Briefly, 1. Gas molecules are in constant, random motion. They move in straight lines until they collide with another molecule or the walls of the container. 2. The average kinetic energy of molecules is proportional to the temperature in Kelvin units. 3. All collisions of gas molecules are perfectly elastic the gas sample does not lose energy because of these collisions. 4. Gas molecules have negligible volume, and the space between them is large. 5. There are no attractive forces between gas molecules. They don t stick to each other. One characteristic of a gas is that it exerts pressure on the walls of its container. With the kineticmolecular theory, we can understand pressure as the result of collisions of the gas molecules with the walls of the container. The amount of pressure is related to the number of collisions per unit time and the strength of the collision (a result of the mass of the molecules and how fast they are moving). Why should you care? Gases and effective gas exchange (O 2 in, CO 2 out) are quite important in maintaining your body in a healthy state. Gas exchange is also important in some medical diagnostic and treatment procedures. If you develop a reasonable understanding of the kinetic molecular theory, you will be in a position to understand respiratory physiology much better. In this lab you will use two gas laws that allow you to make predictions about the behavior of gases. True ideal gases do not exist. Air behaves very much like an ideal gas, however, being a mixture of several nonpolar gases N 2, O 2, and Ar. These gases have only very weak intermolecular attractive forces called London forces. Water vapor, on the other hand, does not behave very much like an ideal gas, having relatively strong intermolecular attractive forces between molecules. Recall that the water molecule is quite polar and can undergo hydrogen bonding also. Boyle s Law Boyle's law states that the volume of a fixed quantity of gas at constant temperature is inversely proportional to its pressure, such that P x V = constant. In other words, if you have the same quantity of gas at the same temperature and you continually increase the pressure on that gas sample, its volume will decrease by the same ratio. If you double the pressure, the volume will 1

2 decrease by 1/2. If you use four times the pressure the volume will decrease to 1/4 of what it was. This means that the product of P V will be a constant. To investigate Boyle s law, a sample of air in a large syringe is used. The syringe is mounted vertically (tip down) in a wooden block with another wooden block mounted on the end of the plunger. You will see that by adding weights to the top of a plunger, the volume of gas in the syringe will decrease. Boyle's law predicts that the pressure of the gas should also change. When a weight is placed on top of the plunger, the plunger moves down farther into the syringe. The plunger stops moving when the pressure of the gas in the syringe is equal to the pressure exerted by the total mass (the atmosphere + added weight) pushing down on the syringe. Pressure (P) is defined as force (F) per unit area (A) and the force on an object is mass (m) times the acceleration of gravity (g, 9.81 m/s 2 ). The pressure of the gas is directly proportional to the mass supported by the gas, so our pressure will be recorded in kg. Pressure Force Area F A m A g (1) The mass supported by the gas in the syringe is equal to the sum of the mass of the atmosphere (m atm ) and the mass of the weight (m weight ): pressure of gas = m atm + m weight (2) The mass of the atmosphere is calculated from the atmospheric pressure and the cross-sectional area of the syringe. The atmospheric pressure is measured using a barometer in the lab. Your instructor will supply the value for the mass atm for you to use in calculating the total gas pressure. The barometer (see Figure 1) consists of a glass tube sealed at one end, which has been filled with mercury and then inverted into a reservoir of mercury. The mercury does not "fall out" of the glass tube completely because the reservoir into which the tube has been inverted is open to the atmosphere. The pressure of the atmosphere is sufficient to hold most of the mercury in the inverted tube. However, as the pressure of the atmosphere changes from day to day with the weather, the exact height to which the mercury level is held in the tube varies. The height of the mercury in the tube is taken as a direct measurement of the atmospheric pressure at any time and is quoted in units of "millimeters of mercury". The average pressure of the atmosphere can support a column of mercury to a level of approximately 760 mm. During periods of clear weather ("high" pressure), the mercury level in the barometer will be above 760 mm; during periods of stormy weather ("low" pressure), the mercury level will be below 760 mm. Radio and televisions usually report the barometric pressure in inches of mercury; 760 mm is approximately equivalent to 30 inches. 2

3 inches cm Scale Top of Hg column Vernier Figure 1. The mercury barometer. One standard atmosphere supports a column of mercury to a height of 760 mm. The vernier scale in (b) permits reading the pressure to a fraction of a millimeter. The reading for this particular measurement is mm Hg. Note how the zero on the vernier scale is between the fourth and fifth mark after 74 (so that gives 744, see arrow #1), and then notice that the 7 th line on the vernier scale matches up exactly with a line on the scale (see arrow #2), this allows you to read to the tenths place Thermometer (b) Mercury reservoir 3

6 Pre-lab questions 1. What is the pressure of the gas in the syringe when no weights are placed on top? 2. How do you find the pressure of the gas in the syringe during the experiment? 3. In a mercury barometer what keeps the column of mercury at a height of approximately 760 mm on an average day at sea level? 4. Considering the Charles Law experiment: a. What specific molecules make up the gas in the Erlenmeyer flask when you begin the experiment? b. What is the pressure of these molecules before you begin the experiment? c. What are these molecules doing inside the closed flask at room temperature to cause this pressure? d. Do they strike the insides of the outlet tubing with the same force per unit area (pressure) as they do the inner walls of the flask? e. What is the pressure of the air on the surface of the water in the 400 ml beaker? f. Why should bubbles not come out of the outlet tubing before the gas is heated? 5. If 7.41 L of gas at 20.8 C was heated to C, what would the volume be, assuming that pressure remained constant? 6

7 GAS LAWS REPORT SHEET Sec: Name: Partner s Name(s): Boyle s Law the relationship between pressure and volume of a gas. Atmospheric Pressure in mm Hg (read off the barometer) mm Hg Weight of the atmosphere in kg kg (given by the instructor) Trial Mass added (kg) Volume (ml) Pressure * (total mass supported in kg) P V (Show pre-rounded and rounded values. Remember units) * Do not round pressure values; rather underline non-significant figures. Why is pressure in the title of the 4 th column in quotes? 7

8 Charles Law the relationship between temperature and volume of a gas. V w, Volume of water drawn into flask when cooled in ml V 1, Total volume of flask in ml V 2 (experimental) in ml Temperature of air in flask when cooled, in C T 2, Temperature of air in flask when cooled in K Temperature of air in flask when heated, in C T 1, Temperature of air in flask when heated in K Calculated (theoretical) value of V 2 in ml Show calculation: % Error of experimental V 2 Show calculation 8

9 Post-Lab Questions Boyle s Law 1. Do your P V values demonstrate support of Boyle's Law? Explain briefly why you feel that they do or do not support Boyle's Law. 2. Calculate the volume expected in Trial 3, assuming Boyle's Law (P 1 V 1 =P 2 V 2 ) is valid for this gas. For V 1 and P 1, use your volume and pressure (total mass supported by the gas) for Trial 1, and for P 2 use the pressure (total mass supported by the gas) for Trial 3. Show your calculation below: Experimental V Calculated V 3. Calculate the % error in your experiment V value, using the calculated V value as the "true value". Show the calculation: 9

Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

States of Matter Review

States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

CHM111 Lab Gas Laws Grading Rubric

Name Team Name CHM111 Lab Gas Laws Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal procedures

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Chapter 12 Section 1 Pressure A gas exerts pressure on its surroundings. Blow up a balloon. The gas we are most familiar with is the atmosphere, a mixture of mostly elemental nitrogen and oxygen. Pressure

Gases Day 12. Phases of Matter

Phases of Matter Gases Day 12 Kinetic Molecular Theory ( Ideal Gases ) 1) The molecules of a gas are in continual, and random, motion of varying speeds. 2) The average kinetic energy of the gas molecules

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.

Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

The Ideal Gas Constant

Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

Gases and Pressure SECTION 11.1

SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.

Determination of R: The Gas-Law Constant

Determination of R: The Gas-Law Constant PURPOSE: EXPERIMENT 9 To gain a feeling for how well real gases obey the ideal-gas law and to determine the ideal-gas-law constant R. APPARATUS AND CHEMICALS: KClO

weight of the book divided by the area of the bottom of the plunger.

Lab: Boyle s Law Datasheet Name Data: Pressure is defined as force per unit area: P = Force/Area When a book rests on top of the plunger, the pressure it exerts equals the weight of the book divided by

PSI Chemistry: Gases Multiple Choice Review

PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kinetic-molecular theory, particles of matterare in constant motion (A) have different shapes (B) have different

Kinetic Theory and Gases

Kinetic Theory and Gases Kinetic Theory Explains how temperature and pressure affect the motion of molecules http://exploration.grc.nasa.gov/education/rocket/images/state.gif 1 Hydraulics http://library.thinkquest.org/

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

Chapter 13: The Behavior of Gases

Chapter 13: The Behavior of Gases I. First Concepts a. The 3 states of matter most important to us: solids, liquids, and gases. b. Real Gases and Ideal Gases i. Real gases exist, ideal gases do not ii.

Please do not write on this test. Please use the answer sheet. 1) Please choose all conditions that would allow a gas sample to behave ideally.

AP Chemistry Test (Chapter 5) Please do not write on this test. Please use the answer sheet. Multiple Choice (50%) 1) Please choose all conditions that would allow a gas sample to behave ideally. I) Nonpolar

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Chemistry HP Unit 6 Gases Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases 6-1. Define pressure using a mathematical equation. 6-2. Perform calculations involving pressure,

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.

Unit 4 THE GAS STATE CHAPTER KEY TERMS HOME WORK 9. Kinetic Molecular Theory States of Matter Solid, Liquid, gas Page 4 # to 4 9. Boyles Law P α /V PV = Constant P V = P V Pressure Atmospheric Pressure

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 13 Gas Laws Chapter 13 Gases and Pressure Pressure and Force Pressure is the force per unit area on a surface. Pressure = Force Area Chapter 13 Gases and Pressure Gases in the Atmosphere The atmosphere

1- (a) A water tank has a rectangular base of dimensions 1.5m by 1.2m and contains 1440 kg of water. Calculate (i) the weight of the water, weight =...... [1] (ii) the pressure exerted by the water on

11.1 Dumas Method - Pre-Lab Questions

11.1 Dumas Method - Pre-Lab Questions Name: Instructor: Date: Section/Group: Show all work for full credit. 1. If a 275-mL gas container has pressure of 732.6 mm Hg at -28 C, how many moles of gas are

4.) There are no forces of attraction or repulsion between gas particles. This means that

KINETIC MOLECULAR (K-M) THEORY OF MATTER NOTES - based on the idea that particles of matter are always in motion - assumptions of the K-M Theory 1.) Gases consist of large numbers of tiny particles that

Gas volume and pressure are indirectly proportional.

Section 2 The Gas Laws Key Terms Boyle s law Charles s law combined gas law absolute zero Gay-Lussac s law Scientists have been studying physical properties of gases for hundreds of years In 1662, Robert

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] Chapter 10 Gases We have talked a little about gases in Chapter 3 and we dealt briefly with them in our stoichiometric calculations in

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure

Problem Solving. Gas Laws

Skills Worksheet Problem Solving Gas Laws Chemists found that there were relationships among temperature, volume, pressure, and quantity of a gas that could be described mathematically. This chapter deals

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day!

Name Unit 9 Notes: Gas Laws Period Skills: 1. Gases and Entropy 2. Distinguish between Ideal and Real gases 3. Understand KMT and Avogadro s Law 4. Identify and Solve Boyle s Law Problems 5. Identify and

PRESSURE-TEMPERATURE RELATIONSHIP IN GASES

PRESSURE-TEMPERATURE RELATIONSHIP IN GASES LAB PS2.PALM INTRODUCTION Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The

Multiple Choice (40%)

AP Chemistry Test (Chapter 5) Please do not write on this test thank you! Multiple Choice (40%) 1) A sealed rigid container is filled with three ideal gases: A, B and C. The partial pressure of each gas

Final Gas Law Review

Name: ate: 1 t which temperature is the vapor pressure of ethanol equal to 80 kpa?. 48. 73. 80. 101 4 Gas Molecular Mass (g/mol) 2 4 17 20 The table shown lists four gases and their molecular mass. Which

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Properties of Gases

Common Student Misconceptions Students need to be told to always use temperature in Kelvin in gas problems. Students should always use units in gas-law problems to keep track of required conversions. Due

UNIT 10 - GASES. Notes & Worksheets - Honors

Ideal Gas Equation 1 WKSHT 1.) What is the pressure exerted by 2.0 moles of an ideal gas when it occupies a volume of 12.0 L at 373 K? 2.) A flashbulb of volume 2.6 cm 3 contains O 2 gas at a pressure

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

Kinetic Molecular Theory

Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

Gas Laws. Directions: Describe what contribution each of the Scientist below made to the Gas Laws and include there gas law equation.

Gas Laws Name Date Block Introduction One of the most amazing things about gases is that, despite wide differences in chemical properties, all the gases more or less obey the gas laws. The gas laws deal

Exploring the Properties of Gases

Exploring the Properties of Gases LabQuest 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

A) It cannot be predicted. B) It is squared. C) It is doubled. D) It is halved. E) It does not change.

AP Chemistry Test (Chapter 5) Class Set Multiple Choice (50%) 1) A sample of argon gas is sealed in a container. The volume of the container is doubled at a constant temperature. What happens to the pressure

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

Students measure the change in pressure by varying the volume of trapped air in a syringe while:

How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes

Name Period CRHS Academic Chemistry Unit 11 Gas Laws Notes Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions

Chapter 13 Gases Pressure/Temperature Conversions Convert the following: 1. 3.50 atm = kpa 2. 123 atm = mmhg 3. 970.0 mmhg = torr 4. 870.0 torr = kpa 5. 250.0 kpa = atm 6. 205.0 mmhg = kpa 7. 12.4 atm

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

Experiment 8 GAS LAWS

Experiment 8 GAS LAWS FV 6/25/2017 MATERIALS: Amontons Law apparatus, Boyle s Law apparatus, Avogadro s Corollary apparatus, four beakers (2 L), warm-water bath, ice, barometer, digital thermometer, air

Pre-Lab 6: Gas Law ~ 70 ~

Name: Pre-Lab 6: Gas Law Section: Answer the following questions after reading the background information at the beginning of the lab. This should be completed before coming to lab. 1. Convert the following:

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases.

Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops

C h e m i s t r y 1 2 C h a p t e r 11 G a s e s P a g e 1 Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops Gas Properties: Gases have high kinetic energy low

To play movie you must be in Slide Show Mode CLICK HERE EXERCISE! EXERCISE! To play movie you must be in Slide Show Mode CLICK HERE

Boyle s Law Boyle s law Pressure and volume are inversely related (constant T, temperature, and n, # of moles of gas). PV k (kis a constant for a given sample of air at a specific temperature) P V P V

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn

AP Chemistry Chapter 5 Sections 5. 5.9 Note Organizer Pressure, The Gas Laws of Boyle, Charles, and Avogadro, The Ideal Gas Law, Gas Stoichiometry, Dalton s Law of Partial Pressure, The Kinetic olecular

EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW)

EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW) INTRODUCTION: In order to specify fully the condition of a gas it is necessary to know its pressure, volume, and temperature. This quantities are

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 ELECTRONIC LABORATORY NOTEBOOK (ELN) INSTRUCTIONS Read the directions and

Ideal gas law. Introduction

Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls. The

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS

Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point.

Chemistry 1020 Identification of an Unknown Liquid Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Text reference solubility, density,

Gas Laws V 1 V 2 T 1. Gas Laws.notebook. May 05, T = k P 1 V 1 = P 2 V 2. = 70 kpa. P. V = k. k = 1 atm = kpa

Gas Laws At constant temperature, all gases behave the same when compressed As increasing pressure is applied to a gas in a closed container, the volume of the gas decreases he product of pressure and

Background information. normal force on a surface area of the surface

Experiment 5a Class: Name: ( ) Date: 5a Boyle s law Objective To investigate the relationship between the pressure and volume of a fixed mass of gas at a constant temperature. Background information Pressure

BOYLE S / CHARLES LAW APPARATUS - 1m long

BOYLE S / CHARLES LAW APPARATUS - 1m long Cat: MF0340-101 (combination Boyle s and Charles without mercury) DESCRIPTION: The IEC Boyle's & Charles Law apparatus is a high quality instrument designed to

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams.

Heat Engine Equipment: Capstone, 2 large glass beakers (one for ice water, the other for boiling water), temperature sensor, pressure sensor, rotary motion sensor, meter stick, calipers, set of weights,

Pressure Sensor Experiment Guide

Pressure Sensor Experiment Guide Pressure Sensor Introduction: Part of the Eisco series of hand held sensors, the pressure sensor allows students to record and graph data in experiments on the go. This

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

Behavior of Gases Chapter 12 Assignment & Problem Set

Behavior of Gases Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Behavior of Gases 2 Study Guide: Things You Must Know Vocabulary (know the definition

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

Chapter 18. The Kinetic-Molecular Theory The Three States of Matter. Lesson Objectives. Introduction

Chapter 18 The Kinetic-Molecular Theory 18.1 The Three States of Matter Lesson Objectives The student will describe molecular arrangement differences among solids, liquids, and gases. The student will

Kinetic-Molecular Theory of Matter

Gases Properties of Gases Gas Pressure Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D. 1 2 Gases What gases are important for each of the following: O 2, CO 2

Unit 8 Gas Laws. Progress Tracker. Essential Vocabulary: Essential Outcomes: Test Date: Test Readiness Checks: Webassign Due Score

Unit 8 Gas Laws Progress Tracker Test Date: Webassign Due Score Packet Progress Checks Essential Vocabulary: Ideal gas Pressure (atmospheres) Volume Temperature (Kelvin and Celsius) Barometer Partial pressure

Section 10-1: The Kinetic-Molecular Theory of Matter. 1) How does the word kinetic apply to particles of matter?

Kinetic-Molecular theory of Matter/Ch10, Gases/Ch11 Column notes: Answer all parts of each question IN YOUR OWN WORDS. Use the text, figures and captions as resources. Section 10-1: The Kinetic-Molecular

Exploring the Properties of Gases

Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment and materials and some general

Unit 10: Gas Laws. Monday Tuesday Wednesday Thursday Friday. 10 Review for Cumulative Retest. 17 Chem Think Gas Laws Tutorial- Computer Lab-

Unit 10: Gas Laws Name: Monday Tuesday Wednesday Thursday Friday February 8 Stoichiometry Test Review 9 Stoichiometry Test 10 Review for Cumulative Retest 11 Cumulative Re-Test 12 Pressure & Kinetic Theory

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser

of Gases Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of General Properties

BEHAVIOR OF GASES Chapter 12 1 Importance of Gases 2 Hot Air Balloons How Do They Work? 3 Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide,, NaN 3. 2 NaN

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high)

Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

Conclusions: 1. What happens to the volume of the gas inside the dropper as you put pressure on the container?

Gas Stations Chemistry Gas Station 1 Pressure Purpose: To observe the affect of pressure of a gas Safety: Wear goggles and aprons!!! Obtain an empty canister. Fill it half way with water and ½ an alka

Boyle s Law Practice

Boyle s Law Practice Boyle s Law is an indirect relationship. Most of these problems can be done in your head without showing your work. 1. Herman has 30.0 L of helium gas trapped in a cylinder by a piston.

Boyle s law Verifying the relation between air pressure and volume measuring air pressure in a closed container.

Objective The purpose of this activity is to analyze the relationship between the pressure and volume of a confined gas at constant temperature, create a hypothesis and proceed to test it using the Labdisc

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

CH2250: Techniques in Laboratory Chemistry Outline Measuring Mass Measuring Volume Significant figures Mass Measurement Mass Measurement Measure mass not weight Mass is measured with a balance (a scale

1. Quantity of a gas (moles) 2. Temperature of the gas. 3. Volume occupied by the gas. 4. Pressure exerted by the gas. PV = nrt

Experiment 5 Stoichiometry : Gases Determining the Ideal Gas Constant Lab Owl Announcement: Upon completion of this lab log onto OWL. Your fourth Lab Owl assignment, Lab Owl: Exp 5 should appear there.

The Decomposition of Potassium Chlorate

The Decomposition of Potassium Chlorate Small quantities of molecular oxygen (O 2 ) can be obtained from the thermal decomposition of certain oxides, peroxides, and salts of oxoacids. Some examples of

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

The Determination of the Value for Molar Volume

Objective The Determination of the Value for Molar Volume Using a chemical reaction that produces a gas, measure the appropriate values to allow a determination of the value for molar volume. Brief Overview

UNIT 4 IB MATERIAL PARTICLE BEHAVIOR OF MATTER PHASES & ATTRACTIONS

UNIT 4 IB MATERIAL Name: PARTICLE BEHAVIOR OF MATTER PHASES & ATTRACTIONS ESSENTIALS: Know, Understand, and Be Able To Apply Avogadro s law to calculate reacting volumes of gases. Apply the concept of

Name: Period: Date: CHAPTER 10 NOTES 10.3: The Gas Laws

Name: Period: Date: 1. Define gas laws: CHAPTER 10 NOTES 10.3: The Gas Laws 2. What units do the following measurements need to be in to describe gases? Boyle s Law a. Temperature b. Volume c. Pressure

PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PROPERTIES OF GASES [MH5; Ch 5, 5.1-5.5 (only)] FEATURES OF A GAS Molecules in a gas are a long way apart (under normal conditions). Molecules in a gas are in rapid motion in all directions. The forces

Pressure Measurement

Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid

Name Date Class CHAPTER ASSESSMENT. 1. Equal volumes of gases at the same temperature and pressure contain equal numbers of particles.

Name ate lass HPTER 14 HPTER SSESSMENT Gases Reviewing Vocabulary Match the definition in olumn with the term in olumn. olumn 1. Equal volumes of gases at the same temperature and pressure contain equal

Experiment 11: The Ideal Gas Law

Experiment 11: The Ideal Gas Law The behavior of an ideal gas is described by its equation of state, PV = nrt. You will look at two special cases of this. Part 1: Determination of Absolute Zero. You will

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

Experiment #2. Density and Measurements

Experiment #2. Density and Measurements Goals 1. To measure and record length, volume and mass accurately with the correct number of significant figures 2. To use significant figures correctly in calculations.

2. investigate the effect of solute concentration on water potential as it relates to living plant tissues.

In this lab you will: 1. investigate the processes of diffusion and osmosis in a model membrane system, and 2. investigate the effect of solute concentration on water potential as it relates to living

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Test General Chemistry CH116 UMass Boston Summer 2013 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The pressure exerted by a column of

C h e m i s t r y 1 A : C h a p t e r 5 P a g e 1

C h e m i s t r y 1 A : C h a p t e r 5 P a g e 1 Chapter 5: Gases Homework: Read Chapter 5. Work out sample/practice exercises Keep up with MasteringChemistry assignments Gas Properties: Ideal Gas: Gases

AP* Chemistry GASES mm Hg = torr =1.00 atm = kpa 10 5 Pa

THE PROPERTIES OF GASES Only 4 quantities are needed to define the state of a gas: a) the quantity of the gas, n (in moles) b) the temperature of the gas, T (in KELVINS) c) the volume of the gas, V (in