Pulmonary Circulation Linda Costanzo Ph.D.

Size: px
Start display at page:

Download "Pulmonary Circulation Linda Costanzo Ph.D."

Transcription

1 Pulmonary Circulation Linda Costanzo Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The differences between pressures in the pulmonary and systemic circulations. 2. How to calculate pulmonary vascular resistance. 3. How (and why) blood flow is unevenly distributed in the upright lung. 4. Regulation of pulmonary blood flow, especially the concept of hypoxic vasoconstriction. 5. The relationship between alveolar ventilation and alveolar P CO2 and how it is described by the alveolar ventilation equation. 6. The relationship between alveolar ventilation and alveolar P O2 and the alveolar ventilation equation. I. BIG PICTURE OF PULMONARY CIRCULATION AND PRESSURES Figure 1. Blood is supplied to the lungs by the pulmonary artery, which receives mixed venous blood from the right heart. The pulmonary arteries branch (like the

2 airways) as far as the terminal bronchioles, then break up to form dense capillary networks in the alveolar walls. The density of the capillary network makes for extremely efficient gas exchange. Pulmonary vascular pressures are much lower than their counterparts in the systemic circulation. For example, mean pulmonary artery pressure is 15 mm Hg (25/8) compared with mean aortic pressure of 100 mm Hg (120/80). Consistent with these low pressures, the walls of the pulmonary arteries are thin and contain relatively little smooth muscle. One important issue for the pulmonary capillaries is the fact that they are surrounded by alveoli, which are gas-filled. Capillary pressures are actually close to alveolar pressures. Thus, it is possible under some circumstances for capillaries to be compressed and even collapse under the alveolar pressure (more later). Figure 2. II. PULMONARY VASCULAR RESISTANCE In cardiovascular physiology, we talk about total peripheral resistance, or systemic vascular resistance (SVR). We apply the pressure, flow, resistance relationship that is analogous to Ohm s law for electrical circuits. In similar fashion, we describe pulmonary vascular resistance (PVR): PVR = Pulmonary artery pressure - pulmonary venous pressure Blood flow Mean pulmonary artery pressure is 15 mm Hg, pulmonary venous pressure is approximately 8 mm Hg, and blood flow is cardiac output of the right heart. Pulmonary pressures are much lower than systemic pressures, yet blood flow

3 (cardiac output) is the same on both sides of the circulation. Logically, pulmonary vascular resistance must also be much lower than systemic vascular resistance. III. DISTRIBUTION OF PULMONARY BLOOD FLOW (ZONES OF LUNG) Because of gravitational forces, pulmonary blood flow is not evenly distributed in the lungs of an upright person. Blood flow is highest at the base of the lung (Zone 3), lowest at the apex of the lung (Zone 1), and intermediate in the middle (Zone 2). This is because gravitational forces increase pulmonary arterial pressure more at the base than at the apex. Figure 3. A. Zone 1 (apex), lowest blood flow. Because of gravitational effects, arterial pressure is lowest in this zone. Because alveolar pressure (PA) is approximately equal to atmospheric pressure, it turns out that arterial pressure (P a ) is very close to PA. If P a is lower than PA, the pulmonary capillaries will be compressed by the higher alveolar pressure, reducing or even eliminating blood flow in that region. Normally arterial pressure is just high enough to prevent this capillary closure. In hemorrhage, where arterial pressure is reduced, P a in Zone 1 is well below PA, and the capillaries are smushed. In this condition, Zone 1 will be

4 ventilated, but not perfused ( dead space ) and no gas exchange can occur. B. Zone 2, medium blood flow. P a is higher in Zone 2 than in Zone 1, and is higher than PA. However, PA is still higher than venous pressure in this zone and so blood flow is driven by the difference between arterial and alveolar pressures, rather than the more familiar difference between arterial and venous pressures. Compression of capillaries is not normally a problem in Zone 2 because of the higher P a. C. Zone 3 (base), highest blood flow. In this zone, both arterial and venous pressures are higher than alveolar pressure and blood flow is driven in the traditional way by the difference between arterial and venous pressure. Zone 3 has the greatest number of open capillaries, and the highest blood flow. IV. REGULATION OF PULMONARY BLOOD FLOW A. Passive factors. Several passive forces can change pulmonary blood flow. We have already discussed gravitational effects on Pa in the upright lung, which increases blood flow to the base and reduces blood flow to the apex. Lung volume also affects pulmonary vascular resistance (PVR), whereby high lung volumes pull the blood vessels open, decreasing their resistance and increasing blood flow; low lung volumes are associated with higher vascular resistance and lower blood flow. B. Active factors 1. Hypoxic vasoconstriction is one concept in pulmonary physiology that you will (hopefully) remember forever! It is memorable, in part, because it is so different from what occurs in other tissues (e.g., coronary circulation) where hypoxia causes vasodilation to provide more blood flow and more O 2. Hypoxic vasoconstriction describes the effect of alveolar hypoxia (decreased PA O2 ) to increase the resistance of nearby arterioles, thus reducing blood flow in that region. Hypoxic vasoconstriction is a protective mechanism in the lungs. It diverts blood flow away from unventilated (hypoxic) regions where blood flow would be wasted because gas exchange cannot occur, and directs it toward regions that are ventilated and where gas exchange can occur. When we discuss V/Q ratios, you will further appreciate that hypoxic vasoconstriction attempts to maintain V/Q matching. The mechanism of hypoxic vasoconstriction is a direct effect of low alveolar P O2 on pulmonary arterioles. (The anatomical relationships permit this.) The likely mediator is inhibition of

5 nitric oxide (NO) synthesis in the endothelial cells. NO dilates arterioles (via production of cyclic GMP); inhibition of NO synthesis leads to vasoconstriction. Inhaled NO reverses hypoxic vasoconstriction. a. High altitude. Hypoxic vasoconstriction occurs at high altitude where the barometric pressure is decreased, and the P O2 of inspired air and alveolar air are, accordingly, decreased. The low PA O2 causes pulmonary vasoconstriction, increased pulmonary vascular resistance, increased pulmonary artery pressure, and can even lead to a compensatory enlargement of the right ventricle (which has to pump blood against an increased pulmonary arterial pressure). b. Fetal lungs. Of course, the ultimate alveolar hypoxia is the fetal lung, which is not ventilated at all. No ventilation, no O 2 in the alveoli. Hypoxic vasoconstriction increases fetal pulmonary vascular resistance decreases pulmonary blood flow. With the first breath, the neonate brings O 2 into the alveoli and interrupts hypoxic vasoconstriction, decreasing pulmonary vascular resistance and increasing pulmonary blood flow. 2. Other. In addition to O 2 (NO), many other substances can alter pulmonary vascular resistance and, accordingly, pulmonary blood flow. Thromboxane A 2 is produced in response to lung injuries and is a potent pulmonary vasoconstrictor. Prostaglandin I 2 is a vasodilator. Endothelins, released by pulmonary endothelial cells, are potent vasoconstrictors. V. ALVEOLAR VENTILATION EQUATION Switching gears! This topic and the next topic do not really belong in a lecture on pulmonary circulation. Mea culpa! The alveolar ventilation equation describes the inverse relationship between alveolar ventilation and alveolar P CO2 (or arterial P CO2 ). or, rearranging to solve for PA CO2 :

6 where The constant, K, needs explanation. The value for K is 863 mm Hg under conditions of BTPS and when VA and VCO 2 are expressed in the same units (e.g., ml/min). BTPS means body temperature (310 K), ambient pressure (760 mm Hg), and gas saturated with water vapor. The bold version of the equation is used to predict the alveolar P CO2 (or arterial P CO2 ) if the rate of CO 2 production and alveolar ventilation are known. The most important point is that if CO 2 production is constant, alveolar and arterial P CO2 are determined by alveolar ventilation. The figure below shows the equation graphically. The higher the alveolar ventilation, the lower the P CO2 ; the lower the alveolar ventilation, the higher the P CO2. The figure also shows what happens if CO 2 production increases from 200 ml/min to 400 ml/min. Alveolar ventilation would have to double from 5 to 10 L/min in order to keep arterial P CO2 at its normal value of 40 mm Hg. (Alternatively, if alveolar ventilation did not double, then arterial P CO2 would increase significantly.)

7 Figure 4. VI. ALVEOLAR GAS EQUATION We use the alveolar ventilation equation to predict alveolar P CO2. We use the alveolar gas equation to predict the alveolar P O2. But why would we want to know the alveolar P O2? Why not just measure arterial P O2 and say that alveolar P O2 is the same? Because, they are not always the same! Sure, in normal lungs, O 2 equilibrates between alveolar gas and pulmonary capillary blood, and arterial P O2 is almost exactly equal to alveolar P O2. But, in many lung diseases, the process of O 2 diffusion is abnormal, O 2 does not equilibrate, and arterial P O2 is less than alveolar P O2. So...that s why we want to know the value of alveolar P O2...any difference between alveolar and arterial P O2 indicates a gas exchange problem in the lungs. (See discussion of A-a gradient in next lectures.) where

8 If alveolar ventilation is halved, PA O2 decreases (less O 2 is brought into the alveoli). The alveolar gas equation predicts the change in PA O2 that occurs for a given change in PA CO2. Since the respiratory quotient is normally 0.8 (equal to respiratory exchange ratio in the steady state), when alveolar ventilation is halved, the PA O2 will fall slightly more than the PA CO2 will rise. The figure below shows the relationship between P O2 and P CO2 calculated by the alveolar gas equation (the so-called O 2 - CO 2 diagram). One anchor point on the diagram is inspired air which has a high P O2 of 150 mm Hg but no CO 2. Normal alveolar gas (or equilibrated arterial blood) has a P O2 of 100 mm Hg and a P CO2 of 40 mm Hg. These changes reflect the respiratory exchange ratio of 0.8. (50 mm Hg of O 2 were replaced by 40 mm Hg of CO 2.) Mixed venous blood has a P O2 of 40 mm Hg (O 2 was lost to the tissues) and a P CO2 of 46 mm Hg. Notice that the variations in P O2 are much greater than the variations in P CO2. Figure 5.

9 VII. PRACTICE QUESTION 1. If alveolar ventilation increases two-fold and CO 2 production remains constant, arterial P CO2 changes to how many times its original value? A. 1/4 B. ½ C. No change D. 2 E. 4 EXPLANATIONS 1. Answer = B. Use the alveolar ventilation equation, which describes the inverse relationship between alveolar P CO2 and alveolar ventilation. You will be given this equation on the exam. Use the equation to calculate the change in PA CO2 ; assume the same change in Pa CO2 because CO 2 always equilibrates in the lungs. PA CO2 = V CO2 x K/ VA. Alveolar ventilation is in the denominator; if it doubles, then PA CO2 (and Pa CO2 ) will be reduced to one-half.

Pulmonary Circulation

Pulmonary Circulation Pulmonary Circulation resin cast of pulmonary arteries resin cast of pulmonary veins Blood Flow to the Lungs Pulmonary Circulation Systemic Circulation Blood supply to the conducting zone provided by the

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION

More information

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS VENTILATION AND PERFUSION IN HEALTH AND DISEASE Dr.HARIPRASAD VS Ventilation Total ventilation - total rate of air flow in and out of the lung during normal tidal breathing. Alveolar ventilation -represents

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD Respiratory System Prepared by: Dorota Marczuk-Krynicka, MD, PhD Lungs: Ventilation Perfusion Gas Exchange - Diffusion 1. Airways and Airway Resistance (AWR) 2. Mechanics of Breathing and Lung (Elastic)

More information

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%)

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%) 148 PHYSIOLOGY CASES AND PROBLEMS Case 26 Carbon Monoxide Poisoning Herman Neiswander is a 65-year-old retired landscape architect in northern Wisconsin. One cold January morning, he decided to warm his

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange By: Aseel Jamil Al-twaijer Lec : physical principles of gas exchange Date:30 /10/2017 this lecture is about the exchange of gases between the blood and the alveoli. I might add some external definitions

More information

Respiratory Physiology. ED Primary Teaching

Respiratory Physiology. ED Primary Teaching Respiratory Physiology ED Primary Teaching Functions of the respiratory system Gas exchange with O2 and CO2 Surfactant production Defence - IgA and macrophages Filer - pollutants and thromboembolism Metabolises

More information

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE Instant download and all chapters Test Bank Respiratory Care Anatomy and Physiology Foundations for Clinical Practice 3rd Edition Will Beachey https://testbanklab.com/download/test-bank-respiratory-care-anatomy-physiologyfoundations-clinical-practice-3rd-edition-will-beachey/

More information

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here Respiratory Medicine A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics See online here Alveolar gas equation helps to calculate the partial pressure of oxygen in alveoli and A-a gradient is the

More information

DOWNLOAD OR READ : VENTILATION BLOOD FLOW AND DIFFUSION PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : VENTILATION BLOOD FLOW AND DIFFUSION PDF EBOOK EPUB MOBI DOWNLOAD OR READ : VENTILATION BLOOD FLOW AND DIFFUSION PDF EBOOK EPUB MOBI Page 1 Page 2 ventilation blood flow and diffusion ventilation blood flow and pdf ventilation blood flow and diffusion Title:

More information

Recitation question # 05

Recitation question # 05 Recitation and Lab # 05 The goal of this recitations / labs is to review material related to the CV and respiratory lectures for the second test of this course. Info required to answer this recitation

More information

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System Introduction Respiration Chapter 10 The Respiratory System Provides a means of gas exchange between the environment and the body Plays a role in the regulation of acidbase balance during exercise Objectives

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

Table of Contents. By Adam Hollingworth

Table of Contents. By Adam Hollingworth By Adam Hollingworth Table of Contents Oxygen Cascade... 2 Diffusion... 2 Laws of Diffusion... 2 Diffusion & Perfusion Limitations... 3 Oxygen Uptake Along Pulmon Capillary... 4 Measurement of Diffusing

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

Respiratory Pulmonary Ventilation

Respiratory Pulmonary Ventilation Respiratory Pulmonary Ventilation Pulmonary Ventilation Pulmonary ventilation is the act of breathing and the first step in the respiratory process. Pulmonary ventilation brings in air with a new supply

More information

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi Course : PG Pathshala-Biophysics Paper 13 : Physiological Biophysics Module 17 : Gas transport and pulmonary circulation Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie RESPIRATORY PHYSIOLOGY Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie Outline Ventilation Diffusion Perfusion Ventilation-Perfusion relationship Work of breathing Control of Ventilation 2 This image

More information

Some major points on the Effects of Hypoxia

Some major points on the Effects of Hypoxia Some major points on the Effects of Hypoxia Source: Kings College London http://www.kcl.ac.uk/teares/gktvc/vc/dental/year1/lectures/rbmsmajorpoints/effectsofhypoxia.htm Cells obtain their energy from oxygen.

More information

Control of Respiration. Central Control of Ventilation

Control of Respiration. Central Control of Ventilation Central Control of Goal: maintain sufficient ventilation with minimal energy Process steps: mechanics + aerodynamics Points of Regulation Breathing rate and depth, coughing, swallowing, breath holding

More information

TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml)

TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml) By: Amin alajlouni Lec: 2nd record Date: 29/10/2017 First of all, this is my first sheet so excuse any mistakes I might make and let's start: As we said before in our last lecture about lung capacities

More information

82 Respiratory Tract NOTES

82 Respiratory Tract NOTES 82 Respiratory Tract NOTES RESPIRATORY TRACT The respiratory tract conducts air to the lungs where gaseous exchange occurs. It is separated into air-conducting and respiratory (where gas exchange occurs)

More information

1.2 The structure and functions of the cardio-respiratory system Learning objectives

1.2 The structure and functions of the cardio-respiratory system Learning objectives 1.2 The structure and functions of the cardio-respiratory system Learning objectives To understand the functions of the circulatory system. To be able to identify the differences between veins, arteries

More information

Respiratory physiology II.

Respiratory physiology II. Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

4. For external respiration to occur effectively, you need three parameters. They are:

4. For external respiration to occur effectively, you need three parameters. They are: Self Assessment Module D Name: ANSWER KEY 1. Hypoxia should be assumed whenever the PaO 2 is below 45 mm Hg. 2. Name some clinical conditions that will result in hyperventilation (respiratory alkalosis).

More information

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning CHAPTER 6 Oxygen Transport Normal Blood Gas Value Ranges Table 6-1 OXYGEN TRANSPORT Oxygen Dissolved in the Blood Plasma Dissolve means that the gas maintains its precise molecular structure About.003

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

Respiratory Physiology. Adeyomoye O.I

Respiratory Physiology. Adeyomoye O.I Respiratory Physiology By Adeyomoye O.I Outline Introduction Hypoxia Dyspnea Control of breathing Ventilation/perfusion ratios Respiratory/barometric changes in exercise Intra-pulmonary & intra-pleural

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Circulation and Gas Exchange Chapter 42

Circulation and Gas Exchange Chapter 42 Circulation and Gas Exchange Chapter 42 Circulatory systems link exchange surfaces with cells throughout the body Diffusion is only efficient over small distances In small and/or thin animals, cells can

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts Objectives MECHANISM OF RESPIRATION Dr Badri Paudel Explain how the intrapulmonary and intrapleural pressures vary during ventilation and relate these pressure changes to Boyle s law. Define the terms

More information

Monday, ! Today: Respiratory system! 5/20/14! Transport of Blood! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing!

Monday, ! Today: Respiratory system! 5/20/14! Transport of Blood! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing! Monday, 5.19.14! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing! Transport of Blood! What is transported! Nutrients! Oxygen! Carbon Dioxide! Hormones! Antibodies! What it is/does!

More information

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan The Physiologic Basis of DLCO testing Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan Objectives Review gas transport from inhaled gas to the rest of the

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives exercise 7 Respiratory System Mechanics Objectives 1. To explain how the respiratory and circulatory systems work together to enable gas exchange among the lungs, blood, and body tissues 2. To define respiration,

More information

Respiratory Physiology Gaseous Exchange

Respiratory Physiology Gaseous Exchange Respiratory Physiology Gaseous Exchange Session Objectives. What you will cover Basic anatomy of the lung including airways Breathing movements Lung volumes and capacities Compliance and Resistance in

More information

UNIFYING CONCEPTS OF ANIMAL CIRCULATION

UNIFYING CONCEPTS OF ANIMAL CIRCULATION UNIFYING CONCEPTS OF ANIMAL CIRCULATION Every organism must exchange materials with its environment, relying upon diffusion, the spontaneous movement of molecules from an area of higher concentration to

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT

GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT Claudio Marconi IBFM-Sect. of Muscle Physiology and Proteome National Research Council Milano, Italy 100 90 80 % s.l. VO 2 max. 70 60 50 40 30 20 10 0 2

More information

Respiratory Physiology

Respiratory Physiology chapter 4 Respiratory Physiology I. LUNG VOLUMES AND CAPACITIES A. Lung volumes (Figure 4-1) 1. Tidal volume (TV) is the volume inspired or expired with each normal breath. 2. Inspiratory reserve volume

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 Summary: This set of notes gives an overview of respiration and then follows the overview with a detailed discussion

More information

Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease

Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease References: Saladin, KS: Anatomy and Physiology, The Unity of Form and Function 7 th (2015) Be sure you have read

More information

Animal Physiology Prof. Mainak Das Department of Biological Sciences and Bioengineering Indian Institute of Technology, Kanpur. Module - 01 Lecture 28

Animal Physiology Prof. Mainak Das Department of Biological Sciences and Bioengineering Indian Institute of Technology, Kanpur. Module - 01 Lecture 28 Animal Physiology Prof. Mainak Das Department of Biological Sciences and Bioengineering Indian Institute of Technology, Kanpur Module - 01 Lecture 28 Welcome back, so we are in to the Animal Physiology

More information

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46 Human gas exchange Question Paper Level Subject Exam oard Topic Sub Topic ooklet O Level iology ambridge International Examinations Respiration Human gas exchange Question Paper Time llowed: 56 minutes

More information

Module Two. Objectives: Objectives cont. Objectives cont. Objectives cont.

Module Two. Objectives: Objectives cont. Objectives cont. Objectives cont. Transition to the New National EMS Education Standards: EMT-B B to EMT Module Two Objectives: Upon completion, each participant will do the following to a degree of accuracy that meets the Ntl EMS Education

More information

Anatomy and Physiology Part 11: Of Blood and Breath by: Les Sellnow

Anatomy and Physiology Part 11: Of Blood and Breath by: Les Sellnow Anatomy and Physiology Part 11: Of Blood and Breath by: Les Sellnow There are few similarities between horses and automobiles, but in a manner of speaking, the horse's circulatory and respiratory systems

More information

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial Gas Exchange in Animals Uptake of O2 from environment and discharge of CO2 Respiratory medium! water for aquatic animals, air for terrestial Respiratory surface! skin, gills, lungs Circulatory System O2/CO2

More information

Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine Acknowledgment: Antine Stenbit MD

Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine Acknowledgment: Antine Stenbit MD Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine 2013 Acknowledgment: Antine Stenbit MD Objectives Knowledge: Understand the difference between hypoxia and hypoxemia

More information

VENTILATION PERFUSION RELATIONSHIPS

VENTILATION PERFUSION RELATIONSHIPS CHAPTER 17 VENTILATION PERFUSION RELATIONSHIPS Peter D. Wagner STRUCTURAL AND FUNCTIONAL BASIS OF VENTILATION, PERFUSION, AND GAS EXCHANGE The lung exists for gas exchange, that is, the transfer of oxygen

More information

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG GAS EXCHANGE AND TRANSPORT I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O 2 to generate CO 2 & H 2 O. This is cellular respiration II. HOW GAS ENTERS A CELL A. The composition of air: 79% N

More information

GAS EXCHANGE & PHYSIOLOGY

GAS EXCHANGE & PHYSIOLOGY GAS EXCHANGE & PHYSIOLOGY Atmospheric Pressure Intra-Alveolar Pressure Inspiration 760 mm HG at Sea Level (= 1 atm) Pressure due to gases (N2, O2, CO2, Misc.) Pressure inside the alveolus (air sac) Phrenic

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System VI edit Pag 451-499 Chapter 13 The Respiratory System V edit. Pag 459-509 Tissue cell Alveoli of lungs Atmosphere 1 External respiration Ventilation or gas exchange between the atmosphere and air sacs

More information

Using the Lifebox oximeter in the neonatal unit. Tutorial 1 the basics

Using the Lifebox oximeter in the neonatal unit. Tutorial 1 the basics Using the Lifebox oximeter in the neonatal unit Tutorial 1 the basics Lifebox 2014. 2011. All rights reserved The Lifebox Pulse Oximeter In this tutorial you will learn about: The function of a pulse oximeter

More information

Respiration. Chapter 33

Respiration. Chapter 33 Respiration Chapter 33 Learning Objectives: Understand the basis of gas exchange and factors that influence diffusion of gases in and out of tissues Compare and contrast different respiratory systems among

More information

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have - How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have the highest blood flow of all organs, which makes them

More information

GAS EXCHANGE & CIRCULATION CHAPTER 42 ( )

GAS EXCHANGE & CIRCULATION CHAPTER 42 ( ) Winter 08 1 of 10 GAS EXCHANGE & CIRCULATION CHAPTER 42 (867 891) MOVEMENT OF GASES Both O 2 and CO 2 move by The movement down a If a gas produced in one location, it diffuses away But diffusion is usually

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE Hypoxia Office COL Brian W. Smalley DO, MSPH, CPE Or this Or even this Hypoxia State of oxygen deficiency in the blood cells and tissues sufficient to cause impairment of function 4 Types Hypoxic Hypemic

More information

Physiological Basis of Mechanical Ventilation

Physiological Basis of Mechanical Ventilation Physiological Basis of Mechanical Ventilation Wally Carlo, M.D. University of Alabama at Birmingham Department of Pediatrics Division of Neonatology wcarlo@peds.uab.edu Fine Tuning Mechanical Ventilation

More information

Alveolus and Respiratory Membrane

Alveolus and Respiratory Membrane Alveolus and Respiratory Membrane thin membrane where gas exchange occurs in the lungs, simple squamous epithelium (Squamous cells have the appearance of thin, flat plates. They fit closely together in

More information

PROBLEM SET 7. Assigned: April 1, 2004 Due: April 9, 2004

PROBLEM SET 7. Assigned: April 1, 2004 Due: April 9, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

How Animals Survive (Circulation and Gas Exchange)

How Animals Survive (Circulation and Gas Exchange) How Animals Survive (Circulation and Gas Exchange) by Flourence Octaviano on February 16, 2018 lesson duration of 30 minutes under Earth and Life Science generated on February 16, 2018 at 12:45 am Tags:

More information

The Respiratory System Part I. Dr. Adelina Vlad

The Respiratory System Part I. Dr. Adelina Vlad The Respiratory System Part I Dr. Adelina Vlad The Respiratory Process Breathing automatic, rhythmic and centrally-regulated mechanical process by which the atmospheric gas moves into and out of the lungs

More information

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system Chapter 16 Respiration Functions of the respiratory system Respiration The term respiration includes 3 separate functions: Ventilation: Breathing. Gas exchange: Occurs between air and blood in the lungs.

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

Respiratory Lecture Test Questions Set 1

Respiratory Lecture Test Questions Set 1 Respiratory Lecture Test Questions Set 1 1. The term "respiration" in its most complete meaning is: a. breathing b. oxygen transport c. carbon dioxide transport d. cellular energy production e. all of

More information

medical physiology :: Pulmonary Physiology in a Nutshell by:

medical physiology :: Pulmonary Physiology in a Nutshell by: medical physiology :: Pulmonary Physiology in a Nutshell by: Johan H Koeslag Medical Physiology Stellenbosch University PO Box 19063 Tygerberg, 7505. South Africa Mail me INTRODUCTION The lungs are not

More information

TERMINOLOGY AND SYMBOLS USED LN RESPIRATORY PHYSIOLOGY. Assistant, Medical Unit, Middlesex Hospital, London, W.i

TERMINOLOGY AND SYMBOLS USED LN RESPIRATORY PHYSIOLOGY. Assistant, Medical Unit, Middlesex Hospital, London, W.i Brit. J. Anaesth. (1957), 29, 534 TERMINOLOGY AND SYMBOLS USED LN RESPIRATORY PHYSIOLOGY BY E. J. MORAN CAMPBELL Assistant, Medical Unit, Middlesex Hospital, London, W.i INTRODUCTION MANY anaesthetists

More information

exchange of carbon dioxide and of oxygen between the blood and the air in

exchange of carbon dioxide and of oxygen between the blood and the air in M. M. HENRY WILLIAMS, JR.*Cardiorespiratory Laboratory, Grasslands WILLIAMS, JR.* Hospital, Valhalla, New York SOME APPLICATIONS OF PULMONARY PHYSIOLOGY TO CLINICAL MEDICINE During the past ten years a

More information

Then the partial pressure of oxygen is x 760 = 160 mm Hg

Then the partial pressure of oxygen is x 760 = 160 mm Hg 1 AP Biology March 2008 Respiration Chapter 42 Gas exchange occurs across specialized respiratory surfaces. 1) Gas exchange: the uptake of molecular oxygen (O2) from the environment and the discharge of

More information

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e 2 Yanal Jumana Jihad Jamil Nazzal 0 P a g e note: this sheet was written and corrected according to the records from section 2 so you may find differences in the arrangement of topics from the records

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

The Safe Use and Prescription of Medical Oxygen. Luke Howard

The Safe Use and Prescription of Medical Oxygen. Luke Howard The Safe Use and Prescription of Medical Oxygen Luke Howard Consultant Respiratory Physician Imperial College Healthcare NHS Trust & Co-Chair, British Thoracic Society Emergency Oxygen Guideline Group

More information

Respiration. Chapter 39

Respiration. Chapter 39 Respiration Chapter 39 Impacts, Issues Up in Smoke Smoking immobilizes ciliated cells and kills white blood cells that defend the respiratory system; highly addictive nicotine discourages quitting 39.1

More information

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water.

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water. 1. Answers should be written in continuous prose. Credit will be given for biological accuracy, the organisation and presentation of information and the way in which an answer is expressed. Fick s law

More information

Then the partial pressure of oxygen is. b) Gases will diffuse down a pressure gradient across a respiratory surface if it is: i) permeable ii) moist

Then the partial pressure of oxygen is. b) Gases will diffuse down a pressure gradient across a respiratory surface if it is: i) permeable ii) moist 1 AP Biology March 2008 Respiration Chapter 42 Gas exchange occurs across specialized respiratory surfaces. 1) Gas exchange: Relies on the diffusion of gases down pressure gradients. At sea level, atmosphere

More information

These two respiratory media (air & water) impose rather different constraints on oxygen uptake:

These two respiratory media (air & water) impose rather different constraints on oxygen uptake: Topic 19: OXYGEN UPTAKE AND TRANSPORT (lectures 29-30) OBJECTIVES: 1. Be able to compare air vs. water as a respiratory medium with respect to oxygen content, diffusion coefficient, viscosity and water

More information

Chapter 11: Respiratory System Review Assignment

Chapter 11: Respiratory System Review Assignment Name: Date: Mark: / 45 Chapter 11: Respiratory System Review Assignment Multiple Choice = 45 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following

More information

Gas exchange and ventilation perfusion relationships in the lung

Gas exchange and ventilation perfusion relationships in the lung ERJ Express. Published on July 28, 214 as doi: 1.1183/931936.3714 REVIEW IN PRESS CORRECTED PROOF Gas exchange and ventilation perfusion relationships in the lung Johan Petersson 1,2 and Robb W. Glenny

More information

Introduction to Biological Science - BIOL Gas Exchange

Introduction to Biological Science - BIOL Gas Exchange Gas Exchange A. Influence of concentration gradient on gas diffusion rate 1. You have two tubes of permeable membrane. a. Add an arrow to illustrate concurrent fluid flow in Tubes A and B. Tube A Tube

More information

Blood Gas Interpretation

Blood Gas Interpretation Blood Gas Interpretation Pa O2 Saturation (SaO 2 ) Oxygen Therapy Monitoring Oxygen content (O( 2 Ct) Venous Oximetry Mixed venous oxygen saturation SvO 2 Surrogate for Systemic oxygen delivery and

More information