Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system

Size: px
Start display at page:

Download "Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system"

Transcription

1 Chapter 16 Respiration Functions of the respiratory system Respiration The term respiration includes 3 separate functions: Ventilation: Breathing. Gas exchange: Occurs between air and blood in the lungs. Occurs between blood and tissues. 0 2 utilization: Cellular respiration. Fig not in book Steps in Respiration 1

2 Fig Type I cell Type II cell Fig Organization of the respiratory system. Low -resistance pathway for airflow Defends against yucky stuff Warms and moistens air When you have kids it enables you to yell at them. ϖ No gas exchange The conducting zone Fig

3 Respiratory Zone Region of gas exchange between air and blood. Includes respiratory bronchioles. Must contain alveoli. Gas exchange occurs by diffusion. Fig Figure not in book Fig

4 Figure not in book Ventilation and Lung Mechanics Step 1: Getting air into and out of lungs Remember: F = ΔP/R F = flow ΔP = pressure difference (mmhg) R = resistance to flow. Ventilation and Lung Mechanics Step 1: Getting air into and out of lungs Fig not in book 4

5 Fig not in book Really, Really Important Point! During inspiration and expiration volume of lungs is made to change. By Boyle s law, these changes cause changes in alveolar pressure which drives air into or out of lungs. Volume of lungs depends on: Transpulmonary pressure - difference in pressure between outside and inside of lungs. Elasticity (stretchability) of lungs. 5

6 Surface Tension Fig Law of Laplace: Pressure in alveoli is directly proportional to surface tension and inversely proportional to radius of alveoli. Creating the Intrapleural Pressure Pull of lungs inward and chestwall outward on intrapleural fluid causes a negative pressure within this space. Fig

7 Fig not in book Fig not in book Lung Compliance C L = magnitude of change in lung volume (ΔV L ) produced by a given change in transpulmonary pressure. C L = ΔV L /Δ (P alv - P ip ) Greater the lung compliance the it is to expand the lungs at any given transpulmonary pressure. 7

8 Fig not in book Determinants of Lung Compliance Stretchability Surface tension at air-water interfaces within alveoli. Assets of surfactant. Phospholipid produced by alveolar type II cells. Lowers surface tension. Reduces attractive forces of hydrogen bonding by becoming interspersed between H 2 0 molecules. As alveoli radius decreases, surfactant s ability to lower surface tension increases. Surfactant Fig

9 Fig See also table 16.2 Pulmonary Function Tests Assessed by spirometry. Subject breathes into a closed system in which air is trapped within a bell floating in H 2 0. The bell moves up when the subject exhales and down when the subject inhales. Schematic of a spirometer (left) and the spirometer you will be using in lab (above). 9

10 Tidal volume: Amount of air expired with each breath. Vital capacity: The maximum amount of air that can be forcefully exhaled after maximum inhalation. Spirogram Fig Table 16.3 Terms Used to Describe Lung Volumes and Capacities Term Lung Volumes Tidal volume Inspiratory reserve volume Expiratory reserve volume Residual volume Lung Capacities Total lung capacity Vital capacity Inspiratory capacity Functional residual capacity Definition The four nonoverlapping components of the total lung capacity The volume of gas inspired or expired in an unforced respiratory cycle The maximum volume of gas that can be inspired during forced breathing in addition to tidal volume The maximum volume of gas that can be expired during forced breathing in addition to tidal volume The volume of gas remaining in the lungs after a maximum expiration Measurements that are the sum of two or more lung volumes The total amount of gas in the lungs after a maximum inspiration The maximum amount of gas that can be expired after a maximum inspiration The maximum amount of gas that can be inspired after a normal tidal expiration The amount of gas remaining in the lungs after a normal tidal expiration Figure not in book 10

11 Anatomical Dead Space Not all of the inspired air reaches the alveoli. As fresh air is inhaled it is mixed with anatomical dead space. Conducting zone and alveoli where 0 2 concentration is lower than normal and C0 2 concentration is higher than normal. Alveolar ventilation: F x (TV- DS) F = frequency (breaths/min.). TV = tidal volume. DS = dead space. Airway resistance and restrictive vs. obstructive disorders Recall: F = (P atm - P alv ) / R Resistance depends on: Airway Radii and Resistance Airway radii affected by Physical factors going down the wrong pipe Asthma caused by chemical factors (see below). Neural factors Epinephrine Chemical factors CIGARETTE SMOKE, pollutants, viruses allergens, bronchoconstrictor chemicals 11

12 Restrictive disorder: Vital capacity is reduced. FVC is normal. Obstructive disorder: Restrictive and Obstructive Disorders VC is normal. FEV 1 is reduced. Fig Gas Exchange Dalton s Law: Total pressure of a gas mixture is = to the sum of the pressures that each gas in the mixture would exert independently. P ATM = P N2 + P 02 + P Co2 = 760 mm Hg 0 2 humidified. H 2 0 contributes to partial pressure (~ 47 mm Hg) P0 2 (sea level) = 150 mm Hg. Fig

13 Significance of Blood P 02 and P C02 Measurements At normal P 02 arterial blood is about 100 mm Hg. P 02 systemic veins = ~ 40 mm Hg. P C02 systemic veins = ~ 46 mm Hg Fig Figure not in book - Applying numbers to previous figure. Gas Exchange Dalton s Law: Total pressure of a gas mixture is = to the sum of the pressures that each gas in the mixture would exert independently. P ATM = P N2 + P 0 + P Co2 = 760 mm Hg 13

14 Fig Measuring efficacy of lung function. NOTE these numbers Fig Defining Ventilation Minute ventilation - total ventilation per minute Alveolar Ventilation - total volume of fresh air enter the alveoli per minute = efficacy of breath Physiologic dead space - sum of anatomic and alveolar dead space. 14

15 Restrictive disorder: Restrictive and Obstructive Disorders Vital capacity is reduced. FVC is normal. Obstructive disorder: VC is normal. FEV 1 is reduced. Fig FEV 1 Forced Expiratory Volume/sec. Fraction of total forced vital capacity expired in 1 sec. The FEV1 of a person with obstructive lung disease would be 80% of vital capacity. The FEV1 of a person with restrictive lung disease would 80% of vital capacity. 15

16 Alveolar Gas Pressure Alveolar P O2 and P CO2 determine the systemic arterial P O2 and P CO2. Alveolar P O2 values determined by P O2 of atmospheric air Rate of alveolar ventilation Rate of total body oxygen consumption Alveolar P CO2 values determined by Rate of alveolar ventilation Rate of total body carbon dioxide production Relevance of Partial Pressures High altitude => in P O2 of inspired air and in alveolar P O2. Decreased alveolar ventilation => in P O2 of inspired air and in alveolar P O2. Increased cellular metabolism => in alveolar P O2. Getting O 2 into and CO 2 out of body: the bottom line(s) In alveoli P O2 and P CO2 on two sides of alveolar-capillary membrane result in net diffusion, CO 2 out and O 2 in. More capillaries involved, more total O 2 /CO 2 exchange. Need for fewer or greater numbers of alveoli in gas exchange (impairment of gas exchange:o 2 ). 16

17 Getting O 2 into and CO 2 out of body: the bottom line(s) In alveoli Ventilation-perfusion inequality = mismatching of air supply and blood supply on an individual alveoli. Lowers P O2 of systemic arterial blood. Caused by Ventilated blood in alveoli with no blood supply No blood flowing to some alveoli. Compensation by vasoconstriction Getting O 2 into and CO 2 out of body: the bottom line(s) In tissues Low P O2 and high P CO2 in tissues results in net movement of O 2 into tissues and net CO 2 movement out of tissues. We will revisit this momentarily. Breathing Lesson (control of breathing) Medulla oblongata (medullary inspiratory neurons). Pons Pulmonary stretch receptors Peripheral chemoreceptors - Central chemoreceptors 17

18 Regulation of Breathing Neurons in the medulla oblongata forms the rhythmicity center: Controls automatic breathing. Brain stem respiratory centers: Medulla. Pons. Fig Rhythmicity Center Dorsal respiratory group (DRG). Regulate activity of phrenic nerve. Project to and stimulate spinal interneurons that innervate respiratory muscles. Considered the I neurons. Ventral respiratory group (VRG). Passive process. Controls motor neurons to the internal intercostal muscles. Considered the E neurons. Activity of expiratory neurons inhibit inspiratory neurons. Pons Respiratory Centers: Influence medullary rhythmicity Apneustic center: Promote inspiration by stimulating the inspiratory neurons in the medulla. Provide constant stimulus for inspiration. Pneumotaxic center: Antagonize the apneustic center. Inhibits inspiration. 18

19 Fig Adequacy of ventilation Hypoventilation increase in ratio of carbon dioxide production to alveolar ventilation. hypercapnia Hyperventilation decrease in ratio of carbon dioxide production to alveolar ventilation. hypocapnia Chemoreceptor Control Chemoreceptor input modifies the rate and depth of breathing. Oxygen content of blood decreases more slowly because of the large reservoir of oxygen attached to hemoglobin. Chemoreceptors are more sensitive to changes in P C02. H C0 2 H H + + HC0-2 C0 3 3 Rate and depth of ventilation adjusted to maintain arterial P C02 of 40 mm Hg. 19

20 2 groups of chemoreceptors that monitor changes in blood P C02, P 02, and ph. Central: Medulla. Peripheral: Carotid and aortic bodies. Control breathing indirectly via sensory nerve fibers to the medulla. Chemoreceptors Fig Fig Can say that chemoreceptor sensitivity to P CO2 is augmented by low P O2. Fig

21 Moving Oxygen in Blood Amount of oxygen dissolved in blood directly proportional to P O2 of blood. But oxygen NOT very soluble in water (blood). Hemoglobin to the rescue!!!! Hemoglobin Structure Fig Hemoglobin Hemoglobin production controlled by erythropoietin. Production stimulated by P 02 delivery to kidneys. Loading/unloading depends: P 02 of environment. Affinity between hemoglobin and 0 2. Oxyhemoglobin vs. Deoxyhemoglobin. 21

22 Fig So what does ph do to O2 affinity of hemoglobin? Temperature? 2,3 DPG = Fig More on 2,3- DPG I want my OXYGEN! Anemia and Increased production of 2,3-DPG with low hemoglobin concentration. Causes increased unloading of oxygen in tissues. Fetal hemoglobin and Gamma chains in lieu of beta chains. Do not bind 2,3-DPG Becomes oxygen pig 22

23 Inherited defects in hemoglobin Sickle-cell anemia Valine substitued for glutamic acid at position #6. Low P O2 causes cross-linking and formation of paracrystalline gel - sickling of cells. Thalassemia Decreased synthesis of alpha or beta chain of hemoglobin. Get increases in gamma chain synthesis. Muscle Myoglobin Slow-twitch skeletal fibers and cardiac muscle cells are rich in myoglobin. Higher affinity for 0 2 than hemoglobin. Acts as a go-between in the transfer of 0 2 from blood to the mitochondria within muscle cells. May also have an 0 2 storage function in cardiac muscles. Fig Carbon dioxide in blood Dissolved CO 2 : 1/10 Carbaminohemoglobin: 1/5 Bicarbonate: 7/10 23

24 Fig Figure not in book Figure not in book 24

25 Fig Fig not in book Adequacy of ventilation Hypoventilation increase in ratio of carbon dioxide production to alveolar ventilation. hypercapnia Hyperventilation decrease in ratio of carbon dioxide production to alveolar ventilation. hypocapnia 25

26 Respiratory acidosis vs. respiratory alkalosis Respiratory acidosis - increased arterial H + concentration due to CO 2 retention. Metabolic acidosis - increased production of nonvolatile acids or loss of blood bicarbonate, resulting in a fall of blood ph. Respiratory alkalosis - lowering of arterial P CO2 and H + concentration. Metabolic alkalosis - rise in blood ph produced by loss of nonvolatile acids or by excessive accumulation of bicarbonate base. Compensating acidosis or alkalosis. Metabolic acidosis or alkalosis - Respiratory acidosis or alkalosis - 2 groups of chemoreceptors that monitor changes in blood P C02, P 02, and ph. Central: Medulla. Peripheral: Carotid and aortic bodies. Control breathing indirectly via sensory nerve fibers to the medulla. Chemoreceptors Fig

27 Fig. not in book Fig. not in book Response to exercise Neurogenic Sensory nerve activity from exercising limbs stimulate respiratory muscles. Input from cerebral cortex stimulates brain stem respiratory centers. Humoral Changes in blood concentrations of gases and signaling molecules. 27

28 Fig. not in book Hypoxic ventilatory response to high altitude (low P O2 ) produces hyperventilation Increase in tidal volume. Lowers arterial P CO2 Produces respiratory alkalosis which eventually blunts hyperventilatory response. Figure not in book Other respiratory changes due to high altitudes Increased production of 2,3-DPG. Increased production of RBCs and hemoglobin. Barrel-chest 28

29 Figure not in book Figure not in book 29

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

P215 Respiratory System, Part 2

P215 Respiratory System, Part 2 P15 Respiratory System, Part Gas Exchange Oxygen and Carbon Dioxide constant need for oxygen constant production of carbon dioxide exchange (and movement) lung alveoli pulmonary arteries pulmonary capillaries

More information

Respiratory Lecture Test Questions Set 3

Respiratory Lecture Test Questions Set 3 Respiratory Lecture Test Questions Set 3 1. The pressure of a gas: a. is inversely proportional to its volume b. is unaffected by temperature changes c. is directly proportional to its volume d. does not

More information

Respiratory Physiology. Adeyomoye O.I

Respiratory Physiology. Adeyomoye O.I Respiratory Physiology By Adeyomoye O.I Outline Introduction Hypoxia Dyspnea Control of breathing Ventilation/perfusion ratios Respiratory/barometric changes in exercise Intra-pulmonary & intra-pleural

More information

Physiology of Respiration

Physiology of Respiration Physiology of Respiration External Respiration = pulmonary ventilation breathing involves 2 processes: inspiration expiration Inspiration an active process involves contraction of diaphragm innervated

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie RESPIRATORY PHYSIOLOGY Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie Outline Ventilation Diffusion Perfusion Ventilation-Perfusion relationship Work of breathing Control of Ventilation 2 This image

More information

Chapter 22 The Respiratory System

Chapter 22 The Respiratory System Chapter 22 The Respiratory System 1 Respiration Pulmonary ventilation (breathing): movement of air into and out of the lungs External respiration: O 2 and CO 2 exchange between the lungs and the blood

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System VI edit Pag 451-499 Chapter 13 The Respiratory System V edit. Pag 459-509 Tissue cell Alveoli of lungs Atmosphere 1 External respiration Ventilation or gas exchange between the atmosphere and air sacs

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

Respiratory Physiology. Dr. Awni Khrais Associate Professor Faculty of Pharmacy, Philadelphia University

Respiratory Physiology. Dr. Awni Khrais Associate Professor Faculty of Pharmacy, Philadelphia University Respiratory Physiology Dr. Awni Khrais Associate Professor Faculty of Pharmacy, Philadelphia University Email: a_khrais@philadelphia.edu.jo Learning Outcomes At the end of this chapter, students will be

More information

GAS EXCHANGE & PHYSIOLOGY

GAS EXCHANGE & PHYSIOLOGY GAS EXCHANGE & PHYSIOLOGY Atmospheric Pressure Intra-Alveolar Pressure Inspiration 760 mm HG at Sea Level (= 1 atm) Pressure due to gases (N2, O2, CO2, Misc.) Pressure inside the alveolus (air sac) Phrenic

More information

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System Introduction Respiration Chapter 10 The Respiratory System Provides a means of gas exchange between the environment and the body Plays a role in the regulation of acidbase balance during exercise Objectives

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have - How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have the highest blood flow of all organs, which makes them

More information

Respiratory system. Role. Ventilation consists of 4 (5) steps : oxygen delivery and carbon dioxide elimination ph balance sound and voice formation

Respiratory system. Role. Ventilation consists of 4 (5) steps : oxygen delivery and carbon dioxide elimination ph balance sound and voice formation Respiratory system Role oxygen delivery and carbon dioxide elimination ph balance sound and voice formation Ventilation consists of 4 (5) steps : 1. pulmonary ventilation gas exchange between lungs and

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Respiration. The resspiratory system

Respiration. The resspiratory system Respiration The resspiratory system The Alveoli The lungs have about 300 million alveoli, with a total crosssec onal area of 50 70 m2.. Each alveolar sac is surrounded by blood capillaries. The walls of

More information

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood Breathing rate is regulated by blood ph and C02 breathing reduces plasma [CO2]; plasma [CO2] increases breathing. When C02 levels are high, breating rate increases to blow off C02 In low C02 conditions,

More information

Respiratory Physiology Gaseous Exchange

Respiratory Physiology Gaseous Exchange Respiratory Physiology Gaseous Exchange Session Objectives. What you will cover Basic anatomy of the lung including airways Breathing movements Lung volumes and capacities Compliance and Resistance in

More information

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives exercise 7 Respiratory System Mechanics Objectives 1. To explain how the respiratory and circulatory systems work together to enable gas exchange among the lungs, blood, and body tissues 2. To define respiration,

More information

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

Module Two. Objectives: Objectives cont. Objectives cont. Objectives cont.

Module Two. Objectives: Objectives cont. Objectives cont. Objectives cont. Transition to the New National EMS Education Standards: EMT-B B to EMT Module Two Objectives: Upon completion, each participant will do the following to a degree of accuracy that meets the Ntl EMS Education

More information

Section 01: The Pulmonary System

Section 01: The Pulmonary System Section 01: The Pulmonary System Chapter 12 Pulmonary Structure and Function Chapter 13 Gas Exchange and Transport Chapter 14 Dynamics of Pulmonary Ventilation HPHE 6710 Exercise Physiology II Dr. Cheatham

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity and minor gases argon,

More information

Chapter 16 Respiratory System

Chapter 16 Respiratory System Introduction Chapter 16 Respiratory System The respiratory system consists of tubes that filter incoming air and transport it to alveoli where gases are exchanged. Think pair share: what organs are associated

More information

3/24/2009 LAB D.HAMMOUDI.MD. 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm

3/24/2009 LAB D.HAMMOUDI.MD. 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm RESPIRATORY PHYSIOLOGY LAB D.HAMMOUDI.MD 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm 1 KEY WORDS TO KNOW BOYLE S LAW INTERCOSTAL NERVES PHRENIC NERVE DIAPHRAGM EXTERNAL INTERCOSTAL

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity other minor gases argon,

More information

Respiratory Physiology 2

Respiratory Physiology 2 Respiratory Physiology 2 Session Objectives. What you will cover Gaseous Exchange Control of Breathing Rate Your objectives are State the function of support structures and epithelia of the bronchial tree

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The tissues exchange O 2 directly with the air in

More information

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration.

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration. Biology 12 Respiration Divisions of Respiration Breathing: entrance and exit of air into and out of the lungs External Respiration: exchange of gases(o2 and CO2) between air (in alveoli) and blood Internal

More information

Respiratory Physiology

Respiratory Physiology chapter 4 Respiratory Physiology I. LUNG VOLUMES AND CAPACITIES A. Lung volumes (Figure 4-1) 1. Tidal volume (TV) is the volume inspired or expired with each normal breath. 2. Inspiratory reserve volume

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

Respiratory Anatomy and Physiology. Respiratory Anatomy. Function of the Respiratory System

Respiratory Anatomy and Physiology. Respiratory Anatomy. Function of the Respiratory System Respiratory Anatomy and Physiology Michaela Dixon Clinical Development Nurse PICU BRHFC Respiratory Anatomy Function of the Respiratory System - In conjunction with the cardiovascular system, to supply

More information

The Human Respiratory System

The Human Respiratory System The Human Respiratory System Maryam Maheri Kiana Kayoda, Nazalia, Emerald Bocobo NPB 101 L section 008 TA: Ashneel Krishna 2/26/2015 Introduction: The respiratory system allows gas exchange between cells

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

Airway: the tubes through which air flows between atmosphere and alveoli. Upper airway. Lower airway

Airway: the tubes through which air flows between atmosphere and alveoli. Upper airway. Lower airway Respiration Yu Yanqin ( 虞燕琴 ), PhD Dept. of fph Physiology Zhejiang University, School of Medicine Respiration Definition: the bodily processes involved in exchange of oxygen (O 2 ) and carbon dioxide

More information

Human Biology Respiratory System

Human Biology Respiratory System Human Biology Respiratory System Respiratory System Responsible for process of breathing Works in cooperation with Circulatory system Three types: 1. Internal Respiration 2. External Respiration 3. Cellular

More information

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC 66 LAB 7 HUMAN RESPIRATORY LAB Assignments: Due before lab: Quiz: Three Respiratory Interactive Physiology Animations pages 69 73. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

More information

Respiratory system & exercise. Dr. Rehab F Gwada

Respiratory system & exercise. Dr. Rehab F Gwada Respiratory system & exercise Dr. Rehab F Gwada Objectives of lecture Outline the major anatomical components & important functions of the respiratory system. Describe the mechanics of ventilation. List

More information

Regulation of Ventilation, Ventilation/ Perfusion Ratio, and Transport of Gases

Regulation of Ventilation, Ventilation/ Perfusion Ratio, and Transport of Gases M07_LIMM3516_01_SE_C07.indd Page 37 1/28/11 4:38 PM user-s146 Standard Pathophysiology TOPIC Competency Applies fundamental knowledge of the pathophysiology of respiration and perfusion to patient assessment

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The cell exchange O 2 directly with the air in the

More information

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts Objectives MECHANISM OF RESPIRATION Dr Badri Paudel Explain how the intrapulmonary and intrapleural pressures vary during ventilation and relate these pressure changes to Boyle s law. Define the terms

More information

Ch 16: Respiratory System

Ch 16: Respiratory System Ch 16: Respiratory System SLOs: Explain how intrapulmonary pressures change during breathing Explain surface tension and the role of surfactant in respiratory physiology. Compare and contrast compliance

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

RESPIRATION III SEMESTER BOTANY MODULE II

RESPIRATION III SEMESTER BOTANY MODULE II III SEMESTER BOTANY MODULE II RESPIRATION Lung Capacities and Volumes Tidal volume (TV) air that moves into and out of the lungs with each breath (approximately 500 ml) Inspiratory reserve volume (IRV)

More information

Lung Volumes and Ventilation

Lung Volumes and Ventilation Respiratory System ssrisuma@rics.bwh.harvard.edu Lung Volumes and Ventilation Minute ventilation Volume of an inspired or expired air per minute = tidal volume (V T ) x respiratory rate Dead space ventilation

More information

2.1.1 List the principal structures of the

2.1.1 List the principal structures of the physiology 2.1.1 List the principal structures of the The principle structures of the respiratory are: Nose/Mouth used for inhalation of oxygen-rich air and expelling carbon dioxide rich air Pharynx -

More information

82 Respiratory Tract NOTES

82 Respiratory Tract NOTES 82 Respiratory Tract NOTES RESPIRATORY TRACT The respiratory tract conducts air to the lungs where gaseous exchange occurs. It is separated into air-conducting and respiratory (where gas exchange occurs)

More information

BIOH122 Human Biological Science 2

BIOH122 Human Biological Science 2 BIOH122 Human Biological Science 2 Session 11 Respiratory System 2 Pulmonary Ventilation Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session plan o Pulmonary Ventilation

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

Ch. 12: Respiratory Physiology

Ch. 12: Respiratory Physiology Ch. 12: Respiratory Physiology Objectives: 1. Review respiratory anatomy. 2. Understand mechanics of breathing. 3. Learn lung volumes & respiratory vocabulary 4. Learn gas exchange at lungs & at body tissues

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning CHAPTER 6 Oxygen Transport Normal Blood Gas Value Ranges Table 6-1 OXYGEN TRANSPORT Oxygen Dissolved in the Blood Plasma Dissolve means that the gas maintains its precise molecular structure About.003

More information

RESPIRATION. Dr F T Anthonyrajah Specialist Family Physician M.B.B.S, MMed (FamMed)

RESPIRATION. Dr F T Anthonyrajah Specialist Family Physician M.B.B.S, MMed (FamMed) RESPIRATION Dr F T Anthonyrajah Specialist Family Physician M.B.B.S, MMed (FamMed) INSPIRATION: INSPIRATION: Inspiration is the active part of the breathing process, which is initiated by the respiratory

More information

Physiology: Respiratory System

Physiology: Respiratory System In the name of God Physiology: Respiratory System Moradian MD, MPH, PhD candidate Tehran University of Medical Sciences drmoradian@sums.ac.ir 2013 Respiratory Anatomy The primary function of the respiratory

More information

Chapter 23: Respiratory System

Chapter 23: Respiratory System Chapter 23: Respiratory System I. Functions of the Respiratory System A. List and describe the five major functions of the respiratory system: 1. 2. 3. 4. 5. II. Anatomy and Histology of the Respiratory

More information

Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23

Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23 nd Lecture Fri 06 Mar 009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 009 Kevin Bonine & Kevin Oh Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 1-3 1 Housekeeping,

More information

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE Instant download and all chapters Test Bank Respiratory Care Anatomy and Physiology Foundations for Clinical Practice 3rd Edition Will Beachey https://testbanklab.com/download/test-bank-respiratory-care-anatomy-physiologyfoundations-clinical-practice-3rd-edition-will-beachey/

More information

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Essential Skills Course Acute Care Module Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Acknowledgements This pre course workbook has been complied and updated with reference to the original

More information

LECTURE NOTES ANATOMY & PHYSIOLOGY II (A. IMHOLTZ) RESPIRATORY P1 OF 8

LECTURE NOTES ANATOMY & PHYSIOLOGY II (A. IMHOLTZ) RESPIRATORY P1 OF 8 LECTURE NOTES ANATOMY & PHYSIOLOGY II (A. IMHOLTZ) RESPIRATORY P1 OF 8 I. The main functions of the respiratory system include: a. Exchange of O 2 and CO 2. b. Voice production. c. Regulation of plasma

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG GAS EXCHANGE AND TRANSPORT I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O 2 to generate CO 2 & H 2 O. This is cellular respiration II. HOW GAS ENTERS A CELL A. The composition of air: 79% N

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing Respiratory system Function Outline - Respiratory System I. II. III. IV. Respiratory System The function of the respiratory system is to bring in oxygen to the body and remove carbon dioxide. Function

More information

Then the partial pressure of oxygen is x 760 = 160 mm Hg

Then the partial pressure of oxygen is x 760 = 160 mm Hg 1 AP Biology March 2008 Respiration Chapter 42 Gas exchange occurs across specialized respiratory surfaces. 1) Gas exchange: the uptake of molecular oxygen (O2) from the environment and the discharge of

More information

Figure 1. A schematic diagram of the human respiratory system.

Figure 1. A schematic diagram of the human respiratory system. Introduction to Respiration In this experiment, you will investigate various aspects of normal breathing, hyperventilation, rebreathing the effect of changing airway resistance and ways in which to measure

More information

Recitation question # 05

Recitation question # 05 Recitation and Lab # 05 The goal of this recitations / labs is to review material related to the CV and respiratory lectures for the second test of this course. Info required to answer this recitation

More information

Chapter 15. Lecture and Animation Outline

Chapter 15. Lecture and Animation Outline Chapter 15 Lecture and Animation Outline To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please Note: Once you have

More information

Human Respiratory System Experiment

Human Respiratory System Experiment NPB 101L Human Respiratory System Experiment Name: Zijun Liu Group members: Xiaodong Shi, Conner Tiffany, Allen G. Section 03 TA: Ken Eum Nov 18, 2013 P.1 Liu Introduction: The main purpose of breathing

More information

Respiration. Chapter 39

Respiration. Chapter 39 Respiration Chapter 39 Impacts, Issues Up in Smoke Smoking immobilizes ciliated cells and kills white blood cells that defend the respiratory system; highly addictive nicotine discourages quitting 39.1

More information

Respiratory System Review

Respiratory System Review KEY THIS TEST WILL BE COMPLETED IN ONE CLASS PERIOD MONDAY, MARCH 10. 2014 Respiratory System Review Name A. Directions: Fill in the blank with the appropriate vocabulary word or words (several examples

More information

To supply the body with oxygen and dispose of carbon dioxide Respiration four distinct processes must happen

To supply the body with oxygen and dispose of carbon dioxide Respiration four distinct processes must happen Respiratory System Consists of the respiratory and conducting zones Respiratory zone Site of gas exchange Consists of bronchioles, alveolar ducts, and alveoli Conducting zone Provides rigid conduits for

More information

Chapter 11: Respiratory System Review Assignment

Chapter 11: Respiratory System Review Assignment Name: Date: Mark: / 45 Chapter 11: Respiratory System Review Assignment Multiple Choice = 45 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following

More information

Some major points on the Effects of Hypoxia

Some major points on the Effects of Hypoxia Some major points on the Effects of Hypoxia Source: Kings College London http://www.kcl.ac.uk/teares/gktvc/vc/dental/year1/lectures/rbmsmajorpoints/effectsofhypoxia.htm Cells obtain their energy from oxygen.

More information

Chapter 37: Pulmonary Ventilation. Chad & Angela

Chapter 37: Pulmonary Ventilation. Chad & Angela Chapter 37: Pulmonary Ventilation Chad & Angela Respiratory Structures Basic Structures of Respiration Nasal/Oral Cavities Larynx Trachea Bronchi Secondary Bronchi Bronchioles Alveoli Mechanics of Ventilation

More information

GASEOUS EXCHANGE 17 JULY 2013

GASEOUS EXCHANGE 17 JULY 2013 GASEOUS EXCHANGE 17 JULY 2013 Lesson Description In this lesson we: Discuss what is gaseous exchange? Consider requirements of an efficient gaseous exchange surface. Look at diversity in gas exchange systems.

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD Respiratory System Prepared by: Dorota Marczuk-Krynicka, MD, PhD Lungs: Ventilation Perfusion Gas Exchange - Diffusion 1. Airways and Airway Resistance (AWR) 2. Mechanics of Breathing and Lung (Elastic)

More information

Ch. 12: Respiratory Physiology

Ch. 12: Respiratory Physiology Ch. 12: Respiratory Physiology Objectives: 1. Review respiratory anatomy. 2. Understand mechanics of breathing, gas pressure vocabulary, and the principles of surface tension, compliance, and recoil. 3.

More information

Emergency Medical Technician 60 Questions

Emergency Medical Technician 60 Questions Emergency Medical Technician 60 Questions 1. Which of the following is your primary goal during airway management? a. Ensure clear, unobstructed breathing. b. Ensure that CPR is effective. c. Provide a

More information

Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration

Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration Objectives Students will measure breathing parameters in a resting subject. Students will

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

Observations of the Properties of the Human Respiratory System. April Ramos Dela Fuente. Bill Keenen; Tommy Kham; Grace Park

Observations of the Properties of the Human Respiratory System. April Ramos Dela Fuente. Bill Keenen; Tommy Kham; Grace Park P a g e 1 Observations of the Properties of the Human Respiratory System April Ramos Dela Fuente Bill Keenen; Tommy Kham; Grace Park NPB 101L - Section 06 - Ailsa Dalgliesh 11/25/14 P a g e 2 INTRODUCTION

More information

Respiratory Response to Physiologic Challenges. Evaluation copy

Respiratory Response to Physiologic Challenges. Evaluation copy Respiratory Response to Physiologic Challenges Computer 20 The respiratory cycle of inspiration and expiration is controlled by complex mechanisms involving neurons in the cerebral cortex, brain stem,

More information

Respiratory System. 1. muscular tube lined by mucous membrane 2. throat 3. nasopharynx, oropharynx, laryngopharynx

Respiratory System. 1. muscular tube lined by mucous membrane 2. throat 3. nasopharynx, oropharynx, laryngopharynx I. Functions of the Respiratory System A. gas exchange B. prevent dehydration C. sound D. olfaction E. ph regulation II. Anatomy of the Respiratory System A. Nose 1. external nares vestibule nasal cavity

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM A. CHAPTER REVIEW 1. Define the four components of respiration. 2. What happens to the air as it moves along the air passages? What

More information

(A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively.

(A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively. DAT Biology - Problem Drill 12: The Respiratory System Question No. 1 of 10 1. Which statement about the partial pressure of oxygen inside the lungs is correct? Question #01 (A) The partial pressure in

More information

CHAPTER 17 BREATHING AND EXCHANGE OF GASES

CHAPTER 17 BREATHING AND EXCHANGE OF GASES 268 BIOLOGY CHAPTER 17 BREATHING AND EXCHANGE OF GASES 17.1 Respiratory Organs 17.2 Mechanism of Breathing 17.3 Exchange of Gases 17.4 Transport of Gases 17.5 Regulation of Respiration 17.6 Disorders of

More information

Alveolus and Respiratory Membrane

Alveolus and Respiratory Membrane Alveolus and Respiratory Membrane thin membrane where gas exchange occurs in the lungs, simple squamous epithelium (Squamous cells have the appearance of thin, flat plates. They fit closely together in

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

Regulation of Breathing

Regulation of Breathing Regulation of Breathing Introduction Breathing involves a complex interaction between many important respiratory organs and the blood. Air is brought into the lungs through the active process of inhalation,

More information

The Respiratory System. Medical Terminology

The Respiratory System. Medical Terminology The Respiratory System Medical Terminology The respiratory system is where gas exchange occurs via respiration; inhalation/exhalation. pick up oxygen from inhaled air expels carbon dioxide and water sinus

More information

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility.

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility. Physiology, sheet #9 Oxygen, is first dissolved in the plasma and the cytosol of the rbc, we have around blood constitutes 7% of our body weight, oxygen, in the capillaries is present in the rbc s and

More information

Gas Exchange Respiratory Systems

Gas Exchange Respiratory Systems alveoli gills Gas Exchange Respiratory Systems elephant seals 2008-2009 Why do we need a respiratory system? respiration for respiration Need O 2 in for aerobic cellular respiration make ATP Need CO 2

More information