COPYRIGHT. Reservoir Rock Properties Fundamentals. Saturation and Contacts. By the end of this lesson, you will be able to:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "COPYRIGHT. Reservoir Rock Properties Fundamentals. Saturation and Contacts. By the end of this lesson, you will be able to:"

Transcription

1 Learning Objectives Reservoir Rock Properties Fundamentals Saturation and Contacts By the end of this lesson, you will be able to: Describe the concept of fluid contacts Describe how saturations change when crossing contacts 1

2 Oil-Water Contact Oil Water Contact Gas-Oil Contact Gas Oil Contact DATUM DEPTH OIL Oil Zone Aquifer Gas Cap DATUM DEPTH OIL 2

3 Gas-Water Contact Gas Water Contact No Contact DATUM DEPTH GAS Gas Zone GAS DATUM DEPTH OIL 3

4 Super-Critical Fluid LIQUID CRITICAL POINT Pressure Oil Reservoir Temperature VAPOR DATUM DEPTH OIL 4

5 Oil Zone Sand Grains Oil Connate Water Aquifer Sand Grains Connate Water 5

6 Gas-Cap Gas Cap Reservoir Sand Grains DATUM DEPTH OIL Gas Connate Water 6

7 Summary Gas Cap Oil Leg Oil Zone Water Leg Aquifer Gas Zone Please PAUSE pause the video. Learning Objectives Gas-Oil Contact Oil-Water Contact Gas-Water Contact Near Critical Fluids Geologic Time Describe the concept of fluid contacts Describe how saturations change when crossing contacts 7

8 Learning Objectives Reservoir Rock Properties Fundamentals Wettability By the end of this lesson, you will be able to: Describe wettability Describe interfacial tension Describe how residual oil saturation is controlled by the interplay of different forces 8

9 Water Wet Sand Grains Oil Connate Water Oil Wet Sand Grains Connate Water Oil 9

10 Rock Types Disappearing Trail Sandstone Limestone Potential Wettability Changes Diffusion of Mud Components Oxidation Storage Drying Pollution Handling Pollution Temperature and Pressure Drop Drilling Mud Invasion 10

11 Fatty Acids O HO trans-oleic acid HO O By Edgar181 Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid= Wettability Air cis-oleic acid Water Glass Plate Please PAUSE pause the video. 11

12 Non-Wetting Air Non-Wetting Please PAUSE pause the video. Mercury Glass Plate 12

13 Neutral Wet Air Surface Tension Surface film Meniscus Molecules Oil Glass Plate Surface molecules pulled toward liquid causes tension in surface Oil Internal molecules pulled in all directions 13

14 Surface Tension Interfacial Tension Water Oil 14

15 Effect of Gravity Water Effect of Rock Rock Oil Water Oil 15

16 Residual Oil Oil Wet Sand Grains Residual Oil Connate Water Residual Oil 16

17 Summary Oil wet with respect to water Water wet with respect to oil Sandstone wettability at room conditions Limestone wettability at room conditions Residual oil saturation Please PAUSE pause the video. Learning Objectives Fatty acids Naphthenic acids Surface tension Interfacial tension Adhesive forces Buoyancy forces Describe wettability Describe interfacial tension Describe how residual oil saturation is controlled by the interplay of different forces 17

18 Learning Objectives Reservoir Rock Properties Fundamentals Capillary Pressure By the end of this lesson, you will be able to: Define capillary pressure Explain how capillary pressure is a combination of several related phenomena Describe how capillary pressure can be used to explain macroscopic reservoir phenomena Show how collecting capillary pressure data can actually save money 18

19 Different Pressures Sand Grains Oil Connate Water Resolution of Forces Water Oil 19

20 Resisting Movement Water Adhesive Forces Water Oil Oil 20

21 Meniscus Surface Film Meniscus Molecules Oil Meniscus Surface Film Meniscus Molecules Surface Molecules pulled toward liquid causes tension in surface Internal molecules pulled in all directions Surface Molecules pulled toward liquid causes tension in surface Oil Internal molecules pulled in all directions 21

22 Unbalanced Forces Water Counter-Balance Water Oil Water 22

23 Counter-Balance Water Counter-Balance Capillary Pressure Water The pressure in the OIL blob is higher than the pressure in the water on either side. Water = The difference in pressure between two fluids sharing the same pore in equilibrium. Water 23

24 Counter-Balance The capillary force is a function of the interfacial tension between the oil and the water and the differences in adhesive forces between the oil-rock interface and waterrock interface. Gravity Water Water 24

25 Capillary Forces Surface tension Angle between interface and pore walls Buoyancy Forces Difference in density between oil and water Distance to the elevation 2 cos 2 cos Radius of the pore Acceleration due to gravity Engineering Oil Water Contact 25

26 Oil Wet Engineering Oil Water Contact Has to be negative Interfacial Tension Greater than 90 2 cos 2 cos 26

27 Interfacial Tension Curvature 2 cos 2 cos 27

28 Curvature Bundle-of-Tubes X Y OIL 2 cos WATER 28

29 Measurement Bundle-of-Tubes X OIL P C OIL Y 100% S W FREE WATER LEVEL WATER WATER SATURATION 0 100% OIL SATURATION 100% 0 SMALL PORE RADIUS BIG 29

30 Capillary Pressure Curves Oil Pressure Capillary Pressure Curves Capillary Pressure Water Saturation Water Saturation 30

31 Threshold Pressure P e Capillary Pressure Threshold Pressure Sand Grains Water Saturation P e Connate Water 31

32 Irreducible Water Saturation S wi S wi Capillary Pressure Irreducible Water Saturation Sand Grains Water Saturation Oil Connate Water Please PAUSE pause the video. 32

33 Hysteresis Imbibition Capillary Pressure Residual Oil Saturation S orw Capillary Pressure Drainage Water Saturation S orw Water Saturation 33

34 Residual Oil Saturation Applications Residual Oil 34

35 Saturation-Height Capillary Pressure Capillary Pressure How High? Water Saturation Depth Depth Water Saturation OWC (G) Water Saturation OWC (E) Water Saturation 35

36 Capillary Pressure Curves Please PAUSE pause the video. How Low? P C Kg f /cm h m % S W m HIGHEST ELEVATION 100% WATER WATER SATURATION 0 100% 36

37 Capillary Pressure Curves Sample Number Porosity (%) Perm. (md) A B C D E Please PAUSE pause the video. Tilted Contacts OWC (G) LOW PERMEABILITY WELL NO. 1 MEDIUM PERMEABILITY WELL NO. 2 HIGH PERMEABILITY WELL NO. 3 P C OR H S W P C OR H S W P C OR H S W OWC (E) 37

38 Active Aquifers Active Aquifers (A) WATER (B) (C) GAS OIL (A) WATER (B) (C) 38

39 Summary Active aquifers Tilted oil-water contacts Saturation-height functions Capillary pressure curves Free water level Engineering oil-water contact Geological oil-water contact Buoyancy forces Meniscus Please PAUSE pause the video. Learning Objectives Capillary forces Adhesive forces Interfacial tension Hysteresis Drainage Imbibition Threshold pressure Irreducible water saturation Residual oil saturation Bundle-of-Tubes Define capillary pressure Explain how capillary pressure is a combination of several related phenomena Describe how capillary pressure can be used to explain macroscopic reservoir phenomena Show how collecting capillary pressure data can actually save money 39

40 Learning Objectives Reservoir Rock Properties Fundamentals Relative Permeability By the end of this lesson, you will be able to: Describe how oil saturation affects the flow of water in the reservoir Describe how water saturation affects the flow of oil in the reservoir Describe how liquid saturation affects the flow of gas in the reservoir Describe how rock properties affect the flow of multiple phases through the reservoir 40

41 Water not Moving Sand Grains Oil Connate Water Absolute Permeability Sand Grains Oil Connate Water 41

42 Absolute Permeability Sand Grains Oil Relative Permeability to Oil Oil effective permeability Absolute permeability 42

43 Increasing Water Saturation Rock Rock Irreducible Water Oil Irreducible Water Rock Residual Oil Saturation Rock Irreducible Water Oil Irreducible Water Moveable Water Oil Moveable Water Irreducible Water Rock Rock Rock Irreducible Water Water Moveable Water Oil Oil Irreducible Water Rock Moveable Water Irreducible Water Rock 43

44 Oil Behavior Relative Permeability [dimensionless] Relative Permeability to Water Water Saturation [no units] kro Water effective permeability Absolute permeability 44

45 Increasing Water Saturation Rock Irreducible Water Moveable Water Oil Moveable Water Irreducible Water Rock Increasing Water Saturation Rock Irreducible Water Oil Rock Irreducible Water Moveable Water Oil Irreducible Water Rock Moveable Water Irreducible Water Rock 45

46 Residual Oil Saturation WATER IN Residual Oil Saturation WATER IN Residual Oil WATER OUT WATER OUT Residual Oil 46

47 Water Behavior 1.0 Relative Permeability [dimensionless] 0.9 k ro Water Behavior Relative Permeability [dimensionless] k ro Water Saturation [no units] krw kro k rw k rw Water Saturation [no units] krw kro 47

48 Water Behavior 1.0 Relative Permeability [dimensionless] Aquifer 0.9 k ro Sand Grains Water Saturation [no units] krw Practical Maximum Water Relative Permeability kro k rw Connate Water 48

49 Aquifer Correction 1.0 Relative Permeability [dimensionless] k ro Measurement Water Saturation [no units] krw kro k rw 49

50 Pressures vs. Pressure Drops Presentation Relative Permeability [dimensionless] Where: k ro = Oil relative permeability Δp = Pressure drop in flow direction k rw = Water relative permeability ΔL = Length in flow direction k = Absolute permeability μ o = Oil viscosity A = Cross sectional area perpendicular to flow μ w = Water viscosity Please PAUSE pause the video. Water Saturation [no units] k rw k ro 50

51 Moderate Permeability RELATIVE PERMEABILITY Low Permeability RELATIVE PERMEABILITY k ro WATER SATURATION (%) k ro k air : 440 md k air : 175 md k air : 132 md k rw k air : 440 md k air : 175 md k air : 132 md 0.1 k rw WATER SATURATION (%) 51

52 Low Permeability k ro k air : 440 md k air : 175 md k air : 132 md k ro k air : 440 md k air : 175 md k air : 132 md RELATIVE PERMEABILITY Relative Permeability [dimensionless] 0.2 k rw WATER SATURATION (%) Please PAUSE pause the video. Water-Wet k ro k rw RELATIVE PERMEABILITY k rw WATER SATURATION (%) Water Saturation [no units] 52

53 Water-Wet vs. Oil-Wet k ro k rw Relative Permeability [dimensionless] Hysteresis k rw Water Saturation [no units] Relative Permeability [dimensionless] k ro Oil Saturation [no units] k ro imbibition k ro drainage k rw Relative Permeability [dimensionless] Water Saturation [no units] 53

54 Hysteresis Hysteresis Relative Permeability [dimensionless] Relative Permeability [dimensionless] k ro drainage Water Saturation [no units] k ro imbibition k ro drainage Water Saturation [no units] 54

55 Hysteresis k rw Gas k ro & k rg Relative Permeability [dimensionless] k ro imbibition k ro drainage Water Saturation [no units] k rg k ro S Wirr TOTAL LIQUID SATURATION = (s o + s w ) (%) 55

56 Three-Phase Relative Permeability Ternary Diagram 56

57 Vertices 100% Gas 100% Water Sides 100% Gas 0% Oil 0% Water 100% Oil 100% Water 0% Gas 100% Oil 57

58 Contours k ro 100% Gas 100% Water Three-Phase 0% Oil 0% Water % Gas % Oil 58

59 Three-Phase Applications 59

60 Relative Permeability Ratios k ro / k rw CURVES FOR WATER-WET ROCKS CEMENTED SANDSTONES, OGLITE LIMESTONES, OR ROCKS WITH REGULAR POROSITY POORLY SORTED UNCONSOLIDATED SANDS WELL SORTED SANDS Water-Oil Ratios k ro /k rw k ro /k rw Where: q w = Oil rate q o = Water rate k ro = Oil relative permeability k rw = Water relative permeability μ o = Oil viscosity μ w = Water viscosity B o = Oil formation volume factor = Water formation volume factor B w WATER SATURATION, % WATER SATURATION, % 60

61 Saturation-Height Depth [length units] Depth [length units] Water Saturation [no units] WOR-Height k ro /k rw k ro / k rw CURVES FOR WATER-WET ROCKS CEMENTED SANDSTONES, OGLITE LIMESTONES, OR ROCKS WITH REGULAR POROSITY POORLY SORTED UNCONSOLIDATED SANDS WELL SORTED SANDS Water Saturation [no units] WATER SATURATION, % 61

62 Summary Water-oil ratios Transition zones Rel. perm. ratios Ternary diagrams Gas dominance 3-phase rel. perm. Oil-water rel. perm. Gas-oil rel. perm. Gas-water rel. perm. Irreducible water saturation Please PAUSE pause the video. Learning Objectives Residual oil saturation Hysteresis Oil-wet rel. perm. Water-wet rel. perm. Aquifer adjustments Effect of texture Effect of sorting Effective vs. absolute permeability Describe how oil saturation affects the flow of water in the reservoir Describe how water saturation affects the flow of oil in the reservoir Describe how liquid saturation affects the flow of gas in the reservoir Describe how rock properties affect the flow of multiple phases through the reservoir 62

63 Learning Objectives Reservoir Rock Properties Fundamentals Laboratory Procedures Relative Permeability By the end of this lesson, you will be able to: Discuss the various choices available for measuring relative permeability in the laboratory 63

64 Permeability Core Sample Permeability d Diameter x Length 64

65 Permeability Gas in Darcy s Law δp Gas Out Pressure drop Where: q g = Gas rate k g = Gas effective permeability d = Diameter of core sample = Circle constant (~3.14) p = Pressure drop in flow direction x = Length in flow direction g = Gas viscosity 65

66 Relative Permeability Relative Permeability Relative Permeability Relative Permeability Steady State Unsteady State Centrifuge Steady State Unsteady State Centrifuge 66

67 Relative Permeability Core Sample Relative Permeability d Diameter x Length 67

68 Relative Permeability (Steady State) Oil in Water in Oil in Water in Water in Relative Permeability (Steady State) Oil out Water out δp Pressure drop 68

69 Relative Permeability (Steady State) Relative Permeability (Steady State) Oil in Water in 1. Wait for steady state 2. Measure the pressure drop 3. Measure the mass 4. Repeat workflow 69

70 Apparatus STEADY STATE FLOW TECHNIQUE Darcy s Law P OIL IN WATER IN OIL OUT WATER OUT PORCELAIN PLATE Where: q o = Oil rate k o = Oil effective permeability d = Diameter of core sample = Circle constant (~3.14) p = Pressure drop in flow direction x = Length in flow direction o = Oil viscosity 70

71 Darcy s Law (2 Phase) OIL rate and OIL viscosity WATER rate and WATER viscosity 2 Where: k o = Oil effective permeability k w = Water effective permeability d = Diameter of core sample = Circle constant (~3.14) p = Pressure drop in flow direction x = Length in flow direction o = Oil viscosity w = Water viscosity Effective Permeabilities Run k o K w No. [md] [md] Please PAUSE pause the video. 71

72 Relative Permeability to Oil Relative Permeabilities Run k o K w No. [md] [md]

73 Relative Permeability to Water Relative Permeabilities Run k o K w K ro k rw No. [md] [md] [ ] [] Please PAUSE pause the video. 73

74 Saturations Saturations Mass of saturated core sample Mass of oil in saturated core sample 74

75 Saturations Saturations Mass of water in saturated core sample Mass of rock (solid material) in saturated core sample 75

76 Saturations Where: m s = Mass of saturated core sample m o = Mass of oil in saturated core sample m w = Mass of water in saturated core sample m r = Mass of rock (solid material) in saturated core sample o = Oil density = Water density w 1 2 Please PAUSE pause the video. Saturations 1 2 r s w = Rock (solid material) density = Core sample water saturation φ = Core sample porosity d = Diameter of core sample x = Length in flow direction π = Circle constant (~3.14) 1 2 Please PAUSE pause the video. 76

77 Saturations Please PAUSE pause the video. Saturations 1 2 Run k o K w K rw m s No. [md] [md] [ ] [g]

78 Saturations Run k o K w K ro k rw m s o [g/cc] No. [md] [md] [ ] [] [g] w [g/cc] r [g/cc] [ ] d [cm] x [cm] Complete Table Run k o K w K ro k rw m s o [g/cc] s w No. [md] [md] [ ] [ ] [g] w [g/cc] [ ] r [g/cc] [ ] d [cm] x [cm]

79 Normalization Normalized Run k o K w K ro k rw m s o [g/cc] s w k ro k rw No. [md] [md] [ ] [] [g] w [g/cc] [ ] [] [ ] r [g/cc] [ ] d [cm] x [cm] Plot Please PAUSE pause the video. Relative Permeability [ ] k ro k rw Water Saturation [ ] 79

80 Relative Permeability Relative Permeability Relative Permeability (Steady State) Oil in Steady State Unsteady State Centrifuge Oil in Water in δp Pressure drop 80

81 Relative Permeability Relative Permeability Relative Permeability (Centrifuge) HEAVIER FLUID GRADUATED TUBE CENTRIFUGE SYSTEM CORE SAMPLE Steady State Unsteady State Centrifuge LIGHTER FLUID AXIS OF ROTATION 81

82 Relative Permeability Relative Permeability Measures capillary pressure concurrently with relative permeability Relative Permeability Relative Permeability More math 1 fluid injecteded Steady State Unsteady State Centrifuge Steady State Unsteady State Centrifuge 82

83 Summary Absolute permeability measurement Steady state relative permeability measurement Unsteady state relative permeability measurement using a permeameter Unsteady state relative permeability measurement using a centrifuge Please PAUSE pause the video. Back to Work Suggestion Search for as many relative permeability tests as you can find in your well files that apply to your reservoir Compare them to the capillary pressure tests Are they consistent? 83

84 Learning Objectives Discuss the various choices available for measuring relative permeability in the laboratory 84

85 Learning Objectives Reservoir Rock Properties Fundamentals Laboratory Procedures Capillary Pressure By the end of this lesson, you will be able to: Discuss the various choices available for measuring capillary pressure in the laboratory 85

86 Capillary Pressure Capillary Pressure Mercury Injection Porous Plate Centrifuge Mercury Injection Porous Plate Centrifuge 86

87 Mercury Injection Apparatus N 2 Bottle 250kg Hg In Pc Hg mano Hg Windows Sample Volumetric mercury pump 87

88 Air Injection Capillary Pressure Air In Mercury Injection Porous Plate Centrifuge H 2 O Out 88

89 Apparatus Capillary Pressure Mercury Injection Porous Plate Centrifuge 89

90 Water Expulsion Water Out Apparatus CENTRIFUGE SYSTEM LIGHTER FLUID HEAVIER FLUID GRADUATED TUBE CORE SAMPLE Oil In AXIS OF ROTATION 90

91 Comparison Comparison Capillary Pressure Mercury Injection Porous Plate Centrifuge Method Wetting Phase Non-Wetting Phase Mercury Injection Air Mercury Porous Plate Water Air Centrifuge Water Oil 91

92 Conversion Conversion Where: Pc res = Capillary pressure reservoir conditions Pc lab = Capillary pressure laboratory conditions Where: Pc res = Pc lab = res = lab = res = lab = Capillary pressure reservoir conditions Capillary pressure laboratory conditions Interfacial tension reservoir conditions Interfacial tension laboratory conditions Contact angle reservoir conditions Contact angle laboratory conditions 92

93 Summary Mercury Injection Porous Plate Centrifuge Corrections Back to Work Suggestion Search for as many capillary pressure tests as you can find in your well files Compare them against each other Compare them to the relative permeability data Are they consistent? 93

94 Learning Objectives Discuss the various choices available for measuring capillary pressure in the laboratory 94

95 Learning Objectives Reservoir Rock Properties Fundamentals Laboratory Procedures Wettability By the end of this lesson, you will be able to: Discuss the various choices available for measuring wettability in the laboratory 95

96 Wettability Wettability Contact Angle Amott Contact Angle Amott USBM USBM 96

97 Step 1 Water Step 2 Solid Rock Water Solid Rock 97

98 Step 2 Water Step 3 Solid Rock Water Oil Oil Solid Rock 98

99 Contact Angle Water Solid Rock Interpretation Old School Oil Contact Angle <90 Contact Angle >90 Water Wet Oil Wet 99

100 Wikipedia Please PAUSE the video. Wikipedia Please PAUSE the video. 100

101 Interpretation Contact Angle < 60 Water Wet New School 60 < Contact Angle < 120 Old School Contact Angle < 90 o Contact Angle >90 o Interpretation Water Wet Oil Wet New School Contact Angle > 120 Contact Angle < 60 Neutral Wet Oil Wet Water Wet 60 < Contact Neutral Neutral Wet Angle < 120 Wet Contact Angle < 90 o Water Wet Old School Contact Angle >90 o Oil Mixed Wet? Contact Angle > 120 Oil Wet 101

102 1. Cloudy Water 2. Porous Rock Wikipedia 1. If produced water is cloudy: Change wavelength of the light to one not scattered by suspended solids in the water Filter the water 2. If rock sample is porous and permeable Non-porous rock samples are used Wikipedia 102

103 Contact Angle Wettability Amott USBM Step 1 103

104 Step 2 Oil Step 3 Displaced Water (Spontaneous) V 2 Displaced Water (Forced) V 3 104

105 Step 4 Displaced Oil (Spontaneous) V 4 Step 5 Displaced Oil (Forced) V 5 105

106 Calculations Oil Index Calculations Where: I o = Oil Index V 2 = Oil spontaneously entering core V 3 = Oil entering core under force 106

107 Calculations Oil Index Calculations Oil Index Water Index Where: I o = Oil Index V 2 = Oil spontaneously entering core V 3 = Oil entering core under force I w = Water Index V 4 = Water spontaneously entering core V 5 = Water entering core under force 107

108 Calculations Oil Index Variations Water Index Amott-Harvey Index Step 1 Where: I A = Amott Index I w = Water Index I o = Oil Index Start Step 2 Step 3 Step 1 Step 3 Start Step 4 Step 4 Step 5 Step 5 Step 2 End Step 3 End 108

109 Example Jadhunandan and Morrow, 1991 Owolabi and Watson, 1993 Chen et al, 2004 S or From Anderson, I A w Totally Oil Wet Totally Water Wet Water Wet (left) vs. Oil Wet (right) 109

110 Summary Contact Angle Neutral Wet Mixed Wet Amott Spontaneous vs. Forced Oil vs. Water Index Amott-Harvey Residual Oil Saturation Relative Permeability Please PAUSE pause the video. Back to Work Suggestion Search for as many wettability tests on your reservoir as you can find Is the data consistent? If not, how do you explain the inconsistencies? How are you going to resolve the inconsistencies? 110

111 Learning Objectives Discuss the various choices available for measuring wettability in the laboratory 111

112 Learning Objectives Reservoir Rock Properties Fundamentals Modeling By the end of this lesson, you will be able to: Show how reservoir engineers model relative permeability Show how reservoir engineers model capillary pressure 112

113 Relative Permeability Water Relative Permeability Modified-Corey Equation 113

114 Water Relative Permeability 2-phase water relative permeability end-point 2-phase water saturation exponent Relative Permeability [ ] Water Relative Permeability Relative Permeability [ ] k rw Water Saturation [ ] k rw Water Saturation [ ] 114

115 Water Relative Permeability Relative Permeability [ ] Normalized water saturation Critical water saturation Oil Relative Permeability k ro Relative Permeability [ ] k rw Water Saturation [ ] Water Saturation [ ] 115

116 Oil & Water k ro Relative Permeability [ ] End Point Changes Water Saturation [ ] Relative Permeability [ ] k rw k ro k rw Water Saturation [ ] 116

117 End Point Changes k ro End Point Changes Relative Permeability [ ] Relative Permeability [ ] Water Saturation [ ] k rw k ro k rw Water Saturation [ ] 117

118 Exponent Changes k ro Exponent Changes Relative Permeability [ ] Relative Permeability [ ] k rw Water Saturation [ ] k ro k rw Water Saturation [ ] 118

119 Exponent Changes k ro Relative Permeability [ ] 3-Phase Relative Permeability Oil Water Water Saturation [ ] Gas Oil k rw 119

120 3-Phase Relative Permeability Stone Where: k ro = 2-phase oil relative permeability k rw = 2-phase water relative permeability k row = 2-phase oil relative permeability from oil-water table k rog = 2-phase oil relative permeability from gas-oil table k rg = 2-phase gas relative permeability Please PAUSE pause the video. 3-Phase Relative Permeability S S S S g Where: k ro = 2-phase oil relative permeability k rw = 2-phase water relative permeability k row = 2-phase oil relative permeability from oil-water table k rog = 2-phase oil relative permeability from gas-oil table k rg = 2-phase gas relative permeability 120

121 Thomeer Capillary Pressure Water Saturation Interporosity Coefficient Capillary Pressure Threshold Pressure Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure 121

122 Thomeer P c Fit The original version of this equation used bulk volumes instead of saturations. The results are equivalent, so we ll keep things simple by using saturations. Thomeer (68,948) (6,895) (689) Fit to Data Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure P c Fit Capillary Pressure [psi] (kpa) (69) Oil Saturation [ ] 122

123 Thomeer (68,948) Threshold Pressure Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure Thomeer Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure (6,895) (689) (69) (68,948) P c Fit P d P c Fit Oil Saturation [ ] Infinite Pressure (6,895) (689) Capillary Pressure [psi] (kpa) Capillary Pressure [psi] (kpa) (69) Oil Saturation [ ] 123

124 Thomeer (68,948) Raw Data P c Fit Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure Thomeer Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure (6,895) (689) (69) (68,948) Oil Saturation [ ] P c Raw Increase Threshold Pressure P c Fit (6,895) (689) Capillary Pressure [psi] (kpa) Capillary Pressure [psi] (kpa) (69) Oil Saturation [ ] P c Raw 124

125 Thomeer (68,948) Restore Threshold Pressure P c Fit Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure Thomeer Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure (6,895) (689) (69) (68,948) P c Fit Oil Saturation [ ] Increase G-Factor (6,895) (689) P c Raw Capillary Pressure [psi] (kpa) Capillary Pressure [psi] (kpa) (69) Oil Saturation [ ] P c Raw 125

126 Thomeer (68,948) Restore G-Factor P c Fit Where: P c = Capillary pressure S w = Water saturation G = Interporosity coefficient P d = Threshold pressure (6,895) (689) (69) Please PAUSE pause the video. Summary Threshold pressure Interporosity coefficient Saturation exponent Relative permeability endpoint Normalized saturation Thomeer Corey Oil Saturation [ ] P c Raw Capillary Pressure [psi] (kpa) Please PAUSE pause the video. 126

127 Back to Work Suggestion Learning Objectives Build a relative permeability and capillary pressure model for your reservoir using correlations How does it compare with the laboratory data? If you have no laboratory data for your reservoir, how do you decide what parameters to use? Show how reservoir engineers model relative permeability Show how reservoir engineers model capillary pressure 127

128 Learning Objectives Reservoir Rock Properties Fundamentals Saturations By the end of this lesson, you will be able to: Describe how reservoir engineers define saturations 128

129 Water Saturation Relative Permeability [dimensionless] Irreducible water saturation Initial water saturation Critical Connate water saturation Critical water saturation Water Saturation [no units] krw kro 129

130 1.0 Relative Permeability [dimensionless] Sand Grains Water Saturation [no units] krw Oil kro Irreducible Connate Water 130

131 Sand Grains Connate Water Water Saturation Initial water saturation Connate water saturation Irreducible water saturation Critical water saturation 131

132 Oil Saturation Oil Saturation Where: S o = Oil saturation = Residual oil saturation 132

133 Oil Saturation Residual oil saturation to water Water Displacing Oil Water In Residual oil saturation to gas Water Out Residual Oil 133

134 Gas Displacing Oil Sand Grains Residual Oil Connate Water Gas Out Gas In Gas Saturation 134

135 Gas Saturation Where: = Gas saturation S g Gas Saturations Residual gas saturation Critical Critical gas saturation Where: S g = Gas saturation Residual 135

136 Summary S w S wi S or S orw S wc S wirr S wcr S o Please PAUSE pause the video as needed. Learning Objectives S org S g S gc S gr Describe how reservoir engineers define saturations 136

137 PetroAcademy TM Applied Reservoir Engineering Skill Modules Properties Analysis Management This is Reservoir Engineering Core Reservoir Rock Properties Core Reservoir Rock Rock Properties Fundamentals Reservoir Fluid Core Reservoir Fluid Fundamentals Reservoir Flow Properties Core Reservoir Flow Properties Fundamentals Reservoir Fluid Displacement Core Reservoir Fluid Displacement Fundamentals Reservoir Material Balance Core Reservoir Material Balance Fundamentals Decline Curve Analysis and Empirical Approaches Core Decline Curve Analysis and Empirical Approaches Fundamentals Pressure Transient Analysis Core Rate Transient Analysis Core Enhanced Oil Recovery Core Enhanced Oil Recovery Fundamentals Reservoir Simulation Core Reserves and Resources Core Reservoir Surveillance Core Reservoir Surveillance Fundamentals Reservoir Management Core Reservoir Management Fundamentals 137

Petroleum Reservoir Rock and Fluid Properties

Petroleum Reservoir Rock and Fluid Properties second edition Petroleum Reservoir Rock and Fluid Properties Abhijit Y. Dandekar CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis an Croup, informa

More information

Chapter 5 Multiphase Pore Fluid Distribution

Chapter 5 Multiphase Pore Fluid Distribution Chapter 5 Multiphase Pore Fluid Distribution Reading assignment: Chapter 3 in L. W. Lake, Enhanced Oil Recovery. So far we have discussed rock properties without regard to the fluid other than that it

More information

EVALUATION OF WATER SATURATION FROM RESISTIVITY IN A CARBONATE FIELD. FROM LABORATORY TO LOGS.

EVALUATION OF WATER SATURATION FROM RESISTIVITY IN A CARBONATE FIELD. FROM LABORATORY TO LOGS. SCA2004-22 1/12 EVALUATION OF WATER SATURATION FROM RESISTIVITY IN A CARBONATE FIELD. FROM LABORATORY TO LOGS. M. Fleury 1, M. Efnik 2, M.Z. Kalam 2 (1) Institut Français du Pétrole, Rueil-Malmaison, France

More information

Simposium Nasional dan Kongres X Jakarta, November 2008 Makalah Profesional IATMI

Simposium Nasional dan Kongres X Jakarta, November 2008 Makalah Profesional IATMI Simposium Nasional dan Kongres X Jakarta, 12 14 November 2008 Makalah Profesional IATMI 08 018 Experimental Treatments for Fluid-Blocked Gas Wells By Melvin Devadass, Technical Manager, 3M Oil & Gas Markets,

More information

MEASUREMENTS OF RESIDUAL GAS SATURATION UNDER AMBIENT CONDITIONS

MEASUREMENTS OF RESIDUAL GAS SATURATION UNDER AMBIENT CONDITIONS MEASUREMENTS OF RESIDUAL GAS SATURATION UNDER AMBIENT CONDITIONS Minghua Ding and Apostolos Kantzas, 2 : TIPM Laboratory, Calgary, Alberta Canada 2: Department of Chemical and Petroleum Engineering University

More information

TRANSITION ZONE CHARACTERIZATION WITH APPROPRIATE ROCK- FLUID PROPERTY MEASUREMENTS

TRANSITION ZONE CHARACTERIZATION WITH APPROPRIATE ROCK- FLUID PROPERTY MEASUREMENTS TRANSITION ZONE CHARACTERIZATION WITH APPROPRIATE ROCK- FLUID PROPERTY MEASUREMENTS Richard L. Christiansen, * Michael J. Heymans, ** and Anand Kumar* *Colorado School of Mines **Geological Consultant

More information

CHAPTER 6: PERMEABILITY MEASUREMENT

CHAPTER 6: PERMEABILITY MEASUREMENT CHAPTER 6: PERMEABILITY MEASUREMENT Objective To measure the permeability of rock samples using a gas permeameter and to apply Klinkenberg effect corrections to obtain the liquid permeability. Introduction

More information

HIBERNIA THREE-PHASE RELATIVE PERMEABILITY MEASUREMENTS AT RESERVOIR CONDITIONS

HIBERNIA THREE-PHASE RELATIVE PERMEABILITY MEASUREMENTS AT RESERVOIR CONDITIONS SCA2017-001 1/12 HIBERNIA THREE-PHASE RELATIVE PERMEABILITY MEASUREMENTS AT RESERVOIR CONDITIONS By Daniel R. Maloney and Brad E. Milligan, ExxonMobil Upstream Research Company This paper was prepared

More information

Situated 250km from Muscat in

Situated 250km from Muscat in CYAN MAGENTA YELLOW BLACK GRAVITY GAINS A novel method of determining gas saturation has proved successful in Oman s Natih Field where conventional methods were giving anomalous results in difficult conditions.

More information

RELATIVE PERMEABILITIES FOR TWO- AND THREE PHASE FLOW PROCESSES RELEVANT TO THE DEPRESSURIZATION OF THE STATFJORD FIELD

RELATIVE PERMEABILITIES FOR TWO- AND THREE PHASE FLOW PROCESSES RELEVANT TO THE DEPRESSURIZATION OF THE STATFJORD FIELD SCA28-23 /2 RELATIVE PERMEABILITIES FOR TWO- AND THREE PHASE FLOW PROCESSES RELEVANT TO THE DEPRESSURIZATION OF THE STATFJORD FIELD Egil Boye Petersen Jr (), Arild Lohne (2), Kåre O. Vatne (2), Johan Olav

More information

Impact of relative permeability hysteresis on the numerical simulation of WAG injection

Impact of relative permeability hysteresis on the numerical simulation of WAG injection Journal of Petroleum Science and Engineering 50 (2006) 115 139 www.elsevier.com/locate/petrol Impact of relative permeability hysteresis on the numerical simulation of WAG injection Elizabeth J. Spiteri,

More information

Pendant Drop Measurements

Pendant Drop Measurements KRÜSS pplication Note TN316d Page 1 Pendant Drop Measurements pplication note: TN316d Industry section: all uthor: Dr. Tobias Winkler Date: December 2010 Method: Drop Shape nalysis System DS100 Drop Shape

More information

Capillary Transition Zones from a Core Analysis Perspective

Capillary Transition Zones from a Core Analysis Perspective Capillary Transition Zones from a Core Analysis Perspective Johne Alex Larsen, Trond Thorsen and Geir Haaskjold Norsk Hydro Research Centre, N-52 Bergen, Norway E-mail: Johne.Alex.Larsen@hydro.com Abstract

More information

Technical Note. Determining the surface tension of liquids by measurements on pendant drops

Technical Note. Determining the surface tension of liquids by measurements on pendant drops Technical Note Pendant Drop Measurements Technical note: TN316e Industry section: all Author: FT, TW Date: 12/2010 Method: Drop Shape Analyzer DSA100 Keywords: Methods, surface tension, interfacial tension,

More information

Reservoir Simulator Practical

Reservoir Simulator Practical Reservoir Simulator Practical Course Notes 2012 Philipp Lang IZR Room 403 Tel 3004 philipp.lang@unileoben.ac.at for further information please refer to the accompanying document Info Sheet & Course Logistics

More information

Modelling of Tail Production by Optimizing Depressurization

Modelling of Tail Production by Optimizing Depressurization Modelling of Tail Production by Optimizing Depressurization Arne Skauge*, Dag Standnes, and Øystein Pettersen, Univ. of Bergen Bergen, Norway Main effects of depressurization influencing oil recovery Change

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

DETERMINATION OF CRITICAL GAS SATURATION AND RELATIVE PERMEABILITIES RELEVANT TO THE DEPRESSURISATION OF THE STATFJORD FIELD

DETERMINATION OF CRITICAL GAS SATURATION AND RELATIVE PERMEABILITIES RELEVANT TO THE DEPRESSURISATION OF THE STATFJORD FIELD SCA2004-33 1/15 DETERMINATION OF CRITICAL GAS SATURATION AND RELATIVE PERMEABILITIES RELEVANT TO THE DEPRESSURISATION OF THE STATFJORD FIELD E.B. Petersen Jr (1), G.S. Agaev (1), B. Palatnik (1), J.K.

More information

Compaction, Permeability, and Fluid Flow in Brent-type Reservoirs Under Depletion and Pressure Blowdown

Compaction, Permeability, and Fluid Flow in Brent-type Reservoirs Under Depletion and Pressure Blowdown Compaction, Permeability, and Fluid Flow in Brent-type Reservoirs Under Depletion and Pressure Blowdown by Øystein Pettersen, CIPR CIPR Technology Seminar 2010 Outline Experimental & Field Observations

More information

AN EFFICIENT METHOD FOR MEASURING TRAPPED GAS SATURATION UNDER CO-CURRENT CONDITIONS

AN EFFICIENT METHOD FOR MEASURING TRAPPED GAS SATURATION UNDER CO-CURRENT CONDITIONS SCA214-8 1/12 AN EFFICIENT METHOD FOR MEASURING TRAPPED GAS SATURATION UNDER CO-CURRENT CONDITIONS N. Bona, L. Garofoli, F. Radaelli, C. Zanaboni, M. Anelli, A. Bendotti and D. Mezzapesa ENI e&p This paper

More information

Experiment P18: Buoyant Force (Force Sensor)

Experiment P18: Buoyant Force (Force Sensor) PASCO scientific Physics Lab Manual: P18-1 Experiment P18: (Force Sensor) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 300/500/700 P18 P18_BUOY.SWS EQUIPMENT NEEDED CONSUMABLES

More information

CHAPTER 5 PARAMETRIC STUDY OF REPRESSURISATION OF GAS/OIL SYSTEMS

CHAPTER 5 PARAMETRIC STUDY OF REPRESSURISATION OF GAS/OIL SYSTEMS CHAPTER 5 PARAMETRIC STUDY OF REPRESSURISATION OF GAS/OIL SYSTEMS 5.1 Introduction Solution gas-oil ratio (i.e. the ratio of volume of gas dissolved in oil to the volume of oil) in the laboratory setting

More information

SPE Current address: The author is currently working with Shell Abu Dhabi,

SPE Current address: The author is currently working with Shell Abu Dhabi, PE 7855 The Effect of Wettability on aturation Functions and Impact on Carbonate Reservrs in the Middle East hehadeh K. Masalmeh hell International Explation and Production Copyright 22, ociety of Petroleum

More information

Figure 1 Schematic of opposing air bearing concept

Figure 1 Schematic of opposing air bearing concept Theoretical Analysis of Opposing Air Bearing Concept This concept utilizes air bearings to constrain five degrees of freedom of the optic as shown in the figure below. Three pairs of inherently compensated

More information

Optimized Gas Injection Rate for Underground Gas Storage; Sensitivity Analysis of Reservoir and Well Properties

Optimized Gas Injection Rate for Underground Gas Storage; Sensitivity Analysis of Reservoir and Well Properties Optimized Gas Injection Rate for Underground Gas Storage; Sensitivity Analysis of Reservoir and Well Properties Hadise Baghooee 1, Farhad Varzandeh 1, Masood Riazi 2,* 1. Chemical Engineering Department,

More information

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

More information

PMI Pulse Decay Permeameter for Shale Rock Characterization Yang Yu, Scientist Porous Materials Inc., 20 Dutch Mill Road, Ithaca NY 14850

PMI Pulse Decay Permeameter for Shale Rock Characterization Yang Yu, Scientist Porous Materials Inc., 20 Dutch Mill Road, Ithaca NY 14850 PMI Pulse Decay Permeameter for Shale Rock Characterization Yang Yu, Scientist Porous Materials Inc., 20 Dutch Mill Road, Ithaca NY 14850 This document describes the application of Pulse Decay Permeameter

More information

Method of Determining the Threshold Pressure Gradient

Method of Determining the Threshold Pressure Gradient Method of Determining the Threshold Pressure Gradient Jing Gao Postgraduate College of Oil and Gas engineering, Southwest Petroleum University, Chengdu 610500, China; e-mail: swpu_gj@sina.com Yingfeng

More information

Gases and Pressure SECTION 11.1

Gases and Pressure SECTION 11.1 SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.

More information

A MODIFIED HYSTERESIS RELATIVE PERMEABILITY INCLUDING A GAS REMOBILIZATION THRESHOLD FOR BETTER PRODUCTION FORECASTS OF GAS STORAGES

A MODIFIED HYSTERESIS RELATIVE PERMEABILITY INCLUDING A GAS REMOBILIZATION THRESHOLD FOR BETTER PRODUCTION FORECASTS OF GAS STORAGES SCA2009-02 1/12 A MODIFIED HYSTERESIS RELATIVE PERMEABILITY INCLUDING A GAS REMOBILIZATION THRESHOLD FOR BETTER PRODUCTION FORECASTS OF GAS STORAGES P. Egermann, T. Schaaf, B. Bréfort GDF SUEZ E&P This

More information

HTHP Filter Press for Ceramic Disks with 175-mL, Double-Capped Test Cell and CO 2 # : (115 V) # : (230 V) Instruction Manual

HTHP Filter Press for Ceramic Disks with 175-mL, Double-Capped Test Cell and CO 2 # : (115 V) # : (230 V) Instruction Manual HTHP Filter Press for Ceramic Disks with 175-mL, Double-Capped Test Cell and CO 2 Pressuring Assemblies #170-00-7: (115 V) #170-01-6: (230 V) Instruction Manual Updated 12/30/2014 Ver. 1.2 OFI Testing

More information

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the

More information

Yuan-Yun Lin 1 and Michael T. Myers 1 Search and Discovery Article #70299 (2017)** Abstract. References Cited

Yuan-Yun Lin 1 and Michael T. Myers 1 Search and Discovery Article #70299 (2017)** Abstract. References Cited PS Impact of Non-Linear Transport Properties on Low Permeability Measurements* Yuan-Yun Lin and Michael T. Myers Search and Discovery Article #799 (7)** Posted October 3, 7 *Adapted from poster presentation

More information

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance.

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance. Measurement of Filter Porosity using a Custom-Made Pycnometer George Chase The University of Akron INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

Available online at GHGT-9. Computer Modelling Group Ltd., 150, Street NW, Calgary, Alberta, Canada T2L 2A6

Available online at  GHGT-9. Computer Modelling Group Ltd., 150, Street NW, Calgary, Alberta, Canada T2L 2A6 Available online at www.sciencedirect.com Energy Energy Procedia 100 (2009) (2008) 3015 3022 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-9 Risk Mitigation

More information

Pressure Plate Drying and Wetting

Pressure Plate Drying and Wetting 1 Introduction Pressure Plate Drying and Wetting This air flow example illustrates how the process of axis translation, which is used in pressure plates to measure the water content function, can be modeled.

More information

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY

More information

Introduction IP codes are used in electrical product catalogs, etc., to indicate waterproofness and so on.

Introduction IP codes are used in electrical product catalogs, etc., to indicate waterproofness and so on. Introduction IP codes are used in electrical product catalogs, etc., to indicate waterproofness and so on. For the purposes of this document, IP code refers to the degree of protection (IP code) provided

More information

1.2 Example 1: A simple hydraulic system

1.2 Example 1: A simple hydraulic system Note: It is possible to use more than one fluid in the Hydraulic library. This is important because you can model combined cooling and lubrication systems of a library. The hydraulic library assumes a

More information

Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering

Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering Marina Campolo, Dafne Molin, Alfredo Soldati Centro Interdipartimentale di Fluidodinamica e Idraulica and Department

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

AP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43

AP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43 Slide 1 / 43 Slide 2 / 43 P Fluids Practice Problems Multiple hoice Slide 3 / 43 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 kg/m 3 are selected for an experiment.

More information

Numerical Simulation of Instability of Geothermal Production Well

Numerical Simulation of Instability of Geothermal Production Well GRC Transactions, Vol. 37, 2013 Numerical Simulation of Instability of Geothermal Production Well Ryuichi Itoi 1, Yasunari Katayama 3, Toshiaki Tanaka 1, Naoto Kumagai 2, and Takaichi Iwasaki 3 1 Department

More information

A New Way to Handle Changing Fluid Viscosity and the Full-to-empty Effect

A New Way to Handle Changing Fluid Viscosity and the Full-to-empty Effect A New Way to Handle Changing Fluid Viscosity and the Full-to-empty Effect Nordson EFD, 40 Catamore Blvd., East Providence RI 02914 www.nordsonefd.com A New Way to Handle Changing Fluid Viscosity And the

More information

VINCI TECHNOLOGIES ADVANCED ROCK ANALYSIS CATALOGUE OF PRODUCTS 2013 ADVANCED ROCK ANALYSIS. Special core analysis

VINCI TECHNOLOGIES ADVANCED ROCK ANALYSIS CATALOGUE OF PRODUCTS 2013 ADVANCED ROCK ANALYSIS. Special core analysis ADVANCED ROCK ANALYSIS CATALOGUE OF PRODUCTS 2013 ADVANCED ROCK ANALYSIS Special core analysis EOR Rock Mechanics Coreholders LIST OF INSTRUMENTS SPECIAL CORE ANALYSIS 5 UNSTEADY STATE RELATIVE PERMEAMETER

More information

Increase in Evaporation Caused by Running Spa Jets swhim.com

Increase in Evaporation Caused by Running Spa Jets swhim.com Increase in Evaporation Caused by Running Spa Jets swhim.com Nomenclature A pipe cross-section area, m D water inlet diameter of the venturi tube nozzle, mm diameter of small end of the throat of the venturi

More information

Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler

Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler C. Becnel, J. Lagrone, and K. Kelly Mezzo Technologies Baton Rouge, LA USA 70806 ABSTRACT The Missile Defense Agency has supported a research

More information

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

More information

Chapter 3 PRESSURE AND FLUID STATICS

Chapter 3 PRESSURE AND FLUID STATICS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGraw-Hill

More information

Model of Gas Flow through Porous Refractory Applied to An Upper Tundish Nozzle. Rui Liu and Brian G. Thomas

Model of Gas Flow through Porous Refractory Applied to An Upper Tundish Nozzle. Rui Liu and Brian G. Thomas Model of Gas Flow through Porous Refractory Applied to An Upper Tundish Nozzle Rui Liu and Brian G. Thomas Department of Mechanical Science and Engineeering, University of Illionis at Urbana-Champaign,

More information

Freeze-Thaw Effects and Gas Permeability of Utility Line Backfill

Freeze-Thaw Effects and Gas Permeability of Utility Line Backfill 1 Fred P. Hooper, 1 W. Allen Marr, 2 Ryan B. Drefus, 3 and Khalid Farrag 4 Freeze-Thaw Effects and Gas Permeability of Utility Line Backfill ABSTRACT: Backfill materials used in utility trenches must maintain

More information

CHDT Cased Hole Dynamics Tester. Pressure testing and sampling in cased wells

CHDT Cased Hole Dynamics Tester. Pressure testing and sampling in cased wells CHDT Cased Hole Dynamics Tester testing and sampling in cased wells Applications Evaluation of old wells for bypassed hydrocarbons Development of critical economic data for well evaluation Reduced-risk

More information

Density and Buoyancy Notes

Density and Buoyancy Notes Density and Buoyancy Notes Measuring Mass and Volume 3.1 Density A balance can be used to measure the mass of an object. If the object is a liquid, pour it into a graduated cylinder to measure the volume.

More information

then the work done is, if the force and the displacement are in opposite directions, then the work done is.

then the work done is, if the force and the displacement are in opposite directions, then the work done is. 1. What is the formula for work? W= x 2. What are the 8 forms of energy? 3. Write the formula for the following: Kinetic Energy Potential Energy 4. If the force and the displacement are in the same direction,

More information

Natural Gas Properties Analysis of Bangladesh: A Case Study of Titas Gas Field

Natural Gas Properties Analysis of Bangladesh: A Case Study of Titas Gas Field SUST Journal of Science and Technology, Vol. 16, No.2, 2012; P:26-31 Natural Gas Properties Analysis of Bangladesh: A Case Study of Titas Gas Field (Submitted: April 13, 2011; Accepted for Publication:

More information

Petrophysical information (Verlo and Hatland, 2008)

Petrophysical information (Verlo and Hatland, 2008) Petrophysical information (Verlo and Hatland, 2008) The petrophysics of the Norne main field is based on data from the two exploration wells 6608/10 2 and 6608/10 3. In 1994 the exploration well 6608/10

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS. Nanofiltration

DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS. Nanofiltration DRINKING WATER - LAB EXPERIMENTS LAB EXPERIMENTS Nanofiltration nanofiltration lab experiments Framework This module explains the lab experiment on nanofiltration. Contents This module has the following

More information

Module 7 Lecture 1. Swelling and Collapse Behavior

Module 7 Lecture 1. Swelling and Collapse Behavior Swelling and Collapse Behavior Module 7 Lecture 1 Collapse and swelling phenomena occur in unsaturated soils during the saturation process. The compacted unsaturated soils, on the dry of optimum, have

More information

Simulation of Free Surface Flows with Surface Tension with ANSYS CFX

Simulation of Free Surface Flows with Surface Tension with ANSYS CFX Simulation of Free Surface Flows with Surface Tension with ANSYS CFX C. Kurt Svihla, Hong Xu ANSYS, Inc. Abstract Three different test cases involving free surface flows with surface tension were investigated

More information

CEE 452/652. Week 9, Lecture 2 Absorption. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 9, Lecture 2 Absorption. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 9, Lecture 2 Absorption Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Today s topic: chapter 13 on absorption Cover odor control on Tuesday,

More information

Kinetic Theory and Gases

Kinetic Theory and Gases Kinetic Theory and Gases Kinetic Theory Explains how temperature and pressure affect the motion of molecules http://exploration.grc.nasa.gov/education/rocket/images/state.gif 1 Hydraulics http://library.thinkquest.org/

More information

SURFACTANT CONCENTRATION AND END EFFECTS ON FOAM FLOW IN POROUS MEDIA. SUPRI TR 120 Report

SURFACTANT CONCENTRATION AND END EFFECTS ON FOAM FLOW IN POROUS MEDIA. SUPRI TR 120 Report SURFACTANT CONCENTRATION AND END EFFECTS ON FOAM FLOW IN POROUS MEDIA SUPRI TR 120 Report By Osman G. Apaydin Anthony R. Kovscek October 2000 Work Performed Under Contract No. DE-FC26-00BC15311 Prepared

More information

Comparison of MARS-KS to SPACE for counter current flow limitation model

Comparison of MARS-KS to SPACE for counter current flow limitation model Comparison of MARS-KS to SPACE for counter current limitation model Won Woong Lee, Min Gil Kim, Jeong I Lee Department of Nuclear and Quantum engineering, Korea Advanced Institute of Science and Technology

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

More About Solids, Liquids and Gases ASSIGNMENT

More About Solids, Liquids and Gases ASSIGNMENT More About Solids, Liquids and Gases ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below: List : water, density, altitudes, lateral, intermolecular, force, cohesion,

More information

! =! [4 (2) ! n] 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007

! =! [4 (2) ! n] 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Liquid Film Falling on Horizontal Circular Cylinders F. Jafar, G. Thorpe and O.F. Turan School of Architectural,

More information

- Introduction: a) Metallized Paper & Film :The market Outlook The following diagram shows the estimated usage of the main metallized materials

- Introduction: a) Metallized Paper & Film :The market Outlook The following diagram shows the estimated usage of the main metallized materials Vacuum Metallization of Paper and Outgassing Materials By Fabiano Rimediotti Galileo Vacuum Systems Prato Italy Phone : +390574564380 - f.rimediotti@galileovacuum.com Abstract Materials like paper, some

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

More information

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies. Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:

More information

Air Bubble Defects in Dispensing Nanoimprint Lithography

Air Bubble Defects in Dispensing Nanoimprint Lithography Air Bubble Defects in Dispensing Nanoimprint Lithography Abstract We report a theoretical study and dynamic simulation to understand the dynamic behavior of the air bubble defects in Dispensing Nanoimprint

More information

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Sophie

More information

EXAMINER S REPORT AND RECOMMENDATION STATEMENT OF THE CASE

EXAMINER S REPORT AND RECOMMENDATION STATEMENT OF THE CASE OIL AND GAS DO0KET NO. 01-0249550 THE APPLICATION OF REGENCY FS LP UNDER RULE 36 AND RULE 46 TO DISPOSE OF OIL AND WASTE CONTAINING HYDROGEN SULFIDE GAS INTO ITS TILDEN GPI WELL NO. 1, TILDEN, S. (WILCOX

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 11-7: WAVE MOTION LSN 11-8: TYPES OF WAVES; LONGITUDINAL AND TRANSVERSE LSN 11-9: ENERGY TRANSPORTED BY WAVES Physics of Waves Questions From Reading

More information

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

More information

Applying Hooke s Law to Multiple Bungee Cords. Introduction

Applying Hooke s Law to Multiple Bungee Cords. Introduction Applying Hooke s Law to Multiple Bungee Cords Introduction Hooke s Law declares that the force exerted on a spring is proportional to the amount of stretch or compression on the spring, is always directed

More information

In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.

In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19. In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

More information

AN ISOLATED SMALL WIND TURBINE EMULATOR

AN ISOLATED SMALL WIND TURBINE EMULATOR AN ISOLATED SMALL WIND TURBINE EMULATOR Md. Arifujjaman Graduate Student Seminar: Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NL, Canada

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

More information

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

Comments on Homework. Class 4 - Pressure. Atmospheric Pressure. Gauge vs. Absolute Pressure. 2. Gauge vs. Absolute Pressure. 1.

Comments on Homework. Class 4 - Pressure. Atmospheric Pressure. Gauge vs. Absolute Pressure. 2. Gauge vs. Absolute Pressure. 1. Class 4 - Pressure 1. Definitions 2. Gauge Pressure 3. Pressure and Height of Liquid Column (Head) 4. Pressure Measurement and Manometers Please don t forget the special problem for the next HW assignment

More information

NHL & NHLPA Future Goals Program Hockey Scholar TM

NHL & NHLPA Future Goals Program Hockey Scholar TM Curriculum Guide NHL & NHLPA Future Goals Program Hockey Scholar TM Your local NHL team has made it all the way to the Stanley Cup Final and now you just need to win 4 games to bring home the cup! You

More information

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1 Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage

More information

Surface Tension- Worksheet

Surface Tension- Worksheet Surface Tension- Worksheet A-Surface tension phenomenon 1. After watching the video, explain how can insects walk on the surface of the water? 2. Using the glass beaker, water and paper clip in front of

More information

Assistant Lecturer Anees Kadhum AL Saadi

Assistant Lecturer Anees Kadhum AL Saadi Pressure Variation with Depth Pressure in a static fluid does not change in the horizontal direction as the horizontal forces balance each other out. However, pressure in a static fluid does change with

More information

Level MEASUREMENT 1/2016

Level MEASUREMENT 1/2016 Level MEASUREMENT 1/2016 AGENDA 2 A. Introduction B. Float method C. Displacer method D. Hydrostatic pressure method E. Capacitance method G. Ultrasonic method H. Radar method I. Laser method J. Level

More information

Sandy Beach Morphodynamics. Relationship between sediment size and beach slope

Sandy Beach Morphodynamics. Relationship between sediment size and beach slope Sandy Beach Morphodynamics Relationship between sediment size and beach slope 1 Longshore Sorting - Willard Bascom Beach Slope, Grain Size, and Wave Energy Beach at Sandwich Bay, Kent, UK near the Straights

More information

Calibrate the Differential Pressure Meter

Calibrate the Differential Pressure Meter CM3215 Fundamentals of Chemical Engineering Laboratory Calibrate the Differential Pressure Meter Professor Faith Morrison Department of Chemical Engineering Michigan Technological University www.honeywellprocess.com/

More information

Hydrus 1D Tutorial. Example: Infiltration and drainage in a large caisson. 1) Basic model setup. Sebastian Bauer Geohydromodellierung

Hydrus 1D Tutorial. Example: Infiltration and drainage in a large caisson. 1) Basic model setup. Sebastian Bauer Geohydromodellierung Sebastian Bauer Geohydromodellierung Modellieren in der Angewandten Geologie Sommersemester 2008 Hydrus 1D Tutorial Example: Infiltration and drainage in a large caisson 1) Basic model setup Start Hydrus

More information

Analysis of dilatometer test in calibration chamber

Analysis of dilatometer test in calibration chamber Analysis of dilatometer test in calibration chamber Lech Bałachowski Gdańsk University of Technology, Poland Keywords: calibration chamber, DMT, quartz sand, FEM ABSTRACT: Because DMT in calibration test

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

By Syed Ahmed Amin Shah 4 th semester Class No 8 Submitted To Engr. Saeed Ahmed

By Syed Ahmed Amin Shah 4 th semester Class No 8 Submitted To Engr. Saeed Ahmed EXPERIMENT # 01 DEMONSTRATION OF VARIOUS PARTS OF HYDRAULIC BENCH. HYDRAULIC BENCH Hydraulic bench is a very useful apparatus in hydraulics and fluid mechanics it is involved in majority of experiments

More information

H16 Losses in Piping Systems

H16 Losses in Piping Systems H16 Losses in Piping Systems The equipment described in this manual is manufactured and distributed by TECQUIPMENT LIMITED Suppliers of technological laboratory equipment designed for teaching. BONSALL

More information

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser

More information

Study of Two Phase Fluid Flow in Water Wet Reservoir Rocks by Using X-Ray In situ Saturation Monitoring

Study of Two Phase Fluid Flow in Water Wet Reservoir Rocks by Using X-Ray In situ Saturation Monitoring Journal of Petroleum Science and Technology, Vol.1, No.1, 2011, 15-23 Study of Two Phase Fluid Flow in Water Wet Reservoir Rocks by Using X-Ray In situ Saturation Monitoring R. Behin * andh.sharifigaliuk

More information

Squeeze Cementing. Brett W. Williams Cementing Technical Advisor January 2016 Tulsa API Meeting

Squeeze Cementing. Brett W. Williams Cementing Technical Advisor January 2016 Tulsa API Meeting Squeeze Cementing Brett W. Williams Cementing Technical Advisor January 2016 Tulsa API Meeting Definition Squeeze Cementing is the process of applying hydraulic pressure to force or squeeze a cement slurry

More information

MS.RAJA ELGADY/PRESSURE PAPER 3

MS.RAJA ELGADY/PRESSURE PAPER 3 1- (a) A water tank has a rectangular base of dimensions 1.5m by 1.2m and contains 1440 kg of water. Calculate (i) the weight of the water, weight =...... [1] (ii) the pressure exerted by the water on

More information