Unit 10: Gas Laws. Monday Tuesday Wednesday Thursday Friday. 10 Review for Cumulative Retest. 17 Chem Think Gas Laws Tutorial- Computer Lab-

Size: px
Start display at page:

Download "Unit 10: Gas Laws. Monday Tuesday Wednesday Thursday Friday. 10 Review for Cumulative Retest. 17 Chem Think Gas Laws Tutorial- Computer Lab-"

Transcription

1 Unit 10: Gas Laws Name: Monday Tuesday Wednesday Thursday Friday February 8 Stoichiometry Test Review 9 Stoichiometry Test 10 Review for Cumulative Retest 11 Cumulative Re-Test 12 Pressure & Kinetic Theory of Gases 15 Combined Gas Law Soda can activity HW: p.8 16 Boyle s, Charles, and Avogadro s Law- HW: pp Chem Think Gas Laws Tutorial- Computer Lab- 18 Gas Laws Lab/Activity Begin working on Study Guide- pgs Study for Quiz on Friday HW: p.4 Bring an empty soda can to class monday 19 Quiz Dalton s Law of Partial Pressures HW: Pg. 17 Study Guide- pgs Ideal Gas Law HW: p.20 Study Guide- pgs Stoichiometry with Gas Laws HW: p.23 and study guide (pp.24-28) 24 Review for Test Study Guide Due TODAY!! 25 Gas Laws Test 26 Class Period: Test Date: February 25th 1

2 Pressure 1. What is the definition of pressure? 2. What causes pressure? 3. Which shoes create the most pressure? How does changing the area of contact affect the amount of pressure exerted by an object? 4. What are the units used to measure pressure? 5. How do I convert between units of pressure? atm = mmhg = kpa = psi 6. How many kilopascals are equivalent to 880 mmhg? 7. Calculate the number of pounds per square inch (psi) that are in 2.60atm. Temperature ALWAYS use absolute temperature (Kelvin) when working with gases. Conversion: K = C Practice problems: 32 C = K How much is 75 C in Kelvin? 2

3 The Behavior of Gases and the Kinetic Theory Kinetic refers to. The energy an object has, because of its motion, is called The Kinetic theory states that the tiny particles in all forms of matter are in. Watch the video segment (Kinetic Molecular Theory in the video Standard Deviants School Chemistry: Molecular Geometry) on Discovery Education and fill in the missing information Basic assumptions of the kinetic theory as it applies to gases are: 1. A gas is composed of particles, usually molecules or atoms that are from one another in comparison with their own dimensions. Particles are relatively far apart from one another and between them is. 2. Gas molecules are in. They travel in straight paths (unless they collide with a wall of a container) and move independently of each other. 3. The molecules exert no force on each other or on the container until they with each other or with the walls of the container. 4. The average kinetic energy of the molecules of a gas is proportional to the. 5. Every time a molecule collides with the wall, it exerts a on it which we call. Applying this knowledge we know Gases fill their containers regardless of the and of the containers. Because there is so much space between particles, gases are. Because gases are, they are used in automobile and other safety devices designed to the of an impact. All are perfectly. This means that during collisions kinetic energy is transferred without loss from one particle to another, and total kinetic energy remains. 3

4 The average speed of oxygen molecules in air at 20 o C is 1700 km/h. At these high speeds, the odor molecules from a hot pizza in Washington, D.C., should reach Mexico City in about 106 minutes. Why doesn t this actually happen? Questions: A. What happens when a closed container is inflated? B. A gas inside a bicycle tire exerts a pressure of 35 pounds per square inch (psi). How much air must be pumped into the tire to produce a pressure of 70 psi? ** The relationship between amount of gas and pressure is proportional, assuming the volume & temperature stay the same. C. What happens to pressure when a closed container is deflated? (Note: Gas particles move from region of higher pressure to lower pressure until equilibrium is reached.) HOMEWORK Day 1 - Practice Problems on Pressure & Temperature Conversions Show all work! Record your answer with the correct number of significant figures and units! 1. Calculate the pressure of 1.3atm in mmhg. 2. Convert 56kPa to psi. 3. How many atmospheres are equivalent to 230kPa? 4. What is 560K on the Celsius scale? 5. Water boils at 100 o C. What is the boiling point of water in Kelvin? 4

5 COMBINED GAS LAW The Combined Gas Law helps us explain what happens to gases as the pressure, temperature, and volume changes in respect to moles of a substance. Letter or Number Variable Name Unit Conversions P V 5

6 Letter or Number Variable Name Unit Conversions n* T 1 2 *NOTE: If n is not given in a problem, assume it to be 1 mole. Temperature must be in. Guided Practice: Remember: STP = atm and K or C 1. A hot air balloon has a volume of 7500L at 270K and a pressure of 1.2 atm. What will be the volume of the balloon if the pressure changed to 0.90atm and the temperature decreases to 230K? Givens and Unknowns: Equation: P 1 = V 1 = n 1 = T 1 = P 2 = V 2 = unknown n 2 = T 2 = Substitute & Solve: 6

7 2. The volume of a gas at STP is 22.4L. At 12 o C, the volume of the balloon changes to 55.0L. What is the new pressure? Givens and Unknowns: Equation: P 1 = V 1 = n 1 = T 1 = P 2 = V 2 = = n 2 = T 2 = Substitute & Solve: 7

8 Homework - Combined Gas Law Practice 1. A 5.00 L air sample at 170 K has a pressure of 107 kpa. What is the new pressure if the temperature is raised to 548 K and the volume expands to 7.00L? 2. A gas at 880mmHg and 298K occupies a container with an initial volume of 1.00 L. The pressure increases to 1980mmHg as the temperature rises to 398K. What will be the new volume? 3. The volume in a gas filled balloon is 30.0 L at 40 C and 3.6 atm of pressure. What volume will the balloon occupy at STP? 4. A container has an initial volume of 4.5 L, a pressure of 450 kpa and is at a temperature of 15 o C. If the container is expanded to 6.5 L while the pressure is decreased to 125 kpa, find the resulting temperature. 8

9 Soda Can Activity OBJECTIVES Students will demonstrate the effects of air pressure. Students will demonstrate that as a gas is heated it expands and as it cools it will contract. MATERIALS an empty aluminum soft-drink can a 1000 ml beaker a pair of beaker tongs hot plate PROCEDURE 1. Fill the large beaker with ice cold water. 2. Put milliliters of water into the empty soft-drink can. 3. Heat the can on the hot plate at the highest setting. When the water boils, a cloud of condensed vapor will escape from the opening in the can. Allow the water to boil for about two minutes. Do not let all of the water evaporate. 4. Using the beaker tongs, grasp the can and quickly invert it and dip it into the water in the pan. Be careful of the hot water! 5. Record your observation. 6. Clean up your lab station. OBSERVATION CONCLUSION Explain why the can was crushed (discuss the relationships between pressure, volume, and temperature). Why did you have to heat the can up in order for the can to be crushed? 9

10 Boyle s Law and Charles Law The Effect of Changing Size of Container Boyle s Law WHAT IF temperature and moles do not change and we just look at the relationship between pressure and volume. Our equation would look like this: P 1 V 1 = P 2 V 2 Boyle s Law Boyle s Law states that at a constant temperature, the volume of a gas is inversely proportional to the pressure exerted by that gas. Examples: a. If a gas is compressed from 2L to 1L, the pressure will by a factor of 2. b. If a gas is expanded from 1L to 3L, the pressures will by a factor of 3. c. Gases cool when they expand and heat when they compress. Why? Thus, if you forget to wear your suit in space, you will!!! Example Problems 1. The pressure of a 3.5L balloon was determined to be 1.5atm. Assuming that the temperature remained constant, what would be the volume of the balloon if the pressure was decreased to 0.45atm? 2. At 45 o C, a certain container of gas has the volume of 580mL and a pressure of 980mmHg. What would be the new volume of the gas at 250 mmhg and 45 o C? 10

11 The Effect of Temperature changes on Volume Charles s Law As the gas inside a balloon, the average KE of molecules. With fewer and less collisions, the gas molecules move together and occupy a volume than they previously did. The, assuming no change in the amount of gas and pressure. Charles Law V1 T 1 V T 2 2 Charles law states: At a constant pressure, the of a gas is directly to the in Kelvin. GUIDED PRACTICE: Temperature must be in. 1. The temperature of a 0.65L sample of carbon dioxide gas is 580K. If the pressure remains constant, what is the new volume of the gas if the temperature increases to 1300K? 2. A balloon has a volume of 5.6L at a temperature of 98 o C. If the volume of balloon increases to 9.5L, what will be the temperature of the gas in Celsius? Assume that the pressure remains constant. 11

12 Avogadro s Law Avogadro's Law (Avogadro's theory; Avogadro's hypothesis) is a principle stated in 1811 by the Italian chemist Amedeo Avogadro ( ) that "equal volumes of gases at the same temperature and pressure contain the same number of molecules regardless of their chemical nature and physical properties". This number (Avogadro's number) is 6.02 X It is the number of molecules of any gas present in a volume of 22.4 L and is the same for the lightest gas (hydrogen) as for a heavy gas such as carbon dioxide or bromine. Or to put it another way, "the principle that equal volumes of all gases at the same temperature and pressure contain the same number of molecules. Thus, the molar volume of all ideal gases, at 0 C and a pressure of 1 atm., is 22.4 liters" V 1 = V 2 V = the volume of the gas n 1 n 2 n = the amount of substance, in moles, of the gas Example #1: 5.00 L of a gas is known to contain mol. If the amount of gas is increased to 1.80 mol, what new volume will result (at an unchanged temperature and pressure)? Example #2: A cylinder with a movable piston contains.005 mol of helium, He, at room temperature. More helium was added to the cylinder and the volume was adjusted so that the gas pressure remained the same. How many moles of helium were added to the cylinder if the volume was changed from 2.00 L to 2.70 L? (The temperature was held constant.) 12

13 Example #3: 13

14 Homework Boyle s, Charles, and Avogadro s Laws Practice First, identify which gas law you need to use to solve the problem and then solve for the unknown. Be sure to show all work. For every problem, report your answer with the correct number of significant figures and the correct units! Remember, temperature must be in KELVINS!!! 1. Gas law: A sample of carbon dioxide occupies a volume of 3.5 L at 125 kpa. What pressure would the gas exert if the volume were decreased to 2.00 L? Assume that the temperature remains constant. 14

15 2. Gas law: A 6.0 L sample at 25 C and 2.00 atm of pressure contains 0.5 moles of a gas. If an additional 0.25 moles of gas at the same pressure and temperature are added, what is the final total volume of the gas? 3. Gas law: When 250 ml of O 2 is heated, there is now 310 ml O 2 at 273K. What is the original temperature in o C? 4. Gas law: Your Valentine s Day balloon has a maximum volume of 5.5 L. Your balloon originally has a volume of 5.2 L at 288K. When you walk into your Chemistry classroom, you realize that they have finally fixed the heat. The temperature in there is now 320K. Should you worry that your balloon will pop? Support your answer with calculations! 5. Gas law: The pressure on anesthetic gas changes from 15.0 atm to 6.0 atm. If the original volume was 12.0 L, what will be the new volume of the anesthetic gas after the pressure has been decreased? 6. Gas law: You have 2.00 L of dry H 2 at STP. How many moles is this? 15

16 Dalton s Gas Law of Partial Pressures Partial pressure of a gas in a mixture of gases is the pressure which that gas would exert if it were the only gas present in the container. Dalton's Law of Partial Pressures states that the total pressure in a gas mixture is the sum of the partial pressures of each individual gas. P total = P gas a + P gas b + P gas c + etc Dalton's Law of Partial Pressures assumes each gas in the mixture is behaving like an ideal gas. P total = P gas a + P gas b = + Example Problems 1. Air contains oxygen, nitrogen, carbon dioxide, and trace amounts of other gases. What is the partial pressure of oxygen (P oxygen) at 101.3kPa if the partial pressures of nitrogen, carbon dioxide, and other gases are 79.10kPa, 0.040kPa, and 0.94kPa, respectively. 2. A mixture of gases contains oxygen, nitrogen, and helium. The partial pressure of oxygen is 2.1atm. The partial pressure of nitrogen in 0.21atm, and the partial pressure of helium is 7.80atm. Determine the total pressure of this mixture. 16

17 Homework for Dalton s Gas Law of Partial Pressures For each problem, calculate the pressure using correct units. Box final answer. SHOW ALL WORK!! 1. Oxygen gas from the decomposition of potassium chlorate, KClO 3, was collected by water displacement. 2 KClO 3 2 KCl + 3 O 2 What is the partial pressure of oxygen collected if the barometric pressure (total) was torr and the vapor pressure of water at 20.0 C was 17.5 torr? P 1 = P total = P 2 = 2. A sample of nitrogen gas was collected over water at a temperature of 23.0 C. What is the partial pressure of nitrogen if the atmospheric pressure (total) was 785 mmhg and the vapor pressure of water was 21.1 mmhg? P 1 = P total = P 2 = 3. At high altitudes, pilots have to supplement their supply of oxygen. In this mixture, there are oxygen and nitrogen gases. If nitrogen s partial pressure is 250mmHg, calculate the partial pressure of oxygen if the total pressure is 710mmHg. 4. Saturn s atmosphere is composed of hydrogen and helium. If the partial pressures of the gases are 25.0atm and 1.2atm, respectively, what is the total pressure? 17

18 Ideal Gas Law An ideal gas is one that follows the gas laws at. Such a gas would have to conform precisely to the assumptions of. As you probably suspect, there is for which this is true. An ideal gas exist. Nevertheless, at many conditions of temperature and pressure, behave very much like an ideal gas. An important behavior of real gases that differs from that of a hypothetical ideal gas is that real gases can be and sometimes by cooling and by applying pressure. Ideal gasses cannot be. For example, when water vapor is cooled below 100 o C at standard atmospheric pressure, it condenses to a liquid. The behavior of other real gases is similar, although lower temperature and greater pressures may be required. ****Gases behave ideally at. If we look at one side of the Combined Gas Law: P V n T and solve it for one mole at STP, you would get a constant (symbolized as R). (101.3 kpa)(22.4 L) = 8.31 (L. kpa)/(k. mol) (1 mole)(273 K) We call this the ideal gas constant (R): If pressure is measured in: kpa atm mmhg torr The ideal gas constant (R) is: 8.31 (L. kpa)/(k. mol) (L. atm)/(k. mol) 62.4 (L. mmhg)/(k. mol) 62.4 (L. torr)/(k. mol) SO Label the variables: P : V: n: R: T: 18

19 GUIDED PRACTICE: 1. Calculate the number of moles of oxygen in a 12.5 L tank containing 250 atm, measured at 22 o C. Givens and Unknowns: Equation: PV = nrt Substitute & Solve: P = V = n = R = T = 2. If 4.5 g methane gas (CH 4) is introduced into an evacuated 2.00 L container at 35 o C, what is the pressure in the container, in atm? Givens and Unknowns: Equation: PV = nrt Substitute & Solve: P = V = n = R = T = 3. A balloon is filled with 0.34 moles of pure nitrogen. If the balloon is at 37 o C and is under pressure of 100 kpa, calculate the volume of the balloon. Givens and Unknowns: P = Equation: PV = nrt Substitute & Solve: V = n = R = T = 19

20 Homework for Ideal Gas Law L of carbon dioxide is at a temperature of 45º C and a pressure of 85 kpa. Calculate the number of moles of gas present. 2. The pressure inside a balloon filled with 168 g of nitrogen (N 2) is 95 kpa with a temperature of 15º C. Calculate the volume of the balloon L of compressed oxygen is at a temperature of 330 K. If there are 7.3 mols of oxygen in the container, calculate the pressure (in atm) inside the container. 4. What mass of carbon dioxide will occupy 5.5 L at 5.0 C and 0.74 atm? 5. If a cave has a volume of 5.4 x 10 6 L of air at a pressure of 140 kpa and it is determined that there are 3.0 x 10 5 mols of CO 2 present, calculate the temperature inside the cave. 20

21 Ideal Gas Law and Stoichiometry of Gases Ideal Gas Law and Stoichiometric Problems In industry and in the laboratory, many important chemical reactions involve gases. A common laboratory experiment that produces small amounts of hydrogen gas involves the reaction of an active metal with a strong acid. This reaction can be represented by the general equation: M (s) + HA (aq) MA (aq) + H 2 (g) where "M" represents the metal, "HA" the acid, and "MA" the salt formed between the metal and the anion of the acid. It is important to be able to perform stoichiometric calculations for gas reactions. Stoichiometric calculations involving gases are identical to those involving solids and liquids with one important exception. For chemical reactions involving only solids and/or liquids, the amounts of reactants and products are usually expressed in grams; however, for chemical reactions involving gases, the amounts of gaseous reactants are usually expressed in liters. To perform a stoichiometric calculation, the number of liters of a gas reactant must first be converted to moles using the ideal gas law. For stoichiometric calculations in which the number of moles of gas products has been calculated, the volume can be calculated using the ideal gas law. Example 1: 3.00 liters of nitrogen (N 2) gas is reacted with excess hydrogen (H 2) gas to form ammonia (NH 3) gas at 304K and a pressure of 1.02 atm. How many liters of ammonia gas are formed? Step 1: Write the balanced chemical reaction. N 2 (g) + H 2 (g) NH 3 (g) Step 2: Convert liters of N 2 to moles of N 2. NOTE: Since the gas is not at STP, you must convert using the Ideal Gas Law before you can do Stoichiometry!!! PV = nrt: Step 3: Convert moles of N 2 to moles of NH 3 using the mole ratio of the balanced chemical equation. Step 4: Convert moles of NH 3 to liters of NH 3 using the ideal gas law. PV = nrt: mole K 21

22 Example 2: Calculate the volume of hydrogen gas produced at 0.0 C and 1.00 atm of pressure by reacting 12.0 g of zinc metal with excess sulfuric acid. Step 1: Write the balanced chemical reaction. Step 2: Convert grams of zinc to moles of H 2 using the mole ratio from the balanced equation. Step 3: Convert moles of H 2 to liters of H 2 using the ideal gas law. PV = nrt Class Practice: 3. How many grams of calcium carbonate will be needed to form 4.29 liters of carbon dioxide? The following reaction takes place at a pressure of 1 atm and a temperature of 298K. CaCO 3(s) CO 2(g) + CaO(s) 22

23 Ideal and Stoichiometry Homework: 1. How many liters of water can be made from 55 grams of oxygen gas and an excess of hydrogen at a pressure of 12.4 atm and a temperature of 85 0 C? 2H 2(g) + O 2(g) 2H 2O (l) 2. If you burned a gallon of gas (C 8H 18) (approximately 4000 grams), how many liters of carbon dioxide would be produced at a temperature of 21.0 o C and a pressure of 1.00 atm? 2C 8H 18(l) + 25 O 2(g) 16 CO 2(g) + H 2O(g) 3. Using the same chemical equation as in #2, how many grams of water would be produced if 20.0 liters of oxygen were burned at a temperature of 263 o K and a pressure of 1.3 atm? 23

24 Gas Laws STUDY GUIDE Due: February 24 th Units of Measurement: For the following questions, use the following answer choices to indicate what each unit of measurement is used to measure. A. Pressure B. Volume C. Temperature 1. K 4. kpa 7. psi 2. atm 5. L 8. mmhg 3. ml 6. o C Kinetic Molecular Theory A crew was given steam cleaning equipment and asked to steam clean a Tank Car. The interior of the tank car was washed out & cleaned with steam. Then all the outlet valves were shut and the tank car was sealed. All the workers went home for the evening and when they returned, the picture below shows what they found. Explain why this happened using the behavior of gases to support your answer. Pressure Answer the following questions related to pressure. For any problems, show all work (using dimensional analysis) and report your answers with the proper number of units and significant figures. 1 atm = 760 mmhg = kpa = 14.7 psi 9. In a sample of gas, what causes pressure? Answer in a complete sentence. 24

25 10. How many millimeters of mercury are in 4.5atm? 11. How many kilopascals are in 76.0 psi? Relationships among P, V, T and the Number of Gas Particles Answer the following questions in complete sentences. 12. If temperature is held constant, as the volume increases, the pressure for a given sample of gas will? Justify your answer on a molecular level. 13. How does increasing the number of gas particles affect the pressure of a gas? Justify your answer on a molecular level. 14. How does the kinetic energy of a gas change as temperature is increased? How does this affect the pressure? Gas Laws and Graphing 15. Define Boyle s, Charles, and Avogadro s Laws. Use the following graphs to answer the next 7 problems. 25

26 Pressure(kPa) Volume (L) Graph #1 :The Relationship between Volume and Pressure of a Gas Volume (ml) Graph #2: The Relationship between Volume and Temperature of a Gas Temperature (K) 16. Which graph represents Boyle s Law? 17. Which graph represents Charles s Law? 18. Which graph has the same shape as Avogadro s Law? 19. In Graph #1, what is the pressure on 20mL of gas? 20. In Graph #2, what is the volume when the temperature reaches 55K? 21. Which graph represents an inverse relationship? 22. Which graph represents a direct relationship? Sample Problems Show all work. Be sure to report your answers with the correct numbers of significant figures and the correct units. Also, write down the gas law used to solve each problem. 23. What is the volume of a sample of gas that contains 1.2mol at 780K and 1.3atm? Name of Gas Law used here: 26

27 24. A balloon is heated so that it will expand. Initially, the volume is 56mL at 45 o C. If the balloon is heated so that it expands to 130mL, what is the new temperature in the balloon in degrees Celsius? Name of Gas Law used here: 25. What is the new pressure if a 2.0L sample at 120kPa is reduced to 1.2L assuming that the temperature remains constant? Name of Gas Law used here: 26. Laughing gas is a mixture of dinitrogen monoxide and oxygen. If the total pressure is 1.2atm, what is the partial pressure of dinitrogen monoxide given that the partial pressure of oxygen is 0.45atm? Name of Gas Law used here: 27. The Kelvin temperature of a gas was originally doubled. If the initial pressure is 740mmHg, what would be the new pressure after the temperature was increased? Name of Gas Law used here: 27

28 28. A 3.45L sample of nitrogen gas is originally at STP. If the temperature is increased to 50 o C and the pressure is raised to 2.3atm, what is the new volume? Name of Gas Law used here: 29. What is the mass of carbon monoxide gas if 0.304L is kept at 0.45atm and 440K? Name of Gas Law used here: 30. A cylinder with a movable piston contains moles of helium at room temperature. More helium was added to the cylinder and the volume was adjusted so that the gas pressure remained the same. How many moles of helium were added to the cylinder if the volume was changed from 2.00 L to 2.70 L? Name of Gas Law used here: 31. How many grams of AlCl 3 must decompose in order to produce 3.10 liters of Cl 2 at 50.0 C and 98.4 kpa? 2AlCl 3 2Al + 3Cl 2 28

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes Name Period CRHS Academic Chemistry Unit 11 Gas Laws Notes Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases Chemistry HP Unit 6 Gases Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases 6-1. Define pressure using a mathematical equation. 6-2. Perform calculations involving pressure,

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

4.) There are no forces of attraction or repulsion between gas particles. This means that

4.) There are no forces of attraction or repulsion between gas particles. This means that KINETIC MOLECULAR (K-M) THEORY OF MATTER NOTES - based on the idea that particles of matter are always in motion - assumptions of the K-M Theory 1.) Gases consist of large numbers of tiny particles that

More information

A. What are the three states of matter chemists work with?

A. What are the three states of matter chemists work with? Chapter 10 and 12 The Behavior of Gases Chapter 10 The States of Matter A. What are the three states of matter chemists work with? Section 10.1 Pg 267 B. We will explain the behavior of gases using the

More information

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

More information

Unit 8: Gases and States of Matter

Unit 8: Gases and States of Matter Unit 8: Gases and States of Matter Gases Particles that have no definite shape or volume. They adapt to the shape and volume of their container. Ideal gases are imaginary gases that comply with all the

More information

Gases. Edward Wen, PhD

Gases. Edward Wen, PhD Gases Edward Wen, PhD Properties of Gases expand to completely fill their container take the shape of their container low density much less than solid or liquid state compressible when pressure is changed.

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

More information

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure. Chapter 12 Section 1 Pressure A gas exerts pressure on its surroundings. Blow up a balloon. The gas we are most familiar with is the atmosphere, a mixture of mostly elemental nitrogen and oxygen. Pressure

More information

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT: AP Chemistry Ms. Ye Name Date Block Kinetic Molecular Theory Explains properties of gases, liquids, and solids in terms of energy using an ideal gas, an imaginary which fits all the assumptions of kinetic

More information

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases.

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases. Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

More information

Gases Chapter 8. Chapter 8

Gases Chapter 8. Chapter 8 Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

More information

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often Gases Chapter 8 8.1 Properties of Gases Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases. Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle

More information

2. Calculate the ratio of diffusion rates for carbon monoxide (CO) and carbon dioxide (CO2). υa = MB = 44 = 1.25

2. Calculate the ratio of diffusion rates for carbon monoxide (CO) and carbon dioxide (CO2). υa = MB = 44 = 1.25 Gas laws worksheet (2-08) (modified 3/17) Answer key Graham s Law 1. Calculate the ratio of effusion rates for nitrogen (N2) and neon (Ne). υa = MB = 20 = 0.845 υb MA 28 2. Calculate the ratio of diffusion

More information

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. Atmospheric pressure is 760 mm Hg. 2. The SI unit of pressure is

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg. Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

More information

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1 Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage

More information

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 11 Gases STUDY GUIDE Accelerated Chemistry SCANTRON Name /74 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements

More information

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases.

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Chapter 8 Gases Practice Problems Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Summary: In a gas, particles are so far

More information

Chapter 5. Nov 6 1:02 PM

Chapter 5. Nov 6 1:02 PM Chapter 5 Nov 6 1:02 PM Expand to fill their containers Fluid motion (they flow) Have low densities (1/1000 the density of equivalent liquids or solids) Compressible Can Effuse and Diffuse Effuse: The

More information

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure = Chapter 13 Gas Laws Chapter 13 Gases and Pressure Pressure and Force Pressure is the force per unit area on a surface. Pressure = Force Area Chapter 13 Gases and Pressure Gases in the Atmosphere The atmosphere

More information

CHEMISTRY - CLUTCH CH.5 - GASES.

CHEMISTRY - CLUTCH CH.5 - GASES. !! www.clutchprep.com CONCEPT: UNITS OF PRESSURE Pressure is defined as the force exerted per unit of surface area. Pressure = Force Area The SI unit for Pressure is the, which has the units of. The SI

More information

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot?

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot? Name Period HW 1 Worksheet (Goals 1-4) - Kinetic Molecular Theory 1. Describe how gases, liquids, and solids compare using the following table. Solids Liquids Gases Volume (definite or indefinite) Molecular

More information

Chapter 12. The Gaseous State of Matter

Chapter 12. The Gaseous State of Matter Chapter 12 The Gaseous State of Matter The air in a hot air balloon expands When it is heated. Some of the air escapes from the top of the balloon, lowering the air density inside the balloon, making the

More information

Unit 8: Kinetic Theory Homework Packet (90 points)

Unit 8: Kinetic Theory Homework Packet (90 points) Name: Key Period: By the end of Unit 8, you should be able to: Kinetic Theory Chapter 13-14 4. Define kinetic theory of gases including collisions 5. Define pressure, including atmospheric pressure, vapor

More information

CHM 111 Unit 5 Sample Questions

CHM 111 Unit 5 Sample Questions Name: Class: Date: As you work these problems, consider and explain: A. What type of question is it? B. How do you know what type of question it is? C. What information are you looking for? D. What information

More information

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion Five assumptions: 1. Most of the volume occupied dby a gas is empty space 2. Collisions between gas particles

More information

Unit 11 Gas Laws Chapters 13 of your textbook

Unit 11 Gas Laws Chapters 13 of your textbook Unit 11 Gas Laws Chapters 13 of your textbook Early Booklet E.C.: + 2 Unit 11 Hwk. Pts.: / 19 Unit 11 Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets for Unit 11 1.1 I can

More information

Unit 9: Gas Laws REGENTS CHEMISTRY

Unit 9: Gas Laws REGENTS CHEMISTRY Name: Unit 9: Gas Laws REGENTS CHEMISTRY 1 Name: Unit 9: Gas Laws The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day!

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day! Name Unit 9 Notes: Gas Laws Period Skills: 1. Gases and Entropy 2. Distinguish between Ideal and Real gases 3. Understand KMT and Avogadro s Law 4. Identify and Solve Boyle s Law Problems 5. Identify and

More information

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] Chapter 10 Gases We have talked a little about gases in Chapter 3 and we dealt briefly with them in our stoichiometric calculations in

More information

Date: Period: Gas Laws Worksheet #1 - Boyle s, Charles, Gay-Lussac s, and Combined Gas Law

Date: Period: Gas Laws Worksheet #1 - Boyle s, Charles, Gay-Lussac s, and Combined Gas Law Name: Date: Period: Gas Laws Worksheet #1 - Boyle s, Charles, Gay-Lussac s, and Combined Gas Law Boyle s Law: V1P1 = V2P2 1. A gas sample contained in a cylinder equipped with a moveable piston occupied

More information

Accelerated Chemistry Study Guide Chapter 13: Gases

Accelerated Chemistry Study Guide Chapter 13: Gases Accelerated Chemistry Study Guide Chapter 13: Gases Terms, definitions, topics Diffusion Kinetic Molecular Theory Atmospheric pressure Barometer Manometer STP Absolute zero Page 1 of 42 Molar volume Partial

More information

NOTES: Behavior of Gases

NOTES: Behavior of Gases NOTES: Behavior of Gases Properties of Gases Gases have weight Gases take up space Gases exert pressure Gases fill their containers Gases are mostly empty space The molecules in a gas are separate, very

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

GASES. Unit #8. AP Chemistry

GASES. Unit #8. AP Chemistry GASES Unit #8 AP Chemistry I. Characteristics of Gases A. Gas Characteristics: 1. Fills its container a. no definite shape b. no definite vol. 2. Easily mixes w/ other gases 3. Exerts pressure on its surroundings

More information

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2 Chapter 6: Gases 6.1 Measurements on Gases MH5, Chapter 5.1 Let s look at a certain amount of gas, i.e. trapped inside a balloon. To completely describe the state of this gas one has to specify the following

More information

Chapter 11. Recall: States of Matter. Properties of Gases. Gases

Chapter 11. Recall: States of Matter. Properties of Gases. Gases Chapter 11 Gases Recall: States of Matter Solids and Liquids: are closely related because in each case the particles are interacting with each other Gases: Properties of Gases Gases can be compressed Gases

More information

Chemistry Chapter 11 Test Review

Chemistry Chapter 11 Test Review Chemistry Chapter 11 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Pressure is the force per unit a. volume. c. length. b. surface area.

More information

General Properties of Gases

General Properties of Gases GASES Chapter 13 Importance of Gases Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide,, NaN 3. 2 NaN 3 ---> > 2 Na + 3 N 2 THREE STATES OF MATTER General

More information

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c).

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c). Section 8: Gases The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 8.01 Simple Gas Laws Chemistry (9)(A) 8.02 Ideal Gas Law Chemistry

More information

Gas Laws Chapter 14. Complete the following pressure conversion. Be sure to show how units cancel.

Gas Laws Chapter 14. Complete the following pressure conversion. Be sure to show how units cancel. Gas Laws Chapter 14 Complete the following pressure conversion. Be sure to show how units cancel. 1 atm = 760 mm Hg = 760 torr = 101.3 kpa = 14.7 psi = 1.013 bar 1. The air pressure for a certain tire

More information

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them. Chapter 5 Gases Gas Gases are composed of particles that are moving around very fast in their container(s). These particles moves in straight lines until they collides with either the container wall or

More information

Chemistry 20 Unit 2 Gases FITB Notes. Topic A Characteristics of Gases

Chemistry 20 Unit 2 Gases FITB Notes. Topic A Characteristics of Gases Chemistry 20 Unit 2 Gases FITB Notes General Outcome: Topic A Characteristics of Gases We use technologies that were designed with the knowledge of the visible characteristics ( ) of gases ex. SCUBA equipment,

More information

Kinetic-Molecular Theory of Matter

Kinetic-Molecular Theory of Matter Gases Properties of Gases Gas Pressure Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D. 1 2 Gases What gases are important for each of the following: O 2, CO 2

More information

Chemistry A Molecular Approach. Fourth Edition. Chapter 5. Gases. Copyright 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved

Chemistry A Molecular Approach. Fourth Edition. Chapter 5. Gases. Copyright 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved Chemistry A Molecular Approach Fourth Edition Chapter 5 Gases Supersonic Skydiving and the Risk of Decompression Gas Gases are composed of particles that are moving around very fast in their container(s).

More information

Expand to fill their containers, are highly compressible, have extremely low densities.

Expand to fill their containers, are highly compressible, have extremely low densities. Chem150 week6 Handout 1 Gases Characteristics of Gases: Unlike liquids and solids, they Expand to fill their containers, are highly compressible, have extremely low densities. Pressure is the amount of

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet Name: Unit 10- Gas Laws Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 5 Kinetic Molecular Theory Notes IC 1 6 8 Kinetic Molecular Theory and Pressure Worksheet IC 2 9 10 Gas Law

More information

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure

More information

Chapter 10: Gases. Characteristics of Gases

Chapter 10: Gases. Characteristics of Gases Chapter 10: Gases Learning Outcomes: Calculate pressure and convert between pressure units with an emphasis on torr and atmospheres. Calculate P, V, n, or T using the ideal-gas equation. Explain how the

More information

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

More information

Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10)

Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10) Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10) This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions outlined below. DO

More information

Name Hour. The Behavior of Gases. Practice B

Name Hour. The Behavior of Gases. Practice B Name Hour The Behavior of Gases Practice B B 1 Objective 1: Apply Boyle s Law, Charles s Law, and Gay-Lussac s Law to solve problems involving pressure and volume and temperature. 1. A high-altitude balloon

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

More information

Gases and Pressure. Main Ideas

Gases and Pressure. Main Ideas Gases and Pressure Key Terms pressure millimeters of mercury partial pressure newton atmosphere of pressure Dalton s law of partial pressures barometer pascal In the chapter States of Matter, you read

More information

PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PROPERTIES OF GASES. [MH5; Ch 5, (only)] PROPERTIES OF GASES [MH5; Ch 5, 5.1-5.5 (only)] FEATURES OF A GAS Molecules in a gas are a long way apart (under normal conditions). Molecules in a gas are in rapid motion in all directions. The forces

More information

GAS LAW WORKSHEET 1 KEY

GAS LAW WORKSHEET 1 KEY 377 GAS LAW WORKSHEET 1 KEY 1. A sample of oxygen gas occupies a volume of 436. ml at 1.0 atm. If the temperature is held constant, what would the pressure of this gas be when the gas is compressed to

More information

UNIT 10 - GASES. Notes & Worksheets - Honors

UNIT 10 - GASES. Notes & Worksheets - Honors Ideal Gas Equation 1 WKSHT 1.) What is the pressure exerted by 2.0 moles of an ideal gas when it occupies a volume of 12.0 L at 373 K? 2.) A flashbulb of volume 2.6 cm 3 contains O 2 gas at a pressure

More information

Chapter 5 TEST: Gases

Chapter 5 TEST: Gases Chapter 5 TEST: Gases 1) Gases generally have A) low density B) high density C) closely packed particles D) no increase in volume when temperature is increased E) no decrease in volume when pressure is

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

THE BEHAVIOR OF GASES

THE BEHAVIOR OF GASES 14 THE BEHAVIOR OF GASES SECTION 14.1 PROPERTIES OF GASES (pages 413 417) This section uses kinetic theory to explain the properties of gases. This section also explains how gas pressure is affected by

More information

Lecture Handout 5: Gases (Online Text Chapter 6)

Lecture Handout 5: Gases (Online Text Chapter 6) Lecture Handout 5: Gases (Online Text Chapter 6) I. The Structure of a Gas A. Gases are composed of particles that are flying around very fast in their container(s). 1. The particles travel in straight

More information

B. As the gas particles move and strike a surface, they push on that surface 1. If we could measure the total amount of force exerted by gas

B. As the gas particles move and strike a surface, they push on that surface 1. If we could measure the total amount of force exerted by gas Chapter 5: Gases I. The Structure of a Gas A. Gases are composed of particles that are flying around very fast in their container(s). 1. The particles travel in straight lines until they encounter either

More information

Funsheet [WHAT IS PRESSURE AND TEMPERATURE] Gu 2015

Funsheet [WHAT IS PRESSURE AND TEMPERATURE] Gu 2015 Funsheet 7.0 7.1 [WHAT IS PRESSURE AND TEMPERATURE] Gu 2015 1. Convert the following pressures. a) 101 kpa =? atm b) 55 Torr =? psi c) 60. mmhg =? bar d) 45 Torr =? kpa e) 5 psi =? atm f) 0.0056 atm =?

More information

AP TOPIC 6: Gases. Revised August General properties and kinetic theory

AP TOPIC 6: Gases. Revised August General properties and kinetic theory AP OPIC 6: Gases General properties and kinetic theory Gases are made up of particles that have (relatively) large amounts of energy. A gas has no definite shape or volume and will expand to fill as much

More information

Honors Chemistry Unit 7 Gas Laws Notes

Honors Chemistry Unit 7 Gas Laws Notes Honors Chemistry Unit 7 Gas Laws Notes Kinetic Molecular Theory 1. List the five assumptions: Assumption Description Extra Info 1 Basically means: the particles themselves have compared to the space between

More information

Chemistry 101 Chapter 5 GAS MIXTURES

Chemistry 101 Chapter 5 GAS MIXTURES GAS MIXTURES Consider mixing equal volumes of 3 different gases, all at the same temperature and pressure in a container of the same size. 1 L He 1 L N 2 1 L O 2 1 L mixture t = 0 0 C t = 0 0 C t = 0 0

More information

Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four

Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four Kinetic Molecular Theory Gases Gas particles are so small that their individual volume can be considered to be negligible Gas particles are in constant motion and the collisions of the particles with the

More information

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter.

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter. ROERIES OF GASES Gases are the least dense and most mobile of the three phases of matter. articles of matter in the gas phase are spaced far apart from one another and move rapidly and collide with each

More information

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops C h e m i s t r y 1 2 C h a p t e r 11 G a s e s P a g e 1 Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops Gas Properties: Gases have high kinetic energy low

More information

Practice Packet Unit 8: Gases

Practice Packet Unit 8: Gases Name: Regents Chemistry: Practice Packet Unit 8: Gases www.chempride.weebly.com Vocabulary: Absolute Zero: Avogadro s Hypothesis: (Normal) Boiling Point: Direct Relationship: Evaporating: Gas: Ideal Gas:

More information

Gas Law Worksheets - WS: Boyle s and Charles Law

Gas Law Worksheets - WS: Boyle s and Charles Law Gas Law Worksheets - WS: Boyle s and Charles Law Boyle s Law states that the volume of a gas varies inversely with its pressure if temperature is held constant. (If one goes up the, other goes down.) We

More information

Chemistry 1B Chapter 10 Worksheet - Daley. Name

Chemistry 1B Chapter 10 Worksheet - Daley. Name Name 1) The National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. The units the NWS uses for atmospheric pressure are inches of mercury. A barometric

More information

Boyle s Law Practice

Boyle s Law Practice Boyle s Law Practice Boyle s Law is an indirect relationship. Most of these problems can be done in your head without showing your work. 1. Herman has 30.0 L of helium gas trapped in a cylinder by a piston.

More information

Gases. Unit 10. How do gases behave?

Gases. Unit 10. How do gases behave? Gases Unit 10 How do gases behave? Gases are perhaps the most mysterious of all of the phases of matter. For the most part gases are invisible to us, and it was once believed that in the air there is no

More information

Unit 14 Gas Laws Funsheets

Unit 14 Gas Laws Funsheets Name: Period: Unit 14 Gas Laws Funsheets Part A: Vocabulary and Concepts- Answer the following questions. Refer to your notes and the PowerPoint for help. 1. List 5 different common uses for gases: a.

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

More information

More Practice with Gas Laws KEY

More Practice with Gas Laws KEY More Practice with Gas Laws KEY Chemistry Directions: For each question, identify the applicable law and solve for the correct answer using dimensional analysis. Express your answer to the correct number

More information

PSI Chemistry: Gases Multiple Choice Review

PSI Chemistry: Gases Multiple Choice Review PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kinetic-molecular theory, particles of matterare in constant motion (A) have different shapes (B) have different

More information

Notes: Gas Laws (text Ch. 11)

Notes: Gas Laws (text Ch. 11) Name Per. Notes: Gas Laws (text Ch. 11) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing information

More information

Practice Packet Unit 8: Gases

Practice Packet Unit 8: Gases Regents Chemistry: Mr. Palermo Practice Packet Unit 8: Gases Vocabulary: Lesson 1: Lesson 2: Lesson 3: Study Guide: 1 Vocabulary For each word, provide a short but specific definition from YOUR OWN BRAIN!

More information

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101.

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101. Simple Gas Laws To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and 101.3 kpa If assuming 1 mol, V = 22.4L SATP: 25 C (298 K) and 101.3 kpa If assuming 1 mol, V =

More information

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas. Unit 4 THE GAS STATE CHAPTER KEY TERMS HOME WORK 9. Kinetic Molecular Theory States of Matter Solid, Liquid, gas Page 4 # to 4 9. Boyles Law P α /V PV = Constant P V = P V Pressure Atmospheric Pressure

More information

Gases and Pressure SECTION 11.1

Gases and Pressure SECTION 11.1 SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.

More information

Chapter 5 Gases. AP CHEMISTRY Chapter 5 Scotch Plains-Fanwood High School Page 1

Chapter 5 Gases. AP CHEMISTRY Chapter 5 Scotch Plains-Fanwood High School Page 1 Chapter 5 Gases Kinetic Theory All matter is composed of tiny particles that are in continuous, random motion. Gas Pressure = Force Demo: Test tube/h2o beaker Area Demo: Can AP CHEMISTRY Chapter 5 Scotch

More information

Behavior of Gases Chapter 12 Assignment & Problem Set

Behavior of Gases Chapter 12 Assignment & Problem Set Behavior of Gases Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Behavior of Gases 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

Ch. 14 The Behavior of Gases

Ch. 14 The Behavior of Gases Ch. 14 The Behavior of Gases 14.1 PROPERTIES OF GASES Compressibility Compressibility: a measure of how much the volume of matter decreases under pressure Gases are easily compressed because of the spaces

More information

Gases Chapter 11 (and 10)

Gases Chapter 11 (and 10) Gases Chapter 11 (and 10) Warm up 1. What is a gas? 2. What is pressure? 3. What units are used to measure pressure? Properties of Gas Expansion: indefinite shape and volume Fluidity: particle move pass

More information

Gases. Name: Class: Date: Matching

Gases. Name: Class: Date: Matching Name: Class: Date: Gases Matching Match each item with the correct statement below. a. Boyle's law d. Graham's law b. Charles's law e. Gay-Lussac's law c. Dalton's law f. ideal gas law 1. For a given mass

More information

Chapter 13: The Behavior of Gases

Chapter 13: The Behavior of Gases Chapter 13: The Behavior of Gases I. First Concepts a. The 3 states of matter most important to us: solids, liquids, and gases. b. Real Gases and Ideal Gases i. Real gases exist, ideal gases do not ii.

More information

Name: Chapter 13: Gases

Name: Chapter 13: Gases Name: Chapter 13: Gases Gases and gas behavior is one of the most important and most fun things to learn during your year in chemistry. Here are all of the gas notes and worksheets in two packets. We will

More information

Temperature Temperature

Temperature Temperature Temperature Temperature is a measure of how hot or cold an object is compared to another object. indicates that heat flows from the object with a higher temperature to the object with a lower temperature.

More information