Unit 7. Pressure in fluids


 Claud Lindsey
 5 months ago
 Views:
Transcription
1  Unit 7. Pressure in fluids Index 1. Pressure Fluids Pressure in fluids Pascal's principle Archimedes principle Atmospheric pressure Torricelli and the barometric pressure...8 Practice exam...9 Page 1 of 10
2 1. Pressure Pressure (symbol: P) is the ratio of force to the area over which that force is distributed. Unit SI: The SI unit of pressure is the newton per square metre, which is called the pascal (Pa) A pressure of 1 Pa is small; it approximately equals the pressure exerted by a dollar bill resting flat on a table, so we often use other units such as: 1 atm = 760 mm Hg = 1013 mbar = Pa P = F/A Activities: 1. Who exerts a bigger pressure on the ground? a) a twotonne elephant that is standing on just one of its legs, which has a surface of 500cm2. b) a fiftykilogram ballerina standing on the toes of one of her feet, with a surface of 3cm2. (Answer: elephant: Pa Ballerina: 1, Pa) 2. Calculate the pressure produced by a force of 800 N acting on an area of 2.0 m 2 Sol: 400 Pa 3.. A boy of weight 500 N has feet with a total area of 200 cm 2. What is the pressure between him and the ground if he stands on both feet? Sol: Pa 4. The pressure between a car tyre and the road is Pa. If the car has a weight of N what is the area of contact between the tyre and the road? Sol: 0.1 m 2 5. The pressure in a boiler is Pa. If the area of one end is 0.6 m 2. What is the force on that end? Sol: N 2. Fluids  What is it? Liquids and gases  Characteristics: mass volume shape Can they flow? Can be mixed? Can be compressed? solid liquid gas constant or variable? constant or variable? constant or variable? Yes or no? Yes or no? Yes or no? Page 2 of 10
3  Density It is the relationship between the mass of a body and the volume it occupies d = m/v DENSITY is a physical property of matter, as each element and compound has a unique density associated with it. Density Comparison to Water: In chemistry, the density of many substances is compared to the density of water. Does an object float on water or sink in the water? If an object such as a piece of wood floats on water it is less dense than water vs. if a rock sinks, it is more dense than water. Ice: Everyone knows that ice floats on water, but did you know that this is an abnormal physical property of solid/liquid state of water? The more normal physical property is for the solid of a compound to sink in its own liquid. 3. Pressure in fluids Pressure is defined as force divided by the area on which the force is pushing. You can write this as an equation, if you wanted to make some calculations: where P = F/A P = pressure F = force A = area Pressure due to gravity Since the weight of an object or material is equal to the force it exerts due to gravity, An object can exert downward pressure due to its weight and the force of gravity. The pressure you exert on the floor is your weight divided by the area of the soles of your shoes. If the force is due to the weight (W) of the object, the equation is then: P = W / A W = m g = d V g then P = d g h because h = V/A Static Fluid Pressure The pressure exerted by a static fluid depends only upon the depth of the fluid, the density of the fluid, and the acceleration of gravity. The pressure in a static fluid arises from the weight of the fluid and is given by the expression P static fluid = dgh where ρ = m/v = fluid density g = acceleration of gravity h = depth of fluid Page 3 of 10
4 Sea water density = kg/m 3 Sol Pa Physics and chemistry The pressure from the weight of a column of liquid of area A and height h is The most remarkable thing about this expression is what it does not include. The fluid pressure at a given depth does not depend upon the total mass or total volume of the liquid. The above pressure expression is easy to see for the straight, unobstructed column, but not obvious for the cases of different geometry which are shown. Activities: 6. Find the difference in pressure that can be found between two places situated 5m and 9 m deep in sea water (d= 1, kg/m3). This pressure should be expressed in Pascals, atmospheres and mm of mercury. 7. Which pressure must sea animals living at a depth of 5 000m bear? Answer: 40,376 Pa, atm, mm Hg 8. The maximum pressure a human being can bear is 8 atm. How deep can a person go down into the sea without risk? (1 atm = Pa) Sol: 80.3 m 9.A bath tap is round and has a 4 cm radius. If we fill the bathtub with water to a height of 50 cm, calculate the force that must be applied because of the pressure inside the liquid to lift the plug. Area of a circle =. R 2 Sol: 24.6 N 10. Calculate the difference between the pressures that must be born by two fish in a reservoir if one is 5 metres above the other. Sol: Pa 11. The side window of a submarine has an 80 cm diameter. Calculate the force that is borne by it when the submarine is at a depth of 8 km (sea water density kg/m 3.) Area of a circle =. R 2. Sol: Pa 12. You might have read that if a car falls into a river or into the sea, we must wait until it has filled up with water before opening its door. Why do you think this is so? Page 4 of 10
5 4. Pascal's principle Pascal s principle says that given a fluid in a totally enclosed system, a change in pressure at one point in the fluid is transmitted to all points in the fluid, as well as to the enclosing walls. In other words, if you have a fluid enclosed in a pipe (with no air bubbles) and change the pressure in the fluid at one end of the pipe, the pressure changes all throughout the pipe to match. The fact that pressure inside an enclosed system is the same (neglecting gravitational differences) has an interesting consequence. Because P = F/A, you get the following equation for force: F = P A So if the pressure is the same everywhere in an enclosed system but the areas you consider are different, can you get different forces? A hydraulic system magnifies force. To make this question clearer, look at the figure, which shows a system of enclosed fluid with two hydraulic pistons, one with a piston head of area A 1 and one with a piston head of area A 2. You apply a force of F 1 on the smaller piston. What is the force on the other piston, F 2? Pressure at each point is F/A. According to Pascal s principle, the pressure is the same everywhere inside the fluid, so: Solving for F 2 gives you the force at Point 2: Page 5 of 10
6 That means that you can develop a huge force from a small force if the ratio of the piston sizes is big. For example, say the area of Piston 2 is bigger than Piston 1 by a factor of 100. Does that mean that any force you apply to piston 1 will be multiplied by 100 times on piston 2? Yes, indeed that s how hydraulic equipment works. By using a small piston at one end and a large piston at the other, you can create huge forces. Backhoes and other hydraulic machines, such as garbage trucks and hydraulic lifts, use Pascal s principle to function. What s the catch here? If you push on Piston 1 and get 100 times the force on Piston 2, you seem to be getting something for nothing. The catch is that you have to push the smaller piston 100 times as far as the second piston will move. Activities: 13. Calculate the force that bust be applied on the small piston of a hydraulic press, if we need to lift a mass of 100 kg with the big one. The area of the small piston is 15 cm 2 and the area of the big one is 1200 cm 2. Which mass could we place on the small piston to get such a force? sol: 12,24 N; 1,25 kg 14. The surfaces of the pistons in a hydraulic press are : 20cm 2 the small one and 500 cm 2 the big one. If we want to lift a mass of 2000 kg with it, a) Which force must we apply on the small piston? b) If we apply a maximum force of 900 N, which is the biggest amount of mass we would be able to lift? Draw it. 5. Archimedes principle Sol: a) 784 N b) 2296 Kg Physical law of buoyancy, discovered by the ancient Greek mathematician and inventor Archimedes, stating that any body completely or partially submerged in a fluid (gas or liquid) at rest is acted upon by an upward, or buoyant, force the magnitude of which is equal to the weight of the fluid displaced by the body. The volume of displaced fluid is equivalent to the volume of an object fully immersed in a fluid or to that fraction of the volume below the surface for an object partially submerged in a liquid. B = W B = m L g B = d L V g The apparent weight is the weight of a body as affected by the buoyancy of a fluid in which it is immersed, being the true weight minus the weight of the displaced fluid B = W W' Page 6 of 10
7 Activities: 15. A solid body has a volume of m 3 and is placed in a liquid whose density is 1030kg/m 3. Calculate: a) The buoyancy it experiments. b) The apparent weight of the solid body, if you know that its mass is 0.15 kg. c) The density of the solid body. Answer: a) 0.27 N b) 1.2 N c) 5555 kg/m An objects weights 150 N in the air, 100 N in the water and 125 N in another liquid. a) Calculate the density of the object. b) What is the density of the other liquid? Answer: a) d = 3000 kg/m 3 ; b) d= 500 kg/m The body of a 70 Kg person takes up a volume of 60 L. Calculate if a life jacket of 30 L of volume of negligible weight can surely float. Prove it A wooden boat of 800 Kg/m 3 of density displaces a maximum volume of water of 200 l. What s the maximum weight we could put on it so that it doesn t sink? Sol: m = 40 Kg 19. A piece of aluminium weights 26,5 N in the air and 18,6 in alcohol. The density of the alcohol is 800 Kg/m 3. Calculate the thrust it undergoes, its volume and density. Sol: B = 7.9 N V = 103 m 3 d= 2700 kg/m A stone 103 m 3 of volume and 2600 Kg/m 3 of density sinks into the water. Calculate the weight of the stone in the air, the thrust it undergoes in the water and the apparent weight in that liquid. Sol: W = N B = 9.8 N W = N 21. When you hang a small object from a dynamometer it measures 1,4N and when you sink it completely in water it measures 1,0 N. What s the volume of the object and its density? V = m 3 d = 3571 kg/m An object of 5 Kg of mass and 2 L of volume weights 12 N when being submerged in a liquid of an unknown density. Calculate the density of the liquid. Sol: 1887 kg/m A stone of 0,5 Kg has an apparent weight of 3N when being submerged into the water. Calculate the volume and density of this object. 6. Atmospheric pressure V = m 3 d = 2579 kg/m 3 Air pressure is the force exerted on you by the weight of tiny particles that make up the air. Although this particles are invisible, they still have weight and take up space. Since there's a lot of "empty" space between molecules, air can be compressed to fit in a smaller volume. Weather forecasters measure air pressure with a barometer. Barometers are used to measure the current air pressure at a particular location in "mm of mercury" or in "millibars" (mb). Page 7 of 10
8 How much pressure are you under? Earth's atmosphere is pressing against each square inch of you with a force of 1 kilogram per square centimeter (14.7 pounds per square inch). The force on 1,000 square centimeters (a little larger than a square foot) is about a ton! Why doesn't all that pressure squash me? Remember that you have air inside your body too, that air balances out the pressure outside so you stay nice and firm and not squishy. Air pressure can tell us about what kind of weather to expect as well. If a high pressure system is on its way, often you can expect clear skies. If a low pressure system is coming, then look for storms and rain. Pressure caused by the weight of the atmosphere. At sea level it has a mean value of one atmosphere but reduces with increasing altitude Torricelli and the barometric pressure P = d g h Galileo's secretary and scientific successor, Evangelista Torricelli, helped prove the existence of air pressure through a famous experiment that he did with a mercuryfilled glass tube. Some of Galileo's contemporaries had built simple barometers, using water in long tubes, to try to prove the existence of a vacuum. But in 1643, Torricelli took the barometer idea a step further. He realized that aircontrary to contemporary thoughtwas not weightless and that the rise and fall of liquid in a barometric tube was related to air pressure. To show this, he developed an experiment using liquid mercury or "quicksilver." Since mercury is about 14 times as heavy as water, Torricelli was able to use a much shorter tube than the earlier water barometers required. He filled the tube with mercury and then inverted it into a dish of mercury. Some of the mercury drained from the tube, but then it stopped at a certain level14 times less than the level water stopped at, to be exact. Torricelli postulated that air exerted pressure on the mercury in the dish, pushing hard enough on the surface area to keep most of the mercury inside the tube. Thus, it was not the attraction of the vacuum at the top of the tube which held the mercury inside (as other scientists thought), but rather, the phenomenon was the result of the pressure exerted by air. Thus, the barometer could be used to measure air pressure. Later generations of scientists, most notably Blaise Pascal, developed the barometer further. You can demonstrate air pressure's effects through an experiment similar to Torricelli's. Stick a plastic straw in a glass of juice or other colored drink, and suck enough liquid into the straw to fill it about halfway up. When you suck on the straw, a partial vacuum is created in the top of the straw. Air pressure on the liquid in the glass forces the juice up the straw and into your mouth. Now, hold your finger over the top of the straw and slowly pull the straw out of the glass. While your finger is pressed over the top, a partial vacuum is maintained in the top of the straw. The air pressure is greatest underneath the straw and will keep the liquid from dripping out. Activities: 24. What is the value of the atmospheric pressure that Torricelli got, having into account that the above pressure is the same as the one exerted by a column of mercury 76 cm high (density= Kg/m 3 )? Calculate it in Pascals. Sol: Pa Page 8 of 10
9 25. How high would a liquid go in Torricelli s column if we used: a. water? b. carbon tetrachloride (density 1600 Kg/m 3 )? Sol: a m b m 26. Calculate the variation in the pressure experienced for every 10 metres we raised into the atmosphere, supposing that it s homogeneous. (0,001 Kg/m 3 ) and the variation of pressure in the water when getting 10 m deeper (density 1000 Kg/m 3 ). Sol: air Pa water Pa 27. Change the following units: 750 mm Hg atm 1,2 atm mm Hg 1,2 atm pa 76 cm Hg mm Hg 1, Pa atm. Sol: atm b. 912 mm Hg c Pa d. 760 mm Hg e atm. Page 9 of 10
10 Practice exam 1. In a hydraulic press the large piston has a 1m 2 area, and the small piston 0,1m 3. We want to raise a 100 kg mass. a) Where should the mass be placed? b) Which force should be exerted? c) What will the pressure be on the minor piston?; and on the large one? Sol: b) 98 N c) 980 Pa 2. A suspended body weighs 100 N and 75 N when it is sunk in water. Calculate: its thrust, its volume and density. Sol: 25 N, V= m 3 d = 4000 kg/m 3 3.A submarine goes down to a 100 m depth in the sea, where density is 1030kg/m 3. a) Calculate the pressure exerted on the submarine and state it in atmospheres and in mm Hg b) Which force will have a crew member to use to open a 0,5m 2 surface hatch? c) How many Kg will equal the the force used to raise it? Sol: a) Pa 9.96 atm 7573 mm Hg b) N c) kg 4. A hot air balloon dragging a 300 kg crew basket has a Helium volume of 2000m 3. a) Which is the total weight of the balloon? b) Calculate the balloon thrust c) Can the balloon hold itself in the air? d air =1,3 kg/m 3 ; d Helium =0,2 kg/m 3 sol: 700 kg b) N c) yes because 6860 N < N 5. What pressure will a sewing machine needle top exert if it is pushed by a 50 N force and it has a 0,1mm 2 surface? Calculate also the weight of an iron block, standing on a one square meter surface to exert that same pressure. Sol Pa Kg 6. A body having a 4000 kg/m 3 density weights 100N in the air and 80 N when it is sunk in a unknown liquid. Calculate the density of that liquid. Sol: 800 Kg Page 10 of 10
Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey
Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the
More informationChapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity
Chapter 10 Fluids 101 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can
More informationIn the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationIn the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationPage 1
Contents: 1. Thrust and Pressure 2. Pressure in Fluids 3. Buoyancy 4. Why objects sink or Float when placed on surface of water? 5. Archimedes Principle 6. Relative Density Learning Objectives: The students
More informationChapter 9. Forces and Fluids
Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces
More informationPHYS 101 Previous Exam Problems
PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep
More informationGases and Pressure SECTION 11.1
SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.
More informationMore About Solids, Liquids and Gases ASSIGNMENT
More About Solids, Liquids and Gases ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below: List : water, density, altitudes, lateral, intermolecular, force, cohesion,
More information. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid
IIT JEE Achiever 2014 Ist Year Physics2: Worksheet1 Date: 20140626 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of
More informationChapter 13 Fluids. Copyright 2009 Pearson Education, Inc.
Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the
More informationPRESSURE. 7. Fluids 2
DENSITY Fluids can flow, change shape, split into smaller portions and combine into a larger system One of the best ways to quantify a fluid is in terms of its density The density, ρ, of a material (or
More informationPhysics 221, March 1. Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension
Physics 221, March 1 Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension Fluids: Liquids Incompressible Gases Compressible Definitions Particle density: Density: Pressure: ρ particle
More informationPhys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 101,2,3,4,5,6,7.
Phys101 Lectures 2425 luids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 101,2,3,4,5,6,7. Page 1 101 Phases of Matter The three common phases of matter are solid,
More informationKey Terms Chapter 7. boiling boiling point change of state concentration condensation deposition evaporation flow rate fluid freezing point
Foldable Activity Using the instructions on page 267 in your textbook on how to make foldables, write a key term on each front tab, and the definition on the inside (see example that I made up). You will
More informationPressure is defined as force per unit area. Any fluid can exert a force
Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary
More informationConcepTest PowerPoints
ConcepTest PowerPoints Chapter 10 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for
More information2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?
CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How
More informationChapter 15 Fluid. Density
Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid
More informationSlide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ
Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the
More informationChapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle
Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle Fluids in Motion The Equation of Continuity DEFINITION OF MASS DENSITY The mass density ρ is
More informationLecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy
More information1. All fluids are: A. gases B. liquids C. gases or liquids D. nonmetallic E. transparent ans: C
Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D nonmetallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights
More informationFluids, Pressure and buoyancy
Fluids, Pressure and buoyancy Announcements: CAPA due Friday at 10pm. Comment on the hint in Problem 5. CAPA solutions from previous sets can be found by logging onto CAPA and selecting View Previous Set
More informationAdditional Information
Buoyancy Additional Information Any object, fully or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes of Syracuse Archimedes principle
More informationDensity and Buoyancy Notes
Density and Buoyancy Notes Measuring Mass and Volume 3.1 Density A balance can be used to measure the mass of an object. If the object is a liquid, pour it into a graduated cylinder to measure the volume.
More informationChapter 15 Fluids. Copyright 2010 Pearson Education, Inc.
Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle Fluid Flow and Continuity
More informationAP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43
Slide 1 / 43 Slide 2 / 43 P Fluids Practice Problems Multiple hoice Slide 3 / 43 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 kg/m 3 are selected for an experiment.
More informationLab 11 Density and Buoyancy
b Lab 11 Density and uoyancy Physics 211 Lab What You Need To Know: Density Today s lab will introduce you to the concept of density. Density is a measurement of an object s mass per unit volume of space
More information3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?
AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a waterfilled container. The
More information10.4 Buoyancy is a force
Chapter 10.4 Learning Goals Define buoyancy. Explain the relationship between density and buoyancy. Discuss applications of Archimedes principle. 10.4 Buoyancy is a force Buoyancy is a measure of the upward
More informationFluids: Floating & Flying. Student Leaning Objectives 2/16/2016. Distinguish between force and pressure. Recall factors that allow floating
Fluids: Floating & Flying (Chapter 3) Student Leaning Objectives Distinguish between force and pressure Recall factors that allow floating Differentiate between cohesion and adhesion Analyze Pascal s principle
More informationChapter 14. Fluids. A fluid a substance that can flow (in contrast to a solid)
Chapter 4 luids A luid a substance that can low (in contrast to a solid) Air Water luids comort to the boundaries o any container in which we put them, and do not maintain a ixed shape density and pressure
More informationForces in Fluids. Pressure A force distributed over a given area. Equation for Pressure: Pressure = Force / Area. Units for Pressure: Pascal (Pa)
Pressure A force distributed over a given area Equation for Pressure: Pressure = Force / Area Force = Newton s Area = m 2 Units for Pressure: Pascal (Pa) Forces in Fluids Forces in Fluids A woman s high
More informationSlide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3?
Slide 1 / 68 1 What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 2 / 68 2 What is the mass of a rectangular shaped ice block with dimensions of 0.04m x 0.05m
More informationMatter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its
Kinetic Theory of Matter Matter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its particles move because in these two
More informationHydrostatics Physics Lab XI
Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in
More informationUnit A: Mix and Flow of Matter
Unit A: Mix and Flow of Matter Science 8 1 Section 3.0 THE PROPERTIES OF GASES AND LIQUIDS CAN BE EXPLAINED BY THE PARTICLE MODEL OF MATTER. 2 1 Viscosity and the Effects of Temperature Topic 3.1 3 Viscosity
More informationChapter 9 Fluids CHAPTER CONTENTS
Flowing fluids, such as the water flowing in the photograph at Coors Falls in Colorado, can make interesting patterns In this chapter, we will investigate the basic physics behind such flow Photo credit:
More informationDec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned?
Over the last two periods we discussed/observed the concept of density. What have we learned? is a ratio of mass to volume describes how much matter is packed into a space is a property of both solids
More information20 Gases. Gas molecules are far apart and can move freely between collisions.
Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to
More informationGas molecules are far apart. collisions The Atmosphere
Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to
More informationExercises The Atmosphere (page 383) 20.2 Atmospheric Pressure (pages )
Exercises 20.1 The Atmosphere (page 383) 1. The energizes the molecules in Earth s atmosphere. 2. Why is gravity important to Earth s atmosphere? 3. What would happen to Earth s atmosphere without the
More informationDensity, Pressure Learning Outcomes
1 Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate
More informationFluid Mechanics  Hydrostatics. AP Physics B
luid Mechanics  Hydrostatics AP Physics B States of Matter Before we begin to understand the nature of a luid we must understand the nature of all the states of matter: The 3 primary states of matter
More informationOldExam.QuestionsCh14 T072 T071
OldExam.QuestionsCh14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density
More informationAP Lab 11.3 Archimedes Principle
ame School Date AP Lab 11.3 Archimedes Principle Explore the Apparatus We ll use the Buoyancy Apparatus in this lab activity. Before starting this activity check to see if there is an introductory video
More informationLECTURE 16: Buoyancy. Select LEARNING OBJECTIVES:
Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 16: Buoyancy Understand that the buoyant force is a result of a pressure gradient within a fluid. Demonstrate the ability to analyze a scenario involving
More informationUnit 9 Packet: Gas Laws Introduction to Gas Laws Notes:
Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,
More informationDENSITY AND BUOYANCY
DENSITY AND BUOYANCY DENSITY  RECAP What is DENSITY? The amount of MASS contained in a given VOLUME Density describes how closely packed together the particles are in a substance Density Experiment SINK
More informationMultiple Choice. AP B Fluids Practice Problems. Mar 22 4:15 PM. Mar 22 4:15 PM. Mar 22 4:02 PM
P Fluids Practice Problems Mar 22 4:15 PM Multiple hoice Mar 22 4:15 PM 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 g/cm 3 are selected for an experiment. If the
More informationToday: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas)
Today: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas) Gases and plasmas: Preliminaries Will now apply concepts of fluid pressure, buoyancy, flotation of Ch.13, to the atmosphere. Main
More information1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:
University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same
More informationChapter 3 PRESSURE AND FLUID STATICS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGrawHill
More informationChapter Five: Density and Buoyancy
Chapter Five: Density and Buoyancy 5.1 Density 5.2 Buoyancy 5.3 Heat Affects Density and Buoyancy 5.1 Mass and Weight Mass is the amount of matter in an object. Weight is a measure of the pulling force
More informationShark Biology Buoyancy by Bill Andrake
Shark Biology Buoyancy by Bill Andrake Science Lesson: Buoyancy  Based on Webisode 45  Shark Biology Grade Level: 68 Time: Four (4550 minute) class periods Introduction Jonathan narrates an educational
More informationBuoyancy and the Density of Liquids (approx. 2 h) (11/24/15)
Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15) Introduction Which weighs more, a pound of lead or a pound of feathers? If your answer to this question is "a pound of lead", then you are confusing
More informationFluids Chapter 13 & 14 Liquids & Gases
Fluids Chapter 13 & 14 Liquids & Gases Liquids like solids are difficult to compress. Both liquids and gases can flow, so both are called fluids. The pressure you feel is due to the weight of water (or
More informationCARTESIAN DIVER (1 Hour)
(1 Hour) Addresses NGSS Level of Difficulty: 2 Grade Range: K2 OVERVIEW In this activity, students will build a Cartesian diver and discover how compression and changes in density cause the diver to mysteriously
More informationmass of container full of air = g mass of container with extra air = g volume of air released = cm 3
1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate
More informationLesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids
Lesson : luid statics, Continuity equation (Sections 9.9.7) Chapter 9 luids States of Matter  Solid, liquid, gas. luids (liquids and gases) do not hold their shapes. In many cases we can think of liquids
More informationACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy
LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY
More informationLiquids and Gases. O, 1 L = 2.2 lbs H 2. O = 1 kg H 2
Liquids and Gases The unit of volume is the meter cubed, m 3, which is a very large volume. Very often we use cm 3 = cc, or Litres = 10 3 cc Other everyday units are gallons, quarts, pints 1 qt = 2 lbs
More informationChapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops
C h e m i s t r y 1 2 C h a p t e r 11 G a s e s P a g e 1 Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops Gas Properties: Gases have high kinetic energy low
More informationPhysics 152: Homework Problems on Fluids
Physics 152: Homework Problems on Fluids 6/1/07 1. Atmospheric pressure varies from day to day, but 1 atm is defined as 1.01 x 10 5 Pa. Calculate how far upwards such a pressure would force a column of
More informationPSI Chemistry: Gases Multiple Choice Review
PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kineticmolecular theory, particles of matterare in constant motion (A) have different shapes (B) have different
More informationOutcomes: Example the historical development of the measurement of pressure. Include: Galileo, Toricelli, von Gureick, Pascal, Huygens, Avogadro,
History of Pressure Outcomes: Example the historical development of the measurement of pressure. Include: Galileo, Toricelli, von Gureick, Pascal, Huygens, Avogadro, Dalton. Describe the various units
More informationTo connect the words of Archimedes Principle to the actual behavior of submerged objects.
Archimedes Principle PURPOSE To connect the words of Archimedes Principle to the actual behavior of submerged objects. To examine the cause of buoyancy; that is, the variation of pressure with depth in
More informationFCCIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics
FCCIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics Civil Engineering Program, San Ignacio de Loyola University Objective Calculate the forces exerted by a fluid at rest on plane or
More informationChapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.
Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely
More informationMS.RAJA ELGADY/PRESSURE PAPER 3
1 (a) A water tank has a rectangular base of dimensions 1.5m by 1.2m and contains 1440 kg of water. Calculate (i) the weight of the water, weight =...... [1] (ii) the pressure exerted by the water on
More information12 fa. eel), Ara, Fl eat Mobi eu) r V14,:srholki CV 65 P 1 1). e2r 46. ve, lactogin. 1 V eil  (  t Teo. c 1 4 d 4. .'= tit/ (4 nit) 6 )
1). e2r 46 h eel), /pea lactogin Yd / In 1 V eil  (  Cw ve, P 1 Ara, Fl eat Mobi eu) r V14,:srholki 5e 0 (44,4 ci4) CV 65 So 0 t Teo.'= tit/ (4 nit) 6 ) ci Seco (df_ 1 c 1 4 d 4 540 C 12 fa 4)
More informationSPH 4C Unit 4 Hydraulics and Pneumatic Systems
SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that
More informationPhysics, Chapter 8: Hydrostatics (Fluids at Rest)
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1958 Physics, Chapter 8: Hydrostatics (Fluids at Rest)
More informationAtmospheric Pressure. Conceptual Physics 11 th Edition. Atmospheric Pressure. Atmospheric Pressure. The Atmosphere
Atmospheric Pressure Conceptual Physics 11 th Edition Chapter 14: GASES Atmospheric pressure Caused by weight of air Varies from one locality to another Not uniform Measurements are used to predict weather
More information8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.
Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and
More informationUnit A2: List of Subjects
ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A1: Introduction to Thermodynamics A2: Engineering Properties Unit A2: List of Subjects Basic Properties and Temperature Pressure
More informationChapter 13. Gases. Copyright Cengage Learning. All rights reserved 1
Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage
More information3. Moments and Pressure
Leaving Cert Physics Long Questions 20172002 3. Moments and Pressure Remember to photocopy 4 pages onto 1 sheet by going A3 A4 and using back to back on the photocopier Contents Moments: ordinary level
More informationWe live on the only planet in the
LIQUIDS Objectives Describe what determines the pressure of a liquid at any point. (19.1) Explain what causes a buoyant force on an immersed or submerged object. (19.2) Relate the buoyant force on an immersed
More informationTo convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.
Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the
More informationBoy, Oh Buoyancy. Does it Float? Does it Sink?
Boy, Oh Buoyancy Does it Float? Does it Sink? What is density? A measure of how much material is packed into a unit volume of the material The fewer particles packed into a given volume, the less dense
More informationMix and Flow of Matter Unit Test. For each of the following hazardous products match the correct WHMIS symbol
/40 Student Name Class Section 1.1 WHMIS For each of the following hazardous products match the correct WHMIS symbol 1 Flammable A. 2 Corrosive B. 3 Dangerously Reactive C. Section 1.2 The Many Uses of
More informationEXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
More informationSection 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.
Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure
More informationChapter 3: Atmospheric pressure and temperature
Chapter 3: Atmospheric pressure and temperature 3.1 Distribution of pressure with altitude The barometric law Atmospheric pressure declines with altitude, a fact familiar to everyone who has flown in an
More informationFLUID STATICS II: BUOYANCY 1
FLUID STATICS II: BUOYANCY 1 Learning Goals After completing this studio, you should be able to Determine the forces acting on an object immersed in a fluid and their origin, based on the physical properties
More informationArchimedes' Principle
Connexions module: m42196 1 Archimedes' Principle OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License Abstract Dene buoyant force.
More informationFigure 1: You and Your Elephant
INSTRUCTORS NOTE (Dr. Jack Blumenthal) The thought experiment or problem described herein, together with the accompanying approach and calculations was developed by two seniors and their instructor at
More informationArchimedes' Principle
OpenStaxCNX module: m55215 1 Archimedes' Principle OpenStax This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 4.0 1 Learning Objectives By the end of this
More informationGas Laws. Introduction
Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as
More informationCHAPTER 15 Fluids and Elasticity
CHAPTER 15 Fluids and Elasticity INCLASS PROBLEMS Slide 1 Problem #1: Broken Glass RDK STT. 15.1 15.XX A piece of glass is broken into two pieces of different size. Rank pieces a, b, and c in order of
More informationCard 1 Chapter 17. Card 2. Chapter 17
Card 1 Card 2 Liquid A  1.4 g/ml; Liquid B .82 g/ml; Liquid C  1.0 g/ml; one liquid you know. What is it? Also how will they stack? Where will a 1.6 g/ml object end up? Find the density of a 5 milliliter,
More informationCP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory
CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular
More informationGas Laws. Directions: Describe what contribution each of the Scientist below made to the Gas Laws and include there gas law equation.
Gas Laws Name Date Block Introduction One of the most amazing things about gases is that, despite wide differences in chemical properties, all the gases more or less obey the gas laws. The gas laws deal
More informationChemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases
Chemistry HP Unit 6 Gases Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases 61. Define pressure using a mathematical equation. 62. Perform calculations involving pressure,
More informationand its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.
1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to
More information