Chapter 12. The Gaseous State of Matter

Size: px
Start display at page:

Download "Chapter 12. The Gaseous State of Matter"

Transcription

1 Chapter 12 The Gaseous State of Matter The air in a hot air balloon expands When it is heated. Some of the air escapes from the top of the balloon, lowering the air density inside the balloon, making the balloon buoyant. Introduction to General, Organic, and Biochemistry 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison, and Susan Arena

2 Chapter Outline 12.1 General Properties 12.2 The Kinetic-Molecular Theory 12.3 Measurement of Pressure 12.4 Dependence of Pressure on Number of Molecules and Temperature 12.5 Boyle s Law 12.6 Charles Law 12.7 Gay-Lussac s Law 12.8 Combined Gas Laws 12.9 Dalton s Law of Partial Pressures Avogadro s Law Mole-Mass-Volume Relationships of Gases Density of Gases Ideal Gas Law Gas Stoichiometry

3 General Properties Gases Have an indefinite volume Expand to fill a container Have an indefinite shape Take the shape of a container Have low densities d = 1.2 g / L at 25 C air d = 1.0 g/ml HO 2 Have high kinetic energies

4 Kinetic Molecular Theory (KMT) Assumptions of the KMT and ideal gases include: 1. Gases consist of tiny particles 2. The distance between particles is large compared with the size of the particles. 3. Gas particles have no attraction for each other 4. Gas particles move in straight lines in all directions, colliding frequently with each other and with the walls of the container.

5 Kinetic Molecular Theory Assumptions of the KMT (continued): 5. Collisions are perfectly elastic (no energy is lost in the collision). 6. The average kinetic energy for particles is the same for all gases at the same temperature. 1 2 KE = where is mass and is velocity 2 mv m v 7. The average kinetic energy is directly proportional to the Kelvin temperature.

6 Diffusion

7 Effusion Gas molecules pass through a very small opening from a container at higher pressure of one at lower pressure. Graham s law of effusion: rate of effusion of gas A density B molar mass B = = rate of effusion of gas B density A molar mass A

8 Your Turn! Which gas will diffuse most rapidly? a. He b. Ne c. Ar d. Kr rate of effusion of gas A density B molar mass B = = rate of effusion of gas B density A molar mass A

9 Measurement of Pressure Force Pressure = Area Pressure depends on the Number of gas molecules Temperature of the gas Volume the gas occupies

10 Atmospheric Pressure Atmospheric pressure is due to the mass of the atmospheric gases pressing down on the earth s surface.

11 Barometer

12 Pressure Conversions Convert 675 mm Hg to atm. Note: 760 mm Hg = 1 atm 1 atm 675 mm Hg = atm 760 mm Hg Convert 675 mm Hg to torr. Note: 760 mm Hg = 760 torr. 760 torr 675 mm Hg = 675 torr 760 mm Hg

13 Your Turn! A pressure of 3.00 atm is equal to a. 819 torr b torr c torr d. 253 torr

14 Dependence of Pressure on Number of Molecules P is proportional to n (number of molecules) at T c (constant T) and V c (constant V). The increased pressure is due to more frequent collisions with walls of the container as well increased force of each collision.

15 Dependence of Pressure on Temperature P is proportional to T at n c (constant number of moles) and V c. The increased pressure is due to more frequent collisions higher energy collisions

16 Your Turn! If you change the temperature of a sample of gas from 80 C to 25 C at constant volume, the pressure of the gas a. will increase. b. will decrease. c. will not change

17 Boyle s Law 1 At Tc and nc : V α or PV = PV P What happens to V if you double P? V decreases by half! What happens to P if you double V? P decreases by half!

18 Boyle s Law A sample of argon gas occupies ml at 920. torr. Calculate the pressure of the gas if the volume is increased to 937 ml at constant temperature. Knowns V 1 = 500 ml P 1 = 920. torr V 2 = 937 ml Set-Up Calculate P 2 P 2 = PV V torr 500. ml = = 491 torr 937 ml

19 Boyle s Law Another approach to the same problem: Since volume increased from 500. ml to 937 ml, the pressure of 920. torr must decrease. Multiply the pressure by a volume ratio that decreases the pressure: P ml = 920. torr = 491 torr 937 ml

20 Your Turn! A 6.00 L sample of a gas at a pressure of 8.00 atm is compressed to 4.00 L at a constant temperature. What is the pressure of the gas? a atm b atm c atm d atm

21 Your Turn! A 400. ml sample of a gas is at a pressure of 760. torr. If the temperature remains constant, what will be its volume at 190. torr? A ml B ml C ml D. 1.60x10 2 ml

22 Charles Law The volume of an ideal gas at absolute zero (-273 C) is zero. Real gases condense at their boiling point so it is not possible to have a gas with zero volume. The gas laws are based on Kelvin temperature. All gas law problems must be worked in Kelvin! At P and n : c V α T or c V T = V T

23 Charles Law A 2.0 L He balloon at 25 C is taken outside on a cold winter day at -15 C. What is the volume of the balloon if the pressure remains constant? Knowns V 1 = 2.0 L T 1 = 25 C= 298 K T 2 = -15 C = 258 K Set-Up rearranged gives V 2 = VT T Calculate V 2 (2.0 L)(258 K) = = 1.7 L 298 K

24 Charles Law Another approach to the same problem: Since T decreased from 25 C to -15 C, the volume of the 2.0L balloon must decrease. Multiply the volume by a Kelvin temperature ratio that decreases the volume: P 2 258K = 2.0L = 1.7L 298K

25 Your Turn The volume of a gas always increases when a. Temperature increases and pressure decreases b. Temperature increases and pressure increases c. Temperature decreases and pressure increases d. Temperature decreases and pressure decreases

26 Your Turn! A sample of CO 2 has a volume of 200. ml at 20.0 C. What will be its volume at 40.0 C, assuming that the pressure remains constant? a ml b ml c. 213 ml d ml

27 Your Turn! A sample of gas has a volume of 3.00 L at 10.0 C. What will be its temperature in C if the gas expands to 6.00 L at constant pressure? a C b. 293 C c. 566 C d. 142 C

28 Gay-Lussac s Law At V and n : P α T or c c P T = P T

29 Combined Gas Laws Used for calculating the results of changes in gas conditions. PV T = PV T Boyle s Law where T c Charles Law where P c Gay Lussacs Law where V c PV V T P T = = V T = P T PV P 1 and P 2, V 1 and V 2 can be any units as long as they are the same. T 1 and T 2 must be in Kelvin.

30 Combined Gas Law If a sample of air occupies 500. ml at STP, what is the volume at 85 C and 560 torr? STP: Standard Temperature 273K or 0 C Standard Pressure 1 atm or 760 torr Knowns V 1 = 500. ml T 1 =273K P 1 = 760 torr T 2 = 85 C = 358K P 2 = 560 torr Set-Up Calculate V 2 2 = V = PV 1 1T2 TP 1 2 (760 torr)(500. ml)(358k) = 890. ml (273K)(560 torr)

31 Combined Gas Law A sample of oxygen gas occupies ml at 722 torr and 25 C. Calculate the temperature in C if the gas has a volume of 2.53 L at 491 mmhg. Knowns V 1 = 500. ml T 1 = -25 C = 248K P 1 = 722 torr V 2 = 2.53 L = 2530 ml P 2 = 560 torr Set-Up Calculate T 2 2 TPV = PV ( 491 torr)( 2530 ml)( 248K) ( 722 torr)( ml) T = =853K = 580 C

32 Your Turn! A sample of gas has a volume of 8.00 L at 20.0 C and 700. torr. What will be its volume at STP? a L b L c L d L

33 Dalton s Law of Partial Pressures The total pressure of a mixture of gases is the sum of the partial pressures exerted by each of the gases in the mixture. P Total = P A + P B + P C +. Atmospheric pressure is the result of the combined pressure of the nitrogen and oxygen and other trace gases in air. P = P + P + P + P + P +. Air N O Ar CO H O

34 Collecting Gas Over Water Gases collected over water contain both the gas and water vapor. The vapor pressure of water is constant at a given temperature Pressure in the bottle is equalized so that the P inside = P atm P = P + P atm gas H O 2

35 Your Turn! A sample of oxygen is collected over water at 22 C and 762 torr. What is the partial pressure of the dry oxygen? The vapor pressure of water at 22 C is 19.8 torr. a. 742 torr b. 782 torr c. 784 torr d torr

36 Avogadro s Law Equal volumes of different gases at the same T and P contain the same number of molecules. The ratio is the same: 1 volume 1 molecule 1 mol 1 volume 1 molecule 1 mol 2 volumes 2 molecules 2 mol

37 Mole-Mass-Volume Relationships Molar Volume: One mole of any gas occupies 22.4 L at STP. Determine the molar mass of a gas, if 3.94 g of the gas occupied a volume of 3.52 L at STP. Knowns m = 3.94 g V = 3.52 L T = 273 K P = 1 atm Set-Up 22.4 L 1 mol = 22.4 L so the conversion factor is 1mol Calculate 3.94 g 1.52 L 22.4 L 1 mol = 58.1g/mol

38 Your Turn! What is the molar mass of a gas if 240. ml of the gas at STP has a mass of grams? a g b g c g d g

39 Density of Gases mass g d = = volume L Calculate the density of nitrogen gas at STP. d STP = molar mass 1 mol 22.4 L g 1 mol d STP = = 1.25g/L 1 mol 22.4 L Note that densities are always cited for a particular temperature, since gas densities decrease as temperature increases.

40 Your Turn! Which of the following gases is the most dense? a. H 2 b. N 2 c. CO 2 d. O 2 Carbon dioxide fire extinguishers can be used to put out fires because CO 2 is more dense than air and can be used to push oxygen away from the fuel source.

41 Ideal Gas Law PV = nrt where R = Latm mol K Calculate the volume of 1 mole of any gas at STP. Knowns Set-Up Calculate V n = 1 mole T = 273K P = 1 atm nrt = P Molar volume! L atm (1 mol)( )(273 K) V = mol K = 22.4 L (1 atm)

42 Ideal Gas Law How many moles of Ar are contained in 1.3L at 24 C and 745 mm Hg? Knowns Set-Up Calculate PV = nrt where Latm R = mol K n n V = 1.3 L T = 24 C = 297 K P = 745 mm Hg = atm PV = RT (0.980 atm)(1.3 L) = =0.052 mol L atm ( )(297 K) mol K

43 Ideal Gas Law Calculate the molar mass (M) of an unknown gas, if 4.12 g occupy a volume of 943mL at 23 C and 751 torr. Knowns m =4.12 g V = 943 ml = L T = 23 C = 296 K P = 751 torr = atm Set-Up n g g = so = M PV M RT M = g RT PV Calculate M = L atm (4.12 g)( )(296 K) mol K (0.988 atm)(0.943 L) =107 g/mol

44 Your Turn! What is the molar mass of a gas if 40.0 L of the gas has a mass of 36.0 g at 740. torr and 30.0 C? a g b g c g d. 333 g

45 Gas Stoichiometry Convert between moles and volume using the Molar Volume if the conditions are at STP : 1 mol = 22.4 L. Use the Ideal Gas Law if the conditions are not at STP.

46 Gas Stoichiometry Calculate the number of moles of phosphorus needed to react with 4.0L of hydrogen gas at 273 K and 1 atm. P 4(s) + 6H 2(g) à 4PH 3(g) Knowns V = 4.0 L T = 273 K P = 1 atm Solution Map L H 2 à mol H 2 à mol P 4 Calculate 4.0 L H2 1 mol H2 22.4L 1 mol P 6 mol H 4 2 = mol P4

47 Gas Stoichiometry What volume of oxygen at 760 torr and 25 C are needed to react completely with 3.2 g C 2 H 6? 2 C 2 H 6(g) + 7 O 2(g) 4 CO 2(g) + 6 H 2 O (l) Knowns m = 3.2 g C 2 H 6 T = 25 C = 298K P = 1 atm Solution Map m C 2 H 6 à mol C 2 H 6 à mol O 2 à volume O 2 Calculate 3.2g C2H 1 mol C2H 6 7 mol O2 6 = 0.37mol O g C2H6 2 mol C2H6 L atm (0.37 mol)( )(298 K) V = mol K = 9.1 L (1 atm)

48 Your Turn! How many moles of oxygen gas are used up during the reaction with 18.0 L of CH 4 gas measured at STP? CH 4(g) + 2 O 2(g) CO 2(g) + 2 H 2 O (l) a moles b moles c moles d moles

49 Volume-Volume Calculations Calculate the volume of nitrogen needed to react with 9.0L of hydrogen gas at 450K and 5.00 atm. N 2(g) + 3H 2(g) à 2NH 3(g) Knowns V = 9.0 L T = 450K P = 5.00 atm Solution Map Assume T and P for both gases are the same. Use volume ratio instead of mole ratio! L H 2 à L N 2 Calculate 9.0 L H2 1 L N 3 L H 2 2 = 3.0 L N2

50 Your Turn! What volume of sulfur dioxide gas will react when 12.0 L of oxygen is consumed at constant temperature and pressure? 2 SO 2 + O 2 2 SO 3 a L b L c L d L

51 Real Gases Most real gases behave like ideal gases under ordinary temperature and pressure conditions. Conditions where real gases don t behave ideally: At high P because the distance between particles is too small and the molecules are too crowded together. At low T because gas molecules begin to attract each other. High P and low T are used to condense gases.

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Honors Chemistry Unit 7 Gas Laws Notes

Honors Chemistry Unit 7 Gas Laws Notes Honors Chemistry Unit 7 Gas Laws Notes Kinetic Molecular Theory 1. List the five assumptions: Assumption Description Extra Info 1 Basically means: the particles themselves have compared to the space between

More information

Unit 8: Gases and States of Matter

Unit 8: Gases and States of Matter Unit 8: Gases and States of Matter Gases Particles that have no definite shape or volume. They adapt to the shape and volume of their container. Ideal gases are imaginary gases that comply with all the

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure = Chapter 13 Gas Laws Chapter 13 Gases and Pressure Pressure and Force Pressure is the force per unit area on a surface. Pressure = Force Area Chapter 13 Gases and Pressure Gases in the Atmosphere The atmosphere

More information

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT: AP Chemistry Ms. Ye Name Date Block Kinetic Molecular Theory Explains properties of gases, liquids, and solids in terms of energy using an ideal gas, an imaginary which fits all the assumptions of kinetic

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

2. Calculate the ratio of diffusion rates for carbon monoxide (CO) and carbon dioxide (CO2). υa = MB = 44 = 1.25

2. Calculate the ratio of diffusion rates for carbon monoxide (CO) and carbon dioxide (CO2). υa = MB = 44 = 1.25 Gas laws worksheet (2-08) (modified 3/17) Answer key Graham s Law 1. Calculate the ratio of effusion rates for nitrogen (N2) and neon (Ne). υa = MB = 20 = 0.845 υb MA 28 2. Calculate the ratio of diffusion

More information

Kinetic-Molecular Theory of Matter

Kinetic-Molecular Theory of Matter Gases Properties of Gases Gas Pressure Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D. 1 2 Gases What gases are important for each of the following: O 2, CO 2

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

Chapter 5. Nov 6 1:02 PM

Chapter 5. Nov 6 1:02 PM Chapter 5 Nov 6 1:02 PM Expand to fill their containers Fluid motion (they flow) Have low densities (1/1000 the density of equivalent liquids or solids) Compressible Can Effuse and Diffuse Effuse: The

More information

NOTES: Behavior of Gases

NOTES: Behavior of Gases NOTES: Behavior of Gases Properties of Gases Gases have weight Gases take up space Gases exert pressure Gases fill their containers Gases are mostly empty space The molecules in a gas are separate, very

More information

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn AP Chemistry Chapter 5 Sections 5. 5.9 Note Organizer Pressure, The Gas Laws of Boyle, Charles, and Avogadro, The Ideal Gas Law, Gas Stoichiometry, Dalton s Law of Partial Pressure, The Kinetic olecular

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

More information

CHAPTER 14. The Behavior of Gases Properties of Gases. Factors Affecting Gas Pressure

CHAPTER 14. The Behavior of Gases Properties of Gases. Factors Affecting Gas Pressure CHAPTER 14 The Behavior of Gases 14.1 Properties of Gases Compressibility:the volume of matter decreasing under pressure. Gases are easily compressed due to the large amount of space between gas particles.

More information

PSI Chemistry: Gases Multiple Choice Review

PSI Chemistry: Gases Multiple Choice Review PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kinetic-molecular theory, particles of matterare in constant motion (A) have different shapes (B) have different

More information

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] Chapter 10 Gases We have talked a little about gases in Chapter 3 and we dealt briefly with them in our stoichiometric calculations in

More information

Gilbert Kirss Foster. Chapter 10. Properties of Gases The Air We Breathe

Gilbert Kirss Foster. Chapter 10. Properties of Gases The Air We Breathe Gilbert Kirss Foster Chapter 10 Properties of Gases The Air We Breathe Chapter Outline 10.1 The Properties of Gases 10.2 Effusion and the Kinetic Molecular Theory of Gases 10.3 Atmospheric Pressure 10.4

More information

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes Name Period CRHS Academic Chemistry Unit 11 Gas Laws Notes Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

Chapter 11. Recall: States of Matter. Properties of Gases. Gases

Chapter 11. Recall: States of Matter. Properties of Gases. Gases Chapter 11 Gases Recall: States of Matter Solids and Liquids: are closely related because in each case the particles are interacting with each other Gases: Properties of Gases Gases can be compressed Gases

More information

4.) There are no forces of attraction or repulsion between gas particles. This means that

4.) There are no forces of attraction or repulsion between gas particles. This means that KINETIC MOLECULAR (K-M) THEORY OF MATTER NOTES - based on the idea that particles of matter are always in motion - assumptions of the K-M Theory 1.) Gases consist of large numbers of tiny particles that

More information

Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four

Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four Kinetic Molecular Theory Gases Gas particles are so small that their individual volume can be considered to be negligible Gas particles are in constant motion and the collisions of the particles with the

More information

temperature and pressure unchanging

temperature and pressure unchanging Gas Laws Review I. Variables Used to Describe a Gas A. Pressure (P) kpa, atm, mmhg (torr) -Pressure=force exerted per unit area (force/area) -Generated by collisions within container walls (more collisions=more

More information

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1 Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage

More information

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion Five assumptions: 1. Most of the volume occupied dby a gas is empty space 2. Collisions between gas particles

More information

GASES. Unit #8. AP Chemistry

GASES. Unit #8. AP Chemistry GASES Unit #8 AP Chemistry I. Characteristics of Gases A. Gas Characteristics: 1. Fills its container a. no definite shape b. no definite vol. 2. Easily mixes w/ other gases 3. Exerts pressure on its surroundings

More information

Chapter 10: Gases. Characteristics of Gases

Chapter 10: Gases. Characteristics of Gases Chapter 10: Gases Learning Outcomes: Calculate pressure and convert between pressure units with an emphasis on torr and atmospheres. Calculate P, V, n, or T using the ideal-gas equation. Explain how the

More information

Gas Law Worksheets - WS: Boyle s and Charles Law

Gas Law Worksheets - WS: Boyle s and Charles Law Gas Law Worksheets - WS: Boyle s and Charles Law Boyle s Law states that the volume of a gas varies inversely with its pressure if temperature is held constant. (If one goes up the, other goes down.) We

More information

AP TOPIC 6: Gases. Revised August General properties and kinetic theory

AP TOPIC 6: Gases. Revised August General properties and kinetic theory AP OPIC 6: Gases General properties and kinetic theory Gases are made up of particles that have (relatively) large amounts of energy. A gas has no definite shape or volume and will expand to fill as much

More information

Unit 8: Kinetic Theory Homework Packet (90 points)

Unit 8: Kinetic Theory Homework Packet (90 points) Name: Key Period: By the end of Unit 8, you should be able to: Kinetic Theory Chapter 13-14 4. Define kinetic theory of gases including collisions 5. Define pressure, including atmospheric pressure, vapor

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

More information

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101.

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101. Simple Gas Laws To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and 101.3 kpa If assuming 1 mol, V = 22.4L SATP: 25 C (298 K) and 101.3 kpa If assuming 1 mol, V =

More information

Gases. Edward Wen, PhD

Gases. Edward Wen, PhD Gases Edward Wen, PhD Properties of Gases expand to completely fill their container take the shape of their container low density much less than solid or liquid state compressible when pressure is changed.

More information

Chapter 10. Physical Characteristics of Gases

Chapter 10. Physical Characteristics of Gases Chapter 10 Physical Characteristics of Gases Kinetic Molecular Theory An understanding of the behavior of atoms that make up matter Ideal gas: an imaginary gas that perfectly fits all assumptions of the

More information

General Properties of Gases

General Properties of Gases GASES Chapter 13 Importance of Gases Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide,, NaN 3. 2 NaN 3 ---> > 2 Na + 3 N 2 THREE STATES OF MATTER General

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

Temperature Temperature

Temperature Temperature Temperature Temperature is a measure of how hot or cold an object is compared to another object. indicates that heat flows from the object with a higher temperature to the object with a lower temperature.

More information

Boyle s Law Practice

Boyle s Law Practice Boyle s Law Practice Boyle s Law is an indirect relationship. Most of these problems can be done in your head without showing your work. 1. Herman has 30.0 L of helium gas trapped in a cylinder by a piston.

More information

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops

Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops C h e m i s t r y 1 2 C h a p t e r 11 G a s e s P a g e 1 Chapter 11: Gases: Homework: Read Chapter 11. Keep up with MasteringChemistry and workshops Gas Properties: Gases have high kinetic energy low

More information

Name: Chapter 13: Gases

Name: Chapter 13: Gases Name: Chapter 13: Gases Gases and gas behavior is one of the most important and most fun things to learn during your year in chemistry. Here are all of the gas notes and worksheets in two packets. We will

More information

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure

More information

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg. Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

More information

Ch. 14 The Behavior of Gases

Ch. 14 The Behavior of Gases Ch. 14 The Behavior of Gases 14.1 PROPERTIES OF GASES Compressibility Compressibility: a measure of how much the volume of matter decreases under pressure Gases are easily compressed because of the spaces

More information

Chapter 6 10/14/13. Gas Law. Volume change with temperature and pressure.

Chapter 6 10/14/13. Gas Law. Volume change with temperature and pressure. Chapter 6 10/14/13 Gas Law 1. Properties of a Gas a. Neither definite shape nor volume i. Uniformly fills any container i Exerts pressure on surroundings Volume change with temperature and pressure. b.

More information

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2 Chapter 6: Gases 6.1 Measurements on Gases MH5, Chapter 5.1 Let s look at a certain amount of gas, i.e. trapped inside a balloon. To completely describe the state of this gas one has to specify the following

More information

Expand to fill their containers, are highly compressible, have extremely low densities.

Expand to fill their containers, are highly compressible, have extremely low densities. Chem150 week6 Handout 1 Gases Characteristics of Gases: Unlike liquids and solids, they Expand to fill their containers, are highly compressible, have extremely low densities. Pressure is the amount of

More information

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases.

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases. Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

More information

Gases Chapter 8. Chapter 8

Gases Chapter 8. Chapter 8 Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

More information

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often Gases Chapter 8 8.1 Properties of Gases Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases. Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle

More information

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot?

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot? Name Period HW 1 Worksheet (Goals 1-4) - Kinetic Molecular Theory 1. Describe how gases, liquids, and solids compare using the following table. Solids Liquids Gases Volume (definite or indefinite) Molecular

More information

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases.

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Chapter 8 Gases Practice Problems Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Summary: In a gas, particles are so far

More information

Gases. Properties of Gases Gas Pressure

Gases. Properties of Gases Gas Pressure Gases Properties of Gases Gas Pressure 1 Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D. 2 1 Gases What gases are important for each of the following: O 2, CO

More information

Chemistry 101 Chapter 5 GAS MIXTURES

Chemistry 101 Chapter 5 GAS MIXTURES GAS MIXTURES Consider mixing equal volumes of 3 different gases, all at the same temperature and pressure in a container of the same size. 1 L He 1 L N 2 1 L O 2 1 L mixture t = 0 0 C t = 0 0 C t = 0 0

More information

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases Chemistry HP Unit 6 Gases Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases 6-1. Define pressure using a mathematical equation. 6-2. Perform calculations involving pressure,

More information

Gases. Name: Class: Date: Matching

Gases. Name: Class: Date: Matching Name: Class: Date: Gases Matching Match each item with the correct statement below. a. Boyle's law d. Graham's law b. Charles's law e. Gay-Lussac's law c. Dalton's law f. ideal gas law 1. For a given mass

More information

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them. Chapter 5 Gases Gas Gases are composed of particles that are moving around very fast in their container(s). These particles moves in straight lines until they collides with either the container wall or

More information

Chemistry A Molecular Approach. Fourth Edition. Chapter 5. Gases. Copyright 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved

Chemistry A Molecular Approach. Fourth Edition. Chapter 5. Gases. Copyright 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved Chemistry A Molecular Approach Fourth Edition Chapter 5 Gases Supersonic Skydiving and the Risk of Decompression Gas Gases are composed of particles that are moving around very fast in their container(s).

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

More information

Chapter 14-Gases. Dr. Walker

Chapter 14-Gases. Dr. Walker Chapter 14-Gases Dr. Walker State of Matter Gases are one of the four states of matter along with solids, liquids, and plasma Conversion to Gases From liquids Evaporation Example: Boiling water From solids

More information

Lecture Handout 5: Gases (Online Text Chapter 6)

Lecture Handout 5: Gases (Online Text Chapter 6) Lecture Handout 5: Gases (Online Text Chapter 6) I. The Structure of a Gas A. Gases are composed of particles that are flying around very fast in their container(s). 1. The particles travel in straight

More information

C h e m i s t r y 1 A : C h a p t e r 5 P a g e 1

C h e m i s t r y 1 A : C h a p t e r 5 P a g e 1 C h e m i s t r y 1 A : C h a p t e r 5 P a g e 1 Chapter 5: Gases Homework: Read Chapter 5. Work out sample/practice exercises Keep up with MasteringChemistry assignments Gas Properties: Ideal Gas: Gases

More information

Chemistry Chapter 10 Test

Chemistry Chapter 10 Test Chemistry Chapter 10 Test True/False Indicate whether the sentence or statement is true or false. 1. KMT stands for Kinetic Mole Theory. 2. One of the assumptions in the KMT is that the particles are spread

More information

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter.

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter. ROERIES OF GASES Gases are the least dense and most mobile of the three phases of matter. articles of matter in the gas phase are spaced far apart from one another and move rapidly and collide with each

More information

Section 10-1: The Kinetic-Molecular Theory of Matter. 1) How does the word kinetic apply to particles of matter?

Section 10-1: The Kinetic-Molecular Theory of Matter. 1) How does the word kinetic apply to particles of matter? Kinetic-Molecular theory of Matter/Ch10, Gases/Ch11 Column notes: Answer all parts of each question IN YOUR OWN WORDS. Use the text, figures and captions as resources. Section 10-1: The Kinetic-Molecular

More information

A. What are the three states of matter chemists work with?

A. What are the three states of matter chemists work with? Chapter 10 and 12 The Behavior of Gases Chapter 10 The States of Matter A. What are the three states of matter chemists work with? Section 10.1 Pg 267 B. We will explain the behavior of gases using the

More information

B. As the gas particles move and strike a surface, they push on that surface 1. If we could measure the total amount of force exerted by gas

B. As the gas particles move and strike a surface, they push on that surface 1. If we could measure the total amount of force exerted by gas Chapter 5: Gases I. The Structure of a Gas A. Gases are composed of particles that are flying around very fast in their container(s). 1. The particles travel in straight lines until they encounter either

More information

Gases. Chapter 5: Gas Laws Demonstration. September 10, Chapter 5 Gasses.notebook. Dec 18 10:23 AM. Jan 1 4:11 PM. Crushing 55 gallon drum

Gases. Chapter 5: Gas Laws Demonstration. September 10, Chapter 5 Gasses.notebook. Dec 18 10:23 AM. Jan 1 4:11 PM. Crushing 55 gallon drum Chapter 5: Gases Dec 18 10:23 AM Gas Laws Demonstration Crushing 55 gallon drum Egg in a bottle Student in a bag Boiling Water Charles gas Law Water in a flask Ballon in a bottle Jan 1 4:11 PM 1 5.1 Pressure

More information

Chapter 5 Gases. AP CHEMISTRY Chapter 5 Scotch Plains-Fanwood High School Page 1

Chapter 5 Gases. AP CHEMISTRY Chapter 5 Scotch Plains-Fanwood High School Page 1 Chapter 5 Gases Kinetic Theory All matter is composed of tiny particles that are in continuous, random motion. Gas Pressure = Force Demo: Test tube/h2o beaker Area Demo: Can AP CHEMISTRY Chapter 5 Scotch

More information

Chapter 13: The Behavior of Gases

Chapter 13: The Behavior of Gases Chapter 13: The Behavior of Gases I. First Concepts a. The 3 states of matter most important to us: solids, liquids, and gases. b. Real Gases and Ideal Gases i. Real gases exist, ideal gases do not ii.

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses.

Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses. Chemistry Ms. Ye Name Date Block Graham s Law of Diffusion- Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses. In other words, gas molecules

More information

Chapter 5. Pressure. Atmospheric Pressure. Gases. Force Pressure = Area

Chapter 5. Pressure. Atmospheric Pressure. Gases. Force Pressure = Area Chapter 5 Gases Water for many homes is supplied by a well The pump removes air from the pipe, decreasing the air pressure in the pipe The pressure then pushes the water up the pipe Pressure Atmospheric

More information

Notes: Gas Laws (text Ch. 11)

Notes: Gas Laws (text Ch. 11) Name Per. Notes: Gas Laws (text Ch. 11) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing information

More information

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c).

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c). Section 8: Gases The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 8.01 Simple Gas Laws Chemistry (9)(A) 8.02 Ideal Gas Law Chemistry

More information

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day!

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day! Name Unit 9 Notes: Gas Laws Period Skills: 1. Gases and Entropy 2. Distinguish between Ideal and Real gases 3. Understand KMT and Avogadro s Law 4. Identify and Solve Boyle s Law Problems 5. Identify and

More information

SCH3U7 Quantitative Chemistry

SCH3U7 Quantitative Chemistry SCH3U7 Quantitative Chemistry So far, we have looked at solids and liquids (solutions) Today we will look at gases and the laws that govern their behaviour in chemical reactions 4 Factors Affecting Gases

More information

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very Properties of Gases Gases have Gases Gases exert Gases fill their containers Behavior of Gases Gases are mostly The molecules in a gas are separate, very small and very Kinetic Theory of Matter: Gas molecules

More information

Chapter 9 Gases: Their Properties and Behavior

Chapter 9 Gases: Their Properties and Behavior Chapter 9 Gases: Their Properties and Behavior 國防醫學院生化學科王明芳老師 2011-11-15 & 2011-11-22 Chapter 9/1 Gases and Gas Pressure Gas mixtures are homogeneous and compressible. Air-the mixture of gases. Molecular

More information

CHEMISTRY - CLUTCH CH.5 - GASES.

CHEMISTRY - CLUTCH CH.5 - GASES. !! www.clutchprep.com CONCEPT: UNITS OF PRESSURE Pressure is defined as the force exerted per unit of surface area. Pressure = Force Area The SI unit for Pressure is the, which has the units of. The SI

More information

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure. Chapter 12 Section 1 Pressure A gas exerts pressure on its surroundings. Blow up a balloon. The gas we are most familiar with is the atmosphere, a mixture of mostly elemental nitrogen and oxygen. Pressure

More information

Chapter 10: Properties of Gases: The Air We Breathe

Chapter 10: Properties of Gases: The Air We Breathe Chapter 10: Properties of Gases: The Air We Breathe South Pole Sept 24, 2006 15 February 2017 http://ozonewatch.gsfc.nasa.gov 1 Chapter Outline 10.1 10.2 10.3 The Properties of Gases Effusion and the Kinetic

More information

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. Atmospheric pressure is 760 mm Hg. 2. The SI unit of pressure is

More information

2. Convert these pressures to atm: 1 atm! Or to mm Hg, 760 mm Hg! 760 mm Hg! 1 atm. 800 mm Hg 380 mm Hg 0.75 atm 0.25 atm

2. Convert these pressures to atm: 1 atm! Or to mm Hg, 760 mm Hg! 760 mm Hg! 1 atm. 800 mm Hg 380 mm Hg 0.75 atm 0.25 atm Chemistry L 3, Gas laws: Chapter 12: Name! Page 1 pg. 326-355 and Notes: Keep your Forces handout. We will not use kilopascals for pressure on worksheets or tests. Show your work on all worksheets!! Temperature

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. Which statement is inconsistent with the kinetic theory of an ideal gas? 1. The forces of repulsion between gas molecules

More information

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

More information

Gas Law Review. Honors Chem.

Gas Law Review. Honors Chem. Gas Law Review Honors Chem. Question 1: KMT 1: What does KMT stand for? 2: Gas particles have no or. 3: Gas particles are not to or by each other. 4: measures the average kinetic energy of gas particles.

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

More information

Gases. The Kinetic Molecular Theory. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 5 / 140. Slide 6 / 140.

Gases. The Kinetic Molecular Theory. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 5 / 140. Slide 6 / 140. Slide 1 / 140 Slide 2 / 140 Gases Slide 3 / 140 Slide 4 / 140 Table of Contents The Kinetic Molecular Theory Properties of Gases Measuring Pressure Gas Laws Ideal Gas Law Gas Density Partial Pressure Graham's

More information

Chemistry Chapter 11 Test Review

Chemistry Chapter 11 Test Review Chemistry Chapter 11 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Pressure is the force per unit a. volume. c. length. b. surface area.

More information

Chemistry Chapter 12. Characteristics of Gases. Characteristics of Gases 1/31/2012. Gases and Liquids

Chemistry Chapter 12. Characteristics of Gases. Characteristics of Gases 1/31/2012. Gases and Liquids Importance of Gases Chemistry Chapter 12 Gases and Liquids Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide, NaN 3. 2 NaN 3 ---> 2 Na + 3 N 2 THREE STATES

More information

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas. Unit 4 THE GAS STATE CHAPTER KEY TERMS HOME WORK 9. Kinetic Molecular Theory States of Matter Solid, Liquid, gas Page 4 # to 4 9. Boyles Law P α /V PV = Constant P V = P V Pressure Atmospheric Pressure

More information

Behavior of Gases Chapter 12 Assignment & Problem Set

Behavior of Gases Chapter 12 Assignment & Problem Set Behavior of Gases Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Behavior of Gases 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

Gas Laws Packet Ideal Gas Law Worksheet PV = nrt

Gas Laws Packet Ideal Gas Law Worksheet PV = nrt Gas Laws Packet Ideal Gas Law Worksheet PV = nrt Use the ideal gas law, PV-nRT, and the universal gas constant R = 0.0821 L*atm to solve the following problems: K*mol If pressure is needed in kpa then

More information

Name Hour. The Behavior of Gases. Practice B

Name Hour. The Behavior of Gases. Practice B Name Hour The Behavior of Gases Practice B B 1 Objective 1: Apply Boyle s Law, Charles s Law, and Gay-Lussac s Law to solve problems involving pressure and volume and temperature. 1. A high-altitude balloon

More information

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation Characteristics of Gases Chapter 10 Gases Pressure The Gas Laws The Ideal-Gas Equation Applications of the Ideal-Gas Equation Gas mixtures and partial pressures Kinetic-Molecular Theory Real Gases: Deviations

More information

Chapter 10: Properties of Gases: The Air We Breathe

Chapter 10: Properties of Gases: The Air We Breathe Chapter 10: Properties of Gases: The Air We Breathe Sept, 2006 Sept, 2016 http://ozonewatch.gsfc.nasa.gov 1 Chapter Outline 10.1 The Properties of Gases 10.2 The Kinetic Molecular Theory of Gases* 10.3

More information

Unit 9: Gas Laws REGENTS CHEMISTRY

Unit 9: Gas Laws REGENTS CHEMISTRY Name: Unit 9: Gas Laws REGENTS CHEMISTRY 1 Name: Unit 9: Gas Laws The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information