PHASE EQUILIBRIA: HOW TO CALCULATE OXYGEN SOLUBILITY IN CELL CULTURE MEDIUM

Size: px
Start display at page:

Download "PHASE EQUILIBRIA: HOW TO CALCULATE OXYGEN SOLUBILITY IN CELL CULTURE MEDIUM"

Transcription

1 BE.360J/10.449J SUPPLEMENTARY HANDOUT FALL 2002 PHASE EQUILIBRIA: HOW TO CALCULATE OXYGEN SOLUBILITY IN CELL CULTURE MEDIUM 1. Phase Equilibria Introduction A collection of molecules is in equilibrium with its surroundings if there is no net transfer of energy or matter across the boundaries to the environment. Individual molecules may constantly be zinging across the boundaries, or bumping into neighbors and transferring heat, due to thermal motion. But if we average over millions of molecules, the number of molecules leaving the volume of interest ("control volume") gets cancelled out by an equal number returning to the control volume, so the net motion across the boundary is zero. This situation is analogous to chemical reaction equilibrium -- when equilibrium is reached, the rate of the forward reaction is equal to the rate of the reverse reaction, and there is no net measurable change in the concentration of reactants or products with time. In each case, the equilibrium is dynamic, meaning that forward and reverse reactions are constantly occurring. However, the overall measurable properties of the system do not change with time, and we consider the system at equilibrium 1. Definitions and Measuring Equilibria (1) Consider first the situation where Phase I and Phase II are pure components A and B (phases are liquid, solid, or gas). Imagine that you put A & B together in a closed vial, shook the vial vigorously, then waited an "infinitely" long time, keeping the vial at constant temperature. At infinity, you should observe 2 separate phases (e.g., a layer of salt crystals at the bottom of a layer of water; oil layered on top of water, or liquid/gas). [Note -- if you do not observe 2 phases at infinite time, then you did not add enough of the component in the missing phase i.e., you did not reach its solubility limit. Go back and add more until you see two phases at infinity ] You then carefully withdraw a small sample of Phase II and determine the concentration of A in it. This concentration is defined as the "solubility" of A in B -- it is the most A that will ever dissolve in B at that temperature. You also withdraw a small amount of Phase I and measure the concentration of B in it. This gives you the solubility of "B" in "A" at that temperature. How do you know you are at equilibrium? It is 1 [Note -- we reserve the term "equilibrium" for a system where no net transfer of stuff is occurring. We use "steady state" to refer to a system where there may be net transfer of mass or energy to designate that the rate of transfer does not change with time. Steady state of course also implies that concentration profiles or temperature profiles do not change with time. An equilibrium system is at steady state, but a steady state system is not always at equilibrium] -1-

2 not always easy to tell! Systems come to equilibrium over anywhere from a few moments to a few days. Equilibrium is determined by careful sampling, always keeping the vial at a constant temperature. When the concentrations no longer change with time (may require many many points to determine you have a flat line within statistical significance), you are at equilibrium. If "A" (Phase I) is a liquid and "B" (Phase II) is a gas, the equilibrium concentration of A in B is usually reported as a vapor pressure of A, and is often designated as a "saturation" vapor pressure. Antoine's equation is a common correlation of the vapor pressures of various compounds as a function of temperature. Gasses (such as oxygen and nitrogen) are typically only sparingly soluble in liquids and their solubilities are typically reported as Henry's Law coefficients. Liquid/liquid solubilities are often reported as volume percents (vol%). [For example, when water and oil are mixed, a small amount of water dissolves in the oil, as in the homework problem]. The solubilities of solids in liquids are often reported as weight percents (wt%). There is no set, standard reporting structure, so just look at units carefully. (2) Now consider that Phase I and Phase II are pure components A & B and a small amount of component "C" is added. Component C distributes throughout the two phases according to its relative solubility in each phase. Visualize a container filled with an oil/water mix (A&B), to which a brilliant blue hydrophilic dye ("C") is added. The water phase will appear deep blue, but the oil phase will appear only faintly blue. Hydrophilic means "water-loving," and the dye partitions into the aqueous phase. [Note that such dyed, oil/water-filled devices were a commercial fad not too long ago as "instant ocean" (usually, the "oceans" contained a tiny air bubble to allow for thermal expansion/contraction).] A key factor in understanding phase equilibria is to realize that there are two possible routes to determining the concentrations of the dye (aka, component "C") in each of the two phases. Both methods give you a parameter known as the partition coefficient -- the relative solubility in one phase compared to the other, or eqm K = partition coefficient = c I eqm,wherec eqm I denotes the concentration of C in phase I c II when the system is at equilibrium, and c eqm II denotes the concentration of C in phase II when the system is at equilibrium. METHOD ONE: Conduct experiments such as those in part (a) where you determine the solubility of C in A and B respectively. In other words, you add C to A so that you have two phases, and measure the concentration of C in A to get its solubility, and do the same thing for C mixed with B. An alternative that saves on vials is to mix A, B, & C to get 3 phases (imagine adding enough dye to the "ocean" that it precipitates out) and measure the concentration of C in the A & B phases. The partition coefficient is then the ratio of the solub ility solubilities of C in Phase I and Phase II respectively, or K = c limit so lub ility I / c limit II. A subtle assumption we make with this approach is that the solubilities of A&B in each other do not affect the solubility of C in either phase. This approach is generally used if you have tabulated solubilities of C in A and C in B, but no tabulated partition coefficient. So, if you are told for example that the solubility of the dye in water (phase I) is 100 mm and in the oil it is 0.1mM, the partition coefficient is 100/0.1 =

3 METHOD TWO: Simply measure the concentration of C in each phase after the system is at equilibrium, even if C is well below its solubility limit in the two phases. The chemical potential of C has to be the same in each phase, and thus the ratio of concentrations in the two phases is always the partition coefficient. For example, you add a small amount of the dye to the oil/water mix -- say, just enough to get a visible blue color in the water -- and find that the concentration in the water (phase I) is 20 mm. You then measure the concentration in the oil phase and find that it is 0.02 mm. Then K = 20/0.02 = You then decide to add more dye to get a deeper blue, and find that the concentration in the water phase (after the system came to equilibrium) is now 45 mm. You measure the concentration in the oil phase and find that it is 0.045mM. The partition coefficient is 45/0.045 = You could take a similar approach to determine the Henry's law coefficient for oxygen in water -- add water and a nitrogen/oxygen mix to the vial, and measure the final equilibrium concentrations in each phase as the nitrogen-oxygen ratio is varied. 2. Mass Transfer Across Interfaces Mass transfer is inherently a non-equilibrium process, characterized by the net motion of molecules down a concentration gradient. We study mass transfer at the continuum scale (i.e., anything we do is averaged over zillions of molecules), and the concentration profile of the diffusing solute is continuous within a single phase. Often, mass transfer occurs across the interface between two phases -- liquid/liquid (e.g., oil/water), liquid/gas (e.g., air/water), liquid/solid (e.g., water/polymer film), or gas/solid (e.g., air/polymer film). In this class, we will consider only diffusion of dilute solutes and "slow" mass transfer rates. The nature of the interface is not disrupted due to convective flow of material across the interface under these conditions. At the interface between two phases, the chemical potential of the diffusing solute in phase I must equal that in phase II. We imagine that the interface between the two phases is an infinitely thin plane and that the phases are in equilibrium in this plane. There is typically a discontinuity in concentration at the interface. Here at the interface, the concentration of the diffusing solute A in Phase I is related to that in Phase II via a partition coefficient, Henry's law coefficient, vapor pressure, etc. Note that the concentration of A at the interface is often well below its solubility limit, but that partition coefficients, etc., are simply the relative concentrations in each phase at equilibrium. -3-

4 OXYGEN SOLUBILITY IN CELL CULTURE MEDIA and CELLULAR OXYGEN CONSUMPTION RATES The solubility of gasses in liquids is correlated in terms of Henry s Law, which says the concentration of gas dissolved in the liquid is linearly proportional to the partial pressure (or concentration) of the gas in the vapor phase: Hc liq =P gas Values of H for oxygen dissolved in select liquids: Solvent H (atm-l/mmol) Pure water (15 C) 0.65 Pure water (25 C) 0.79 Pure water (35 C) M NaCl (25 C) 1.12 Cell culture medium (37 C) 1.08 For cell culture medium in equilibrium with pure air at 37 C, the concentration of dissolved oxygen can be calculated as: C O2 = (0.21 atm)/ H = (0.21 atm)/(1.08atm-l/mmol) = 0.19 mmol/l Cell culture media typically use carbon dioxide at 5-10% in the gas phase as a buffer, and the air is usually humidified to prevent evaporation. The vapor pressure of water in air at 37 C is 47 mm Hg (0.06 atm). Correcting for 5% CO 2 and water in the gas phase (air is 21% oxygen): C O2 = (0.21 atm)( )/ H = (0.187 atm)/(1.08atm-l/mmol) = 0.17 mmol/l oxygen solubilities in Blood and Plasma: Table 41 (p 90) in Fornier: arterial: PO 2 = 95 mm Hg, plasma =.130 mm, as oxyhemoglobin = 8.5 mm venous: PO 2 = 40 mmhg, plasma = mm, as oxyhemoglobin = 5.82 mm Typical specific oxygen consumption rates for mammalian cells are: Rat hepatocyte x 10-8 mol/cm 3 /sec. (cell diam = 25 microns = mol/cm 3 cells-sec.) -4-

5 Islets: Unstimulated mol/cm 3 cells-sec Stimulated: mol/cm 3 cells-sec. (beta cell diameter ~12 microns) Hybridoma (transformed lymphocyte, ~10 microns diameter): mmol O 2 /10 9 viable cells/hr (Miller et al., 1988) Given the oxygen consumption rate of mammalian cells oxygen is rapidly consumed and needs to be replenished continuously. -5-

Ch. 11 Mass transfer principles

Ch. 11 Mass transfer principles Transport of chemical species in solid, liquid, or gas mixture Transport driven by composition gradient, similar to temperature gradients driving heat transport We will look at two mass transport mechanisms,

More information

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class 0.30 Fall 004 Homework Problem Set 9 Due Wednesday, November 4, at start of class Part A. Consider an iron surface which serves as a catalyst for the production of ammonia from nitrogen and hydrogen. The

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions. Another way to view this problem is to say that the final volume contains V m 3 of alcohol at 5.93 kpa and 20 C V m 3 of air at 94.07 kpa and 20 C V m 3 of air plus alcohol at 100 kpa and 20 C Thus, the

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 Summary: This set of notes gives an overview of respiration and then follows the overview with a detailed discussion

More information

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

More information

Worksheet: Solubility

Worksheet: Solubility 1. According to your Reference Tables, which substance forms an unsaturated solution when 80 grams of the substance is dissolved in 100 grams of H 2 O at 10 C? (A) KI (B) KNO 3 (C) NaNO 3 (D) NaCl 2. The

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

αo 2 : solubility coefficient of O 2

αo 2 : solubility coefficient of O 2 Version 2006 Dr. Puntarica Suwanprathes 1) Fick s law of diffusion 2) facts which limit gas transfer 3) diffusion capacity gas volume gaseous phase dissolved gas exert pressure*** Solubility of Gas C =P.

More information

How and why Eurotrol s CueSee Hypoxic works

How and why Eurotrol s CueSee Hypoxic works How and why Eurotrol s CueSee Hypoxic works Thank you for taking the time to learn some of the advantages and principles behind Eurotrol s CueSee Hypoxic for the validation of low po2 blood gas measurements.

More information

Liquid Thin Film Technology

Liquid Thin Film Technology Liquid Thin Film Technology New innovative way of enabling gas transfer in/out of liquid with extremely high power efficiency US Patent No. US 8,292,271 B2 and US 7,494,534 B2 3/15/2015 Riverforest Corporation

More information

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Essential Skills Course Acute Care Module Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Acknowledgements This pre course workbook has been complied and updated with reference to the original

More information

Physical Pharmacy. Solubility. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

Physical Pharmacy. Solubility. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department Physical Pharmacy Solubility Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department 1 Definition Solubility is the maximum amount of a solid, liquid or a gas solute that

More information

Mass Transfer. Bioprocess Engineering Principles, Second Edition Elsevier Ltd. All rights reserved.

Mass Transfer. Bioprocess Engineering Principles, Second Edition Elsevier Ltd. All rights reserved. C H A P T E R 10 Mass Transfer Mass transfer occurs in mixtures containing concentration variations. For example, when dye is dropped into a pail of water, mass transfer processes are responsible for the

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

Lecture 8 questions and answers The Biological Pump

Lecture 8 questions and answers The Biological Pump Lecture 8 questions and answers The Biological Pump (1) How long would it take a particle of about 2micron in size and a density of 1.5 g/cm 3 to get to the bottom of the sea (4000m)? How do particles

More information

Title: Solubility of Gas A Daily Experience. Subject: Chemistry. Grade Level: 10 th 12 th

Title: Solubility of Gas A Daily Experience. Subject: Chemistry. Grade Level: 10 th 12 th Title: Solubility of Gas A Daily Experience Subject: Chemistry Grade Level: 10 th 12 th Rational or Purpose: This lesson brings an everyday life experience to students knowledge on solubility of gas in

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Gilbert Kirss Foster. Chapter 10. Properties of Gases The Air We Breathe

Gilbert Kirss Foster. Chapter 10. Properties of Gases The Air We Breathe Gilbert Kirss Foster Chapter 10 Properties of Gases The Air We Breathe Chapter Outline 10.1 The Properties of Gases 10.2 Effusion and the Kinetic Molecular Theory of Gases 10.3 Atmospheric Pressure 10.4

More information

CTB3365x Introduction to Water Treatment

CTB3365x Introduction to Water Treatment CTB3365x Introduction to Water Treatment W4e Aeration Merle de Kreuk There is one last thing of the biological part that needs some design. As you know, nitrifyers need oxygen, and also the heterotrophs,

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

Isotopes and Gases. Isotopes as constraints to air sea gas exchange, gas exchange time scales, the various time scales of carbon (isotope) exchange

Isotopes and Gases. Isotopes as constraints to air sea gas exchange, gas exchange time scales, the various time scales of carbon (isotope) exchange Isotopes and Gases Isotopes as constraints to air sea gas exchange, gas exchange time scales, the various time scales of carbon (isotope) exchange Isotope effects in gas solution and molecular diffusion

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange By: Aseel Jamil Al-twaijer Lec : physical principles of gas exchange Date:30 /10/2017 this lecture is about the exchange of gases between the blood and the alveoli. I might add some external definitions

More information

Applied Physics Topics 2

Applied Physics Topics 2 Applied Physics Topics 2 Dr Andrey Varvinskiy Consultant Anaesthetist Torbay Hospital, UK EDAIC Paper B Lead and Examiner TOPICS 2 Gas Laws Other Laws: Dalton, Avogadro Critical temperature Critical pressure

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

4/26/16. Section 1 Understanding Solutions. Solutions and Suspensions. Solutions and Suspensions. Solutions and Suspensions. Solvents and Solutes

4/26/16. Section 1 Understanding Solutions. Solutions and Suspensions. Solutions and Suspensions. Solutions and Suspensions. Solvents and Solutes Section 1 Understanding Solutions On a hot day, you may think that a cool glass of plain water would be refreshing. However, if the glass were actually filled with plain water, it would taste stale. This

More information

Gas Exchange & Circulation

Gas Exchange & Circulation Why is gas exchange important? Gas Exchange & Circulation Read Ch. 42 start with 42.5: Gas Exchange in Animals Respiration: C 6 H 12 O 6 + O 2! Energy + CO 2 + H 2 O Photosynthesis: Energy + CO 2 + H 2

More information

Appendix 2. Basic physical properties applied to the respiratory system

Appendix 2. Basic physical properties applied to the respiratory system Appendix 2. Basic physical properties applied to the respiratory system Fluid is a general definition of a state of matter characterized by a weak intermolecular connection (Van der Waal's cohesive forces),

More information

BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY

BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY Dr.R.Selvakumar.M.D.D.A.DNB Professor of Anaesthesiology, K.A.P.Viswanatham Govt medical college, Trichy. The current practice of Anaesthesiology demands knowledge

More information

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood Breathing rate is regulated by blood ph and C02 breathing reduces plasma [CO2]; plasma [CO2] increases breathing. When C02 levels are high, breating rate increases to blow off C02 In low C02 conditions,

More information

PHYSICS. Light: Sound:

PHYSICS. Light: Sound: PHYSICS Light: The speed of light changes as it passes through different things such as air, glass and water. This affects the way we see things underwater with a diving mask. As the light passes through

More information

P215 Respiratory System, Part 2

P215 Respiratory System, Part 2 P15 Respiratory System, Part Gas Exchange Oxygen and Carbon Dioxide constant need for oxygen constant production of carbon dioxide exchange (and movement) lung alveoli pulmonary arteries pulmonary capillaries

More information

Respiratory Lecture Test Questions Set 3

Respiratory Lecture Test Questions Set 3 Respiratory Lecture Test Questions Set 3 1. The pressure of a gas: a. is inversely proportional to its volume b. is unaffected by temperature changes c. is directly proportional to its volume d. does not

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility.

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility. Physiology, sheet #9 Oxygen, is first dissolved in the plasma and the cytosol of the rbc, we have around blood constitutes 7% of our body weight, oxygen, in the capillaries is present in the rbc s and

More information

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Figure 13.25 This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as though it was taken at

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

Prediction of the long-term insulating capacity of cyclopentane-blown polyurethane foam

Prediction of the long-term insulating capacity of cyclopentane-blown polyurethane foam Prediction of the long-term insulating capacity of cyclopentane-blown polyurethane foam Camilla Persson, Licentiate of Engineering Johan Claesson, Professor camilla.persson@chalmers.se johan.claesson@chalmers.se

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

CTB3365x Introduction to Water Treatment

CTB3365x Introduction to Water Treatment CTB3365x Introduction to Water Treatment D4b Aeration Doris van Halem Did you know that there are not just gasses in your glass of sparkling coke, but also in the tap water you drink? Welcome to the water

More information

Gases and Respiration. Respiration Overview I

Gases and Respiration. Respiration Overview I Respiration Overview I Respiration Overview II Gas Laws Equation of State: PV = nrt Same volumes of different gases have same # of molecules BTPS: body temp, atmospheric pressure, saturated ATPS: ambient

More information

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi Course : PG Pathshala-Biophysics Paper 13 : Physiological Biophysics Module 17 : Gas transport and pulmonary circulation Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. Atmospheric pressure is 760 mm Hg. 2. The SI unit of pressure is

More information

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

More information

SOLUTIONS Homework #1

SOLUTIONS Homework #1 SOLUTIONS Homework #1 INTRODUCTION TO ENGINEERING IN MEDICINE AND BIOLOGY ECEN 1001- Fall 2003 R. Mihran Due Tuesday, 9/9/03 Question 1: a) Chapter 1 of the text discusses the fact that a significant fraction

More information

CHEM1901/3 Worksheet 8: The Ideal Gas Law: PV = nrt

CHEM1901/3 Worksheet 8: The Ideal Gas Law: PV = nrt CHEM1901/3 Worksheet 8: The Ideal Gas Law: PV = nrt The Ideal Gas Law Model 1: The Gas Laws T (K) Kelvin or absolute temperature = T ( C) + 273. T(K) is always 0 K Boyle s Law (1660). The volume of a gas

More information

1. A pure substance has a specific volume of 0.08 L/mol at a pressure of 3 atm and 298 K. The substance is most likely:

1. A pure substance has a specific volume of 0.08 L/mol at a pressure of 3 atm and 298 K. The substance is most likely: Name: September 19, 2014 EXAM 1 P a g e 1 1. A pure substance has a specific volume of 0.08 L/mol at a pressure of 3 atm and 298 K. The substance is most likely: a. Liquid b. Gas c. Supercritical Fluid

More information

NOTES: Behavior of Gases

NOTES: Behavior of Gases NOTES: Behavior of Gases Properties of Gases Gases have weight Gases take up space Gases exert pressure Gases fill their containers Gases are mostly empty space The molecules in a gas are separate, very

More information

What does the % represent on the beakers?

What does the % represent on the beakers? DISSOLVED OXYGEN VIDEO FAQs What does the % represent on the beakers? What are the glass tubes to beakers for? How is the temperature being kept the same (at 5 o then 35 o )? What is salinity in parts

More information

Chapter 4, Problem 30.

Chapter 4, Problem 30. Chapter 4, Problem 30. A well-insulated rigid tank contains 5 kg of a saturated liquid vapor mixture of water at l00 kpa. Initially, three-quarters of the mass is in the liquid phase. An electric resistor

More information

Table of Contents. By Adam Hollingworth

Table of Contents. By Adam Hollingworth By Adam Hollingworth Table of Contents Oxygen Cascade... 2 Diffusion... 2 Laws of Diffusion... 2 Diffusion & Perfusion Limitations... 3 Oxygen Uptake Along Pulmon Capillary... 4 Measurement of Diffusing

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure = Chapter 13 Gas Laws Chapter 13 Gases and Pressure Pressure and Force Pressure is the force per unit area on a surface. Pressure = Force Area Chapter 13 Gases and Pressure Gases in the Atmosphere The atmosphere

More information

Dissolved Oxygen Meter. ino2. Instruction Manual. Serial No..

Dissolved Oxygen Meter. ino2. Instruction Manual. Serial No.. Innovative Instruments, Inc. http://www.2in.com Dissolved Oxygen Meter ino2 Instruction Manual Serial No.. Innovative Instruments, Inc. 8533 Queen Brooks Ct. Tampa, FL 33637. USA Phone: 813-727-0676. Fax:

More information

Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 15 Bioreactor env.par.

Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 15 Bioreactor env.par. Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras Lecture - 15 Bioreactor env.par. (DO) Welcome to lecture 15 NPTEL online certification course on Bioreactors.

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI

Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI Outline: Pure Substance Phases of pure substance Phase change process of pure substance Saturation temperature and saturation pressure

More information

Solubility of the gases

Solubility of the gases Solubility of the gases The principal atmospheric gases that go into solution are oxygen, nitrogen, carbon dioxide. All water exposed to atmosphere will have these gases in solution. Other gases in solution

More information

To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure

To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure Standard Molar Volume To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure At STP, one mole of any gas has a volume of: 22.4 L = (This is a cube

More information

Dissolved Oxygen and measurement possibilities. Berno Lüpkes, 15 th March 2017

Dissolved Oxygen and measurement possibilities. Berno Lüpkes, 15 th March 2017 Dissolved Oxygen and measurement possibilities Berno Lüpkes, 15 th March 2017 Content 1. Introduction to Dissolved Oxygen 2. Amperometric measurement principle 3. Optical measurement principle 4. Optical

More information

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi Oxygen and Carbon dioxide Transport Dr. Laila Al-Dokhi Objectives 1. Understand the forms of oxygen transport in the blood, the importance of each. 2. Differentiate between O2 capacity, O2 content and

More information

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant.

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant. PTT 04/ Applied Fluid Mechanics Sem, Session015/016 ASSIGNMENT 1 CHAPTER AND CHAPTER 1. The air in an automobile tire with a volume of 0.0740 m is at 0 C and 140 kpa. Determine the amount of air that must

More information

DECOMPRESSION THEORY - NEO-HALDANE MODELS

DECOMPRESSION THEORY - NEO-HALDANE MODELS DECOMPRESSION THEORY - NEO-HALDANE MODELS This section describes the Haldane or neo-haldane decompression theories. On each dive the divers body takes up inert gasses, like Nitrogen. After the dive the

More information

Measurements of k L a. Steady-State Mass Balance Method:

Measurements of k L a. Steady-State Mass Balance Method: Measurements of k a Steady-State Mass Balance Method: In theory, the K a in an apparatus that is operating continuously under steady-state conditions could be evaluated from the flow rates and the concentrations

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

Dissolved Oxygen Guide

Dissolved Oxygen Guide Educat i onser i es Di ssol vedoxygengui de Dissolved Oxygen Guide Introduction Dissolved oxygen probes provide a convenient approach to essentially direct measurement of molecular oxygen. The membrane

More information

maintaining storage tank dissolved oxygen levels utilizing gas transfer membranes

maintaining storage tank dissolved oxygen levels utilizing gas transfer membranes Water Technologies & Solutions technical paper maintaining storage tank dissolved oxygen levels utilizing gas transfer membranes Authors: W.E. Haas, SUEZ, J. Helmrich, Florida Power and Light and J.E.

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

Unit 8: Kinetic Theory Homework Packet (90 points)

Unit 8: Kinetic Theory Homework Packet (90 points) Name: Key Period: By the end of Unit 8, you should be able to: Kinetic Theory Chapter 13-14 4. Define kinetic theory of gases including collisions 5. Define pressure, including atmospheric pressure, vapor

More information

Energy and mass transfer in gas-liquid reactors.

Energy and mass transfer in gas-liquid reactors. Energy and mass transfer in gas-liquid reactors. John M Smith School of Engineering (D2) University of Surrey, Guildford GU2 7XH, UK j.smith@surrey.ac.uk 1 Energy and mass transfer in gas-liquid reactors.

More information

Scales of Motion and Atmospheric Composition

Scales of Motion and Atmospheric Composition Scales of Motion and Atmospheric Composition Atmos 3200/Geog 3280 Mountain Weather and Climate Sebastian Hoch & C. David Whiteman Drusberg and Glaernisch, Switzerland, Sebastian Hoch Atmospheric Scales

More information

Respiratory physiology II.

Respiratory physiology II. Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

More information

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them. Chapter 5 Gases Gas Gases are composed of particles that are moving around very fast in their container(s). These particles moves in straight lines until they collides with either the container wall or

More information

Chemistry 101 Chapter 5 GAS MIXTURES

Chemistry 101 Chapter 5 GAS MIXTURES GAS MIXTURES Consider mixing equal volumes of 3 different gases, all at the same temperature and pressure in a container of the same size. 1 L He 1 L N 2 1 L O 2 1 L mixture t = 0 0 C t = 0 0 C t = 0 0

More information

Expand to fill their containers, are highly compressible, have extremely low densities.

Expand to fill their containers, are highly compressible, have extremely low densities. Chem150 week6 Handout 1 Gases Characteristics of Gases: Unlike liquids and solids, they Expand to fill their containers, are highly compressible, have extremely low densities. Pressure is the amount of

More information

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION

More information

PHY131H1S - Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little pre-class reading quiz

PHY131H1S - Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little pre-class reading quiz PHY131H1S - Class 23 Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle Archimedes (287-212 BC) was asked to check the amount of silver alloy in the king s crown. The answer

More information

Phase Changes * OpenStax

Phase Changes * OpenStax OpenStax-CNX module: m42218 1 Phase Changes * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Interpret a phase diagram. State Dalton's

More information

Chapter 12. The Gaseous State of Matter

Chapter 12. The Gaseous State of Matter Chapter 12 The Gaseous State of Matter The air in a hot air balloon expands When it is heated. Some of the air escapes from the top of the balloon, lowering the air density inside the balloon, making the

More information

Introduction to ChemSense

Introduction to ChemSense Introduction to ChemSense As you may have seen, the ChemSense software allows you to create drawings and animation of chemical phenomena (and non-chemical phenomena for some of you). The software also

More information

Unit 11 Gas Laws Chapters 13 of your textbook

Unit 11 Gas Laws Chapters 13 of your textbook Unit 11 Gas Laws Chapters 13 of your textbook Early Booklet E.C.: + 2 Unit 11 Hwk. Pts.: / 19 Unit 11 Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N Learning Targets for Unit 11 1.1 I can

More information

Brent Sleep, Magdalena Krol, University of Toronto Kevin Mumford, Queen s University Richard Johnson, Oregon Health and Science University

Brent Sleep, Magdalena Krol, University of Toronto Kevin Mumford, Queen s University Richard Johnson, Oregon Health and Science University Brent Sleep, Magdalena Krol, University of Toronto Kevin Mumford, Queen s University Richard Johnson, Oregon Health and Science University Electrical Resistance Heating (ERH) Power Control System Vapour

More information

Recall that a solution is a homogeneous mixture. (the same throughout) Solvent major component of a solution.

Recall that a solution is a homogeneous mixture. (the same throughout) Solvent major component of a solution. Solutions What Is A Solution? Recall that a solution is a homogeneous mixture. (the same throughout) Solvent major component of a solution. Dissolves the solute(s). (Usually Water) Solute(s) minor component(s)

More information

Gas Law Review. Honors Chem.

Gas Law Review. Honors Chem. Gas Law Review Honors Chem. Question 1: KMT 1: What does KMT stand for? 2: Gas particles have no or. 3: Gas particles are not to or by each other. 4: measures the average kinetic energy of gas particles.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test General Chemistry CH116 UMass Boston Summer 2013 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The pressure exerted by a column of

More information

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] Chapter 10 Gases We have talked a little about gases in Chapter 3 and we dealt briefly with them in our stoichiometric calculations in

More information

1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg

1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg Score 1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg 2. [Chang7 5.P.019.] The volume of a gas is 5.80 L, measured at 1.00 atm. What is the pressure of the gas in mmhg if

More information

DISSOLVED OXYGEN SENSOR BT34i

DISSOLVED OXYGEN SENSOR BT34i DISSOLVED OXYGEN SENSOR BT34i USER S GUIDE CENTRE FOR MICROCOMPUTER APPLICATIONS http://www.cma-science.nl Short description The CMA Dissolved Oxygen (DO) sensor BT34i measures the concentration of dissolved

More information

Respiratory System Study Guide, Chapter 16

Respiratory System Study Guide, Chapter 16 Part I. Clinical Applications Name: Respiratory System Study Guide, Chapter 16 Lab Day/Time: 1. A person with ketoacidosis may hyperventilate. Explain why this occurs, and explain why this hyperventilation

More information

ASTM 3612/TOGA/Dissolved Gas GC Revised October 2013

ASTM 3612/TOGA/Dissolved Gas GC Revised October 2013 The SRI ASTM 3612/TOGA/ Dissolved Gas GC configuration ( TOGA GC ) permits measurement of gasses dissolved in water, oil or other liquids, and is based on the requirements of ASTM method 3612, option C,

More information

The Varying Permeability Model. By Dan Reinders (with additional graphics and animations by Richard Pyle)

The Varying Permeability Model. By Dan Reinders (with additional graphics and animations by Richard Pyle) The Varying Permeability Model By Dan Reinders (with additional graphics and animations by Richard Pyle) An easy explanation for the mathematically disinclined First an Introduction to bubbles: The pressure

More information

A. What are the three states of matter chemists work with?

A. What are the three states of matter chemists work with? Chapter 10 and 12 The Behavior of Gases Chapter 10 The States of Matter A. What are the three states of matter chemists work with? Section 10.1 Pg 267 B. We will explain the behavior of gases using the

More information

Atmospheric & Ocean Circulation-

Atmospheric & Ocean Circulation- Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Membrane covered optical CO 2 sensor

Membrane covered optical CO 2 sensor Membrane covered optical CO 2 sensor - Manual - 30 mg/l CO 2, 4-20 ma output Exclusively Distributed & Supported By: www.edaphic.com.au info@edaphic.com.au Ph: 1300 430 928 Warning! Do never try to unscrew

More information