Air bubble movement over and under hydrophobic surfaces in water

Size: px
Start display at page:

Download "Air bubble movement over and under hydrophobic surfaces in water"

Transcription

1 Air bubble movement over and under hydrophobic surfaces in water Ali Kibar 1, Ridvan Ozbay 2, Mohammad Amin Sarshar 2, Yong Tae Kang 3, Chang-Hwan Choi 2, 3 1 Department of Mechanical and Material Technologies, Kocaeli University, Kocaeli, Turkey 2 Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA 3 Department of Mechanical Engineering, Kyung Hee University, Yong In, Korea Keywords: Bubble, Hydrophobic, Buoyancy, Sliding angle, Contact angle hysteresis, Adhesion Abstract The movement of a single air bubble over and under a hydrophobic surface with an inclination was investigated, submerged in water. A Teflon sheet with an apparent contact angle of a sessile water droplet of 106 was used as a hydrophobic surface. The volume of a bubble and the inclination angle of a Teflon sheet were varied in the range of 5-40 µl and 0-45, respectively. The effects of the volume of a bubble on a sliding angle and contact angle hysteresis were examined in details on the top and the bottom of the hydrophobic surface, respectively, and compared. The result shows that the sliding angle has linear relationship with the bubble volume regardless of the location of the bubble. However, at the same given volume, a greater inclination angle is required for the bubble located on the downward facing surface to result in the sliding motion. It is attributed to the effect of a buoyancy force which causes the deformation of the bubble and the change of the adhesion force. Introduction Bubbles are important for many industrial processes and applications, such as boiling (Jo et al. 2011), cavitation (Plesset & Prosperetti 1977), electrolysis (Perron et al. 2006), water treatment (Demoyer et al. 2003), orifice plate (Xie et al. 2012), biomass energy (Qu et al. 2011), and hydrodynamic drag reduction (Aljallis et al. 2013). In such applications, the substrates often stand as inclined or their angles change over time. Although bubbles detach easily from a hydrophilic surface, they like to attach and spread over hydrophobic surfaces. Previously many studies were conducted on the bubble motions on hydrophilic surfaces both experimentally and theoretically. For example, Perron et al. (2006) studied the influence of a bubble volume and the inclination angle of a substrate on the terminal velocity of a bubble on the top of a surface in a hydrophilic condition (i.e., θ w <90, where θ w is a contact angle of a sessile droplet of water). In contrast, only a few studies have been made on hydrophobic surfaces. Sonoyama & Iguchis (2002) studied the bubble motion at both the top and the bottom sides of a hydrophobic surface (90 <θ w <130), and determined the detachment condition. However, the fundamental and systematic understanding of the effects of bubble volumes and inclination angles on the sliding motions and the contact angle hysteresis, especially both over and under a hydrophobic surface, has not yet been made much. In this work, we have studied the movement of an air bubble both over and under a hydrophobic surface submerged in water with the systematically varied air volumes and inclination angles. Herein, we report the analyzed results and show their effects on the sliding angles. Nomenclature Alphabets g Gravitational constant (ms -1 ) w Contact diameter (width) of a bubble (mm) V Bubble volume (μl) F B Buoyancy force (N) F adh Adhesion force (N) k Retentive force factor Greek letters α Inclination (sliding) angle ( ) L Liquid density (kg/m 3 ) A Air density (kg/m 3 ) θ Contact angle of a bubble ( ) Contact angle of a water droplet ( ) θ w θ a θ r γ Advancing contact angle of a bubble ( ) Receding contact angle of a bubble ( ) Coefficient of surface tension (N/m) Theoretical Models Figure 1 illustrates the theoretical models of forces acting on a bubble, including the cases on the top of a horizontal surface, on the bottom of a horizontal surface, on top of an inclined surface (c), and on the bottom of an inclined surface (d), respectively. There are primarily two factors that affect the bubble motion over an immersed surface in liquid, including the volume of a bubble (V) and the inclined angle of a surface (). The lateral sliding motion of a bubble along the surface is driven by the tangential component of the buoyancy force, such as: B L G F sin gv sin (1) where F B represents a vertical buoyant force. L and G 1

2 represent the densities of surrounding liquid and immersed gas, respectively. g is a gravitational constant. Opposed to the lateral buoyant force, an adhesion force (F adh ) is applied along the three-phase contact line of a bubble, following: F kw (cos cos ) (2) adh r a where w is the contact diameter (or width) of a bubble on a surface and is the coefficient of surface tension. k is a retentive force factor which depends on the morphology of a contact line (shape and length) as well as the contact angle distribution along the contact line (Antonini et al. 2009). r and a represent the receding (or minimum) and the advancing (or maximum) contact angles of a bubble at the downhill and uphill sides, respectively (Extrand & Kumagai 1995). When the lateral buoyancy force (F B sin) overcomes the adhesion force (F adh ), the contact line of a bubble depins from the surface and starts to slide up along the surface at the sliding angle,, following: kw (cosr cos a ) sin ( ) gv L Equation 3 is physically the same as what Furmidge (1962) developed for a sliding liquid droplet on an inclined surface. (c) A (3) (d) Figure 1: Force balance for an air bubble. On the top of a horizontal surface. On the bottom of a horizontal surface. (c) On the top of an inclined surface. (d) On the bottom of an inclined surface. Experimental Figure 2a shows the experimental setup used for the measurement of the profiles and the sliding angle () of a bubble in movement. A goniometer system with an automated tilting stage (Model 590, Rame-hart) was used to measure the volume, width, contact angle, and sliding angle of an air bubble while the inclination angle of the stage was gradually increased. A Teflon sheet with an apparent contact angle of 106 for a sessile droplet of water was used as a hydrophobic surface. A custom-made rectangular acrylic tank (11 cm long, 8 cm wide, and 8 cm high) was attached on the stage of the goniometer and filled with distilled water by around a half. The Teflon sheet was fixed over an acrylic plate and mounted on the bottom of the tank in case of the experiment for an upward facing surface (Figure 2b). In case of the experiment for a downward facing surface, the Teflon sheet was mounted below the acrylic plate (Figure 2c). Then the acrylic plate was attached on the bottom of the tank with some gap for the loading of a bubble from the underneath. After the Teflon sheet is immersed in water, a single air bubble was loaded on the surface. When loading a bubble on the upward facing surface of the Teflon sheet, a single air bubble was carefully injected from above by using a micropipette until it touched the surface and became stable. In case of the experiments for the downward facing surface of the Teflon sheet, a bubble was injected under the Teflon sheet by using an inverted micro-needle. After a bubble was loaded on either surface horizontally, the stage of a goniometer was gradually tilted at the rage of 0.5 deg/s -1 for all experiments until it reached the point when the bubble started to slide up. While the stage was tilted, the images of the bubble were captured at ten frames per second (10 fps). These pictures were analyzed to determine the height, width, volume, and advancing/receding/sliding angles of the bubble, by using image processing software (DROPimage advanced v2.4, Rame-hart). The obtained experimental data were then compared with the theoretical models (Equation 3). To study the effects of a bubble volume on the dynamics, the different volumes of a bubble (5-40 µl) were tested. 2

3 dramatic on a upward facing surface than on a downward facing surface (Figure 4a). In contrast, the increase of a bubble width with the increase of a bubble volume is more dramatic on a downward facing surface than on a upward facing surface (Figure 4b). Upward facing Downward facing Figure 3: Profile of a bubble on an upward or downward facing surface of a Teflon sheet. In a horizontal position. At inclination. The bubble in each image has the same volume. (c) Figure 2: Experimental setup. Goniometer system and liquid chamber. (b-c) A Teflon sheet mounted on an acrylic plate for upward facing and downward facing (c) experiments. Results and Discussion Hata! Başvuru kaynağı bulunamadı.3 shows the example of the profile of a bubble of the same volume that was located on either the upward or downward facing surface, in both the initial horizontal position (Figure 3a) and at inclination (Figure 3b). Due to a vertical buoyant force, the bubble profile on the upward facing surface is different from that on the downward facing surface. When a bubble is located on the downward facing surface, the bubble gets compressed against the vertical buoyant force due to the obstruction of the surface. It results in the decrease of the height and the increase of the width, compared to the bubble located on the upward facing surface. It also affects the contact angles of a bubble. Figure 4 shows the height (Figure 4a) and width (Figure 4b) of a bubble on both upward and downward facing surfaces when they stand in a horizontal position. Figures 4a and 4b clearly show that the difference of the height and width of a bubble between the upward facing surface and the downward facing surface. The difference gets increased with the volume of a bubble since the buoyant force is proportional to the volume of a bubble. The increase of a bubble height with the increase of a bubble volume is more Figure 4: Variations of the height and width of a bubble of a different volume on the upward and the downward facing surfaces. Figure 5 shows the advancing/receding contact angles of a bubble at the moment when it started to slide up along the 3

4 surface at inclination. In case of the upward facing surface, the advancing/receding contact angles do not change much with the volume of a bubble. In case of the downward facing surface, a significant decrease of both the advancing and receding contact angles with a bubble volume was observed. Despite such differences, the receding contact angles on both the upward and the downward facing surfaces are overall similar. However, the advancing contact angles on the downward facing surface are significantly higher than on the upward facing surface. It suggests that the adhesion force of a bubble on the downward facing surface would be greater than that on the upward facing surface, according to Equation 2, because of the larger contact width (w) and contact angle hysteresis (cos r - cos a ) on the downward facing surface. Then, according to Equation 3, a larger sliding angle () would be required for a bubble attached on the downward facing surface. Figure 6: Results of sliding angles of bubbles of different volumes on upward and downward facing surfaces. The data with solid lines represent the experimental measurement data, while the data with dotted lines represent the theoretical expectation based on Equation 3. Conclusions Figure 5: Variations of the advancing and receding contact angles (CA) of a bubble of a different volume on the upward and the downward facing surfaces. Figure 6 shows the results of the sliding angles of the bubbles. The data with solid lines represent the experimental measurement data, while the data with dotted lines represent the theoretical expectation based on Equation 3. For the theoretical values, the retentive force factor (k) was obtained for the upward and the downward facing surfaces, respectively, by using a least squares fitting method to the experimental values. The obtained values for the retentive force factor (k) are 2/Π and 1/2 for the upward and the downward facing surfaces, respectively. With the estimated values of the retentive force factors, the results show that the experimental data agree well with the theoretical prediction on both the upward and downward facing surfaces. As predicted by the theoretical model (Equation 3), the results also show that a higher inclination angle () was required to result in the movement of a bubble on the downward facing surface than on the upward facing surface at the same given volume of a bubble. It is because of the larger contact width and the larger contact angle hysteresis (i.e., adhesion force) of a bubble when attached on the downward facing surface. In this work, the sliding angle of a bubble on an inclined hydrophobic surface has been studied experimentally, especially to investigate the effects of the buoyant force on the sliding behavior when a bubble is placed over and under the surface, respectively. Compared to a bubble on the upward facing surface, a bubble on the downward facing surface needs a greater inclination angle for the sliding motion. It is attributed to the increased contact area (width) and the contact angle hysteresis on the downward facing surface, which result in the larger adhesion force of a bubble on the surface. When comparing the experimental results to those of theoretical models, it is found that different retentive force factors should be used for the different facings, which are 2/Π and 1/2 for the upward and the downward facing surfaces, respectively. Acknowledgements This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) BIDEB-2219 and the US Office of Naval Research (ONR) under the Young Investigator Program (YIP). References Aljallis, E., Sarshar, M., Datla, R., Sikka, V., Jones, A., and Choi, C.-H. Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow. Phys. Fluids, Vol: 25, (2013) Antonini, C., Carmona F. J., Pierce E., Marengo M., and Amirfazli, A. General Methodolgy for Evaluating the Adhesion force of Drops and Bubbles on Solid Surfaces. Langmuir, Vol: 25, , (2009) 4

5 Demoyer, C. D., Schierholz, E. L, Gulliver, J. S., Wilhelms, S. C. Impact of Bubble and Free Surface Oxygen Transfer on Diffused Aeration Systems. Water Research, Vol: 37, (2003) Extrand, C. & Kumagai, Y. Liquid Drop on an Inclined Plane: The Relation between Contact Angles, Drop Shape, and Retentive Force. J. Colloid Interface Sci, Vol: 170, , (1995) Furmidge C. G. L. The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention, J. Colloid Interface Sci., Vol: 17, , (1962) Jo, H. J., Ahn, H. S., Kong, S. H., Kim, M. H. A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces. Int. J. Heat Mass Tran., Vol: 54, , (2011) Perron, A., Kiss, L. I., Poncsak, S. An Experimental Investigation of the Motion of Single Bubbles Under a Slightly Inclined Surface. Int. J. Multiphase Flow, Vol: 32, (2006) Plesset, M. S. & Prosperetti, A. Bubble Dynamics and Cavitation. Annu. Rev. Fluid Mech., Vol: 9, , (1977) Qu, X. F., Wang, Y. Z., Zhu, X., Liao, Q., Li, J., Ding, Y., Lee, D. J. Bubble Behavior and Photo-Hydrogen Production Performance of Photosynthetic Bacteria in Microchannel Photobioreactor. Int. J. Hydrogen Energy, Vol: 36, , (2011) Sonoyama, N. & Iguchi, M. Bubble Formation and Detachment on Nonwetted Surfaces. Metall. Mater. Trans. B, Vol: 33, , (2002) Xie, J., Zhu, X., Liao, Q., Wang, H., Ding, Y. D. Dynamics of Bubble Formation and Detachment from an Immersed Micro-Orifice on a Plate. Int. J. Heat Mass Tran., Vol: 55, , (2012) 5

Air Bubble Departure on a Superhydrophobic Surface

Air Bubble Departure on a Superhydrophobic Surface Air Bubble Departure on a Superhydrophobic Surface A. Kibar 1, R. Ozbay 2, C.H. Choi 2 1 Department of Mechanical and Material Technologies, Kocaeli University, 41285, Kocaeli, Turkey 2 Department of Mechanical

More information

Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering

Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering Marina Campolo, Dafne Molin, Alfredo Soldati Centro Interdipartimentale di Fluidodinamica e Idraulica and Department

More information

Experimental study on path instability of rising bubbles

Experimental study on path instability of rising bubbles Experimental study on path instability of rising bubbles V. MOTURI, D. FUNFSCHILLING, J. DUSEK ICube, UMR 7357 Mécanique des fluids,2 rue Boussingault,67000,Strasbourg,France. viswa-maitreyi.moturi@etu.unistra.fr

More information

Numerical Investigation of Air Bubbles Evolution and Coalescence from Submerged Orifices Based on OpenFOAM

Numerical Investigation of Air Bubbles Evolution and Coalescence from Submerged Orifices Based on OpenFOAM Numerical Investigation of Air Bubbles Evolution and Coalescence from Submerged Orifices Based on OpenFOAM Pan Feng, He Ying, Li-zhong Mu 2018-7-6 Dalian University of Technology, China Outline Background

More information

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Hong Xu, Chokri Guetari ANSYS INC. Abstract Transient numerical simulations of the rise of a train of gas bubbles in a liquid

More information

Visual Observation of Nucleate Boiling and Sliding Phenomena of Boiling Bubbles on a Horizontal Tube Heater

Visual Observation of Nucleate Boiling and Sliding Phenomena of Boiling Bubbles on a Horizontal Tube Heater Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 216 Paper No. HTFF 146 DOI:.11159/htff16.146 Visual Observation of Nucleate

More information

A Numerical Investigation of Dominant Factors Affecting the Bubble Dynamics Between Air-water and CO 2 -cryolite Systems

A Numerical Investigation of Dominant Factors Affecting the Bubble Dynamics Between Air-water and CO 2 -cryolite Systems 19 th Australasian Fluid Mechanics Conference Melbourne, Australia 8-11 December 1 A Numerical Investigation of Dominant Factors Affecting the Bubble Dynamics Between Air-water and CO -cryolite Systems

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

Air entrainment in Dip coating under vacuum

Air entrainment in Dip coating under vacuum Air entrainment in Dip coating under vacuum M.I. Khan, R. Patel, H. Benkreira, IRC, School of Engineering, Design and Technology, University of Bradford, BD7 1DP, Abstract Air entrainment studies in dip

More information

Experimental Studies on the Instabilities of Viscous Fingering in a Hele-Shaw Cell

Experimental Studies on the Instabilities of Viscous Fingering in a Hele-Shaw Cell Korean J. Chem. Eng., 17(2), 169-173 (2000) Experimental Studies on the Instabilities of Viscous Fingering in a Hele-Shaw Cell Chung Gi Baig, Young Ho Chun*, Eun Su Cho* and Chang Kyun Choi School of Chemical

More information

A model for the bubble lift-off diameter in subcooled boiling flow in a horizontal channel

A model for the bubble lift-off diameter in subcooled boiling flow in a horizontal channel Advances in Fluid Mechanics X 215 A model for the bubble lift-off diameter in subcooled boiling flow in a horizontal channel S. Shabannejad & N. Ashgriz Department of Mechanical and Industrial Engineering,

More information

Flow transients in multiphase pipelines

Flow transients in multiphase pipelines Flow transients in multiphase pipelines David Wiszniewski School of Mechanical Engineering, University of Western Australia Prof. Ole Jørgen Nydal Multiphase Flow Laboratory, Norwegian University of Science

More information

Chapter 3 PRESSURE AND FLUID STATICS

Chapter 3 PRESSURE AND FLUID STATICS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGraw-Hill

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

Development of High-speed Gas Dissolution Device

Development of High-speed Gas Dissolution Device Development of High-speed Gas Dissolution Device Yoichi Nakano*, Atsushi Suehiro**, Tetsuhiko Fujisato***, Jun Ma**** Kesayoshi Hadano****, Masayuki Fukagawa***** *Ube National College of Technology, Tokiwadai

More information

Experimental study on the gas tightness of a mined cavern with groundwater

Experimental study on the gas tightness of a mined cavern with groundwater Experimental study on the gas tightness of a mined cavern with groundwater Yoshinobu Nishimoto a *, Noboru Hasegawa a, and Makoto Nishigaki b a Electric Power Development Co. Ltd., Japan b Okayama University,

More information

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK ABSTRACT Ventilation stacks are becoming increasingly common in the design of naturally

More information

Technical Note. Determining the surface tension of liquids by measurements on pendant drops

Technical Note. Determining the surface tension of liquids by measurements on pendant drops Technical Note Pendant Drop Measurements Technical note: TN316e Industry section: all Author: FT, TW Date: 12/2010 Method: Drop Shape Analyzer DSA100 Keywords: Methods, surface tension, interfacial tension,

More information

Drop Fingering on Oblique Impact: Part 1 Experimental Data

Drop Fingering on Oblique Impact: Part 1 Experimental Data , 11 th International Annual Conference on Liquid Atomization and Spray Systems, Vail, Colorado USA, July 2009 Richard A. Jepsen*, Alexander L. Brown*, Guillermo Aguilar, and Henry Vu *Sandia ational Laboratories

More information

Air Bubble Defects in Dispensing Nanoimprint Lithography

Air Bubble Defects in Dispensing Nanoimprint Lithography Air Bubble Defects in Dispensing Nanoimprint Lithography Abstract We report a theoretical study and dynamic simulation to understand the dynamic behavior of the air bubble defects in Dispensing Nanoimprint

More information

Yasuyuki Hirose 1. Abstract

Yasuyuki Hirose 1. Abstract Study on Tsunami force for PC box girder Yasuyuki Hirose 1 Abstract In this study, a waterway experiment was performed in order to understand the influence of tsunami forms on tsunami forces acting on

More information

Student name: + is valid for C =. The vorticity

Student name: + is valid for C =. The vorticity 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #1 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

Submitted to Metallurgical and Materials Transactions B, on May 26, BUBBLE FORMATION DURING HORIZONTAL GAS INJECTION

Submitted to Metallurgical and Materials Transactions B, on May 26, BUBBLE FORMATION DURING HORIZONTAL GAS INJECTION Submitted to Metallurgical and Materials Transactions B, on May 26, 2000 1 BUBBLE FORMATION DURING HORIZONTAL GAS INJECTION INTO DOWNWARD FLOWING LIQUID Hua Bai and Brian G. Thomas Hua Bai, Senior research

More information

Static Fluids. **All simulations and videos required for this package can be found on my website, here:

Static Fluids. **All simulations and videos required for this package can be found on my website, here: DP Physics HL Static Fluids **All simulations and videos required for this package can be found on my website, here: http://ismackinsey.weebly.com/fluids-hl.html Fluids are substances that can flow, so

More information

Injector Dynamics Assumptions and their Impact on Predicting Cavitation and Performance

Injector Dynamics Assumptions and their Impact on Predicting Cavitation and Performance Injector Dynamics Assumptions and their Impact on Predicting Cavitation and Performance Frank Husmeier, Cummins Fuel Systems Presented by Laz Foley, ANSYS Outline Overview Computational Domain and Boundary

More information

The effect of two inclined circular plunging jets on air entrainment in an aeration tank

The effect of two inclined circular plunging jets on air entrainment in an aeration tank Computational Methods in Multiphase Flow III 229 The effect of two inclined circular plunging jets on air entrainment in an aeration tank M. S. Baawain, M. Gamal El-Din & D. W. Smith Department of Civil

More information

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

More information

Bioreactor System ERT 314. Sidang /2011

Bioreactor System ERT 314. Sidang /2011 Bioreactor System ERT 314 Sidang 1 2010/2011 Chapter 2:Types of Bioreactors Week 4 Flow Patterns in Agitated Tanks The flow pattern in an agitated tank depends on the impeller design, the properties of

More information

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE - 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,

More information

Study on Fire Plume in Large Spaces Using Ground Heating

Study on Fire Plume in Large Spaces Using Ground Heating Available online at www.sciencedirect.com Procedia Engineering 11 (2011) 226 232 The 5 th Conference on Performance-based Fire and Fire Protection Engineering Study on Fire Plume in Large Spaces Using

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

Australian Journal of Basic and Applied Sciences. Pressure Distribution of Fluid Flow through Triangular and Square Cylinders

Australian Journal of Basic and Applied Sciences. Pressure Distribution of Fluid Flow through Triangular and Square Cylinders AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Pressure Distribution of Fluid Flow through Triangular and Square Cylinders 1 Nasaruddin

More information

9 Mixing. I Fundamental relations and definitions. Milan Jahoda revision Radim Petříček, Lukáš Valenz

9 Mixing. I Fundamental relations and definitions. Milan Jahoda revision Radim Petříček, Lukáš Valenz 9 ixing ilan Jahoda revision 14-7-017 Radim Petříček, Lukáš Valenz I Fundamental relations and definitions ixing is a hydrodynamic process, in which different methods are used to bring about motion of

More information

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY

More information

Experimental Study of Flow around a Circular Cylinder inside a Bubble Plume

Experimental Study of Flow around a Circular Cylinder inside a Bubble Plume Advances in Chemical Engineering and Science, 2016, 6, 269-280 Published Online July 2016 in SciRes. http://www.scirp.org/journal/aces http://dx.doi.org/10.4236/aces.2016.63027 Experimental Study of Flow

More information

Flow and Mixing in the Liquid between Bubbles

Flow and Mixing in the Liquid between Bubbles Excerpt from the Proceedings of the COMSOL Conference 2009 Boston Flow and Mixing in the Liquid between Bubbles Bruce A. Finlayson, Professor Emeritus of Chemical Engineering Department of Chemical Engineering,

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF VEGETABLES AND FLOWERS LOCATED ON ROOFTOPS

EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF VEGETABLES AND FLOWERS LOCATED ON ROOFTOPS 6 th International Conference Computational Mechanics and Virtual Engineering COMEC 2015 15-16 October 2015, Braşov, Romania EXPERIMENTAL RESEARCH ON THE MECHANICAL SOLICITATIONS OF THE GREENHOUSES OF

More information

FORMATION AND DEVELOPMENT OF SUBMERGED AIR JETS

FORMATION AND DEVELOPMENT OF SUBMERGED AIR JETS Formation and Development of Submerged Air Jets 137 FORMATION AND DEVELOPMENT OF SUBMERGED AIR JETS Sultana R. Syeda* and Ashfaq M. Ansery Department of Chemical Engineering Bangladesh University of Engineering

More information

Pendant Drop Measurements

Pendant Drop Measurements KRÜSS pplication Note TN316d Page 1 Pendant Drop Measurements pplication note: TN316d Industry section: all uthor: Dr. Tobias Winkler Date: December 2010 Method: Drop Shape nalysis System DS100 Drop Shape

More information

When a uniform pressure acts on a flat plate of area A and a force F pushes the plate, then the pressure p is : p = F/A

When a uniform pressure acts on a flat plate of area A and a force F pushes the plate, then the pressure p is : p = F/A Chapter 2. Fluid Statics Fluid statics is concerned with the balance of forces which stabilize fluids at rest. In the case of a liquid, as the pressure largely changes according to its height, it is necessary

More information

Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find

Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find On the t Influence of Air Resistance and Wind during Long Jump Egoyan A. E. ( alex1cen@yahoo.com ), Khipashvili I. A. Georgian University GEOMEDI Abstract. In this article we perform theoretical analysis

More information

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles International Journal of Engineering Research and Development e-issn: 7-067X, p-issn: 7-00X, www.ijerd.com Volume 3, Issue 4 (August ), PP. 33-39 Experimental Analysis on Vortex Tube Refrigerator Using

More information

Lecture # 15: Aircraft and wind turbine icing and anti-/de-icing

Lecture # 15: Aircraft and wind turbine icing and anti-/de-icing AerE 344 Lecture Notes Lecture # 15: Aircraft and wind turbine icing and anti-/de-icing Dr Hui Hu Dr Rye M Waldman Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Introduction

More information

Effects of turbulence on the drag force on a golf ball

Effects of turbulence on the drag force on a golf ball European Journal of Physics PAPER Effects of turbulence on the drag force on a golf ball To cite this article: Rod Cross 2016 Eur. J. Phys. 37 054001 View the article online for updates and enhancements.

More information

Energy and mass transfer in gas-liquid reactors.

Energy and mass transfer in gas-liquid reactors. Energy and mass transfer in gas-liquid reactors. John M Smith School of Engineering (D2) University of Surrey, Guildford GU2 7XH, UK j.smith@surrey.ac.uk 1 Energy and mass transfer in gas-liquid reactors.

More information

Supplementary Information:

Supplementary Information: Supplementary Information: UV-responsive nano-sponge for oil absorption and desorption Do Hyun Kim 1,2, Min Chan Jung 3, So-Hye Cho 2, Sang Hoon Kim 2, Ho-Young Kim 3, Heon Ju Lee 2, Kyu Hwan Oh 1, and

More information

γ water = 62.4 lb/ft 3 = 9800 N/m 3

γ water = 62.4 lb/ft 3 = 9800 N/m 3 CEE 4 Aut 004, Exam # Work alone. Answer all questions. Total pts: 90. Always make your thought process clear; if it is not, you will not receive partial credit for incomplete or partially incorrect answers.

More information

Experimental investigation on air entrainment below impinging jets by means of video observations and image processing

Experimental investigation on air entrainment below impinging jets by means of video observations and image processing Computational Methods in Multiphase Flow V 481 Experimental investigation on air entrainment below impinging jets by means of video observations and image processing D. V. Danciu, M. J. da Silva, M. Schmidtke,

More information

Chapter 15 Fluid. Density

Chapter 15 Fluid. Density Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid

More information

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section International Ship Stability Workshop 2013 1 A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section Tatsuya Miyake and Yoshiho Ikeda Department of Marine System Engineering,

More information

I. INTRODUCTION. A. Attraction of Particles due to the Capillary

I. INTRODUCTION. A. Attraction of Particles due to the Capillary An Investigation into the Impact of Particle Mass and Liquid Surface Tension on the Capillary Force Between a Floating Particle and a Nearby Massive Wall Laura Grace Physics Department, The College of

More information

Name: SOLUTIONS MIDTERM 2, Spring 2019

Name: SOLUTIONS MIDTERM 2, Spring 2019 Name: SOLUTIONS MIDTERM 2, Spring 2019 Solutions in bold. Print your name clearly above, and write and bubble in your student 800 number on the provided scantron. There are 20 equally-weighted problems

More information

Dynamics of the bubble near a triangular prism array

Dynamics of the bubble near a triangular prism array Dynamics of the bubble near a triangular prism array 1,2 Yuning Zhang*; 1,2 Shida Li; 1,2 Yongxue Zhang; 3 Yuning Zhang 1 College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing,

More information

FLUID MECHANICS Time: 1 hour (ECE-301) Max. Marks :30

FLUID MECHANICS Time: 1 hour (ECE-301) Max. Marks :30 B.Tech. [SEM III(ME&CE)] QUIZ TEST-1 (Session : 2013-14) Time: 1 hour (ECE-301) Max. Marks :30 Note: Attempt all questions. PART A Q1. The velocity of the fluid filling a hollow cylinder of radius 0.1

More information

Investigating the Bubble Behavior in Pool Boiling in Microgravity Conditions Thilanka Munasinghe, Member, IAENG

Investigating the Bubble Behavior in Pool Boiling in Microgravity Conditions Thilanka Munasinghe, Member, IAENG Investigating the Bubble Behavior in Pool Boiling in Microgravity Conditions Thilanka Munasinghe, Member, IAENG In space, objects float without falling down. The floating effect happens because of the

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

Laboratory studies of water column separation

Laboratory studies of water column separation IOP Conference Series: Materials Science and Engineering OPEN ACCESS Laboratory studies of water column separation To cite this article: R Autrique and E Rodal 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52

More information

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2 PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING Akihiko Kimura 1 and Taro Kakinuma 2 The conditions required for a takeoff in surfing, are discussed, with the waves simulated numerically, considering two

More information

Flow in a shock tube

Flow in a shock tube Flow in a shock tube April 30, 05 Summary In the lab the shock Mach number as well as the Mach number downstream the moving shock are determined for different pressure ratios between the high and low pressure

More information

Use a Controlled Vibration to Mixing and Separation of a Gas Bubbles and a Liquid Under Reduced and Microgravity Conditions

Use a Controlled Vibration to Mixing and Separation of a Gas Bubbles and a Liquid Under Reduced and Microgravity Conditions ng & Process Technology rijournal of Chemical Enginee Research Article Article Journal of Chemical Engineering & Process Technology Shoikhedbrod, J Chem Eng Process Technol 2016, 7:4 DOI: 10.4172/2157-7048.1000305

More information

MODELING OF THERMAL BEHAVIOR INSIDE A BUBBLE

MODELING OF THERMAL BEHAVIOR INSIDE A BUBBLE CAV2001:sessionB6.002 1 MODEING OF THERMA BEHAVIOR INSIDE A BUBBE Boonchai ERTNUWAT *, Kazuyasu SUGIYAMA ** and Yoichiro MATSUMOTO *** *, ***Dept. of Mechanical Engineering, The University of Tokyo, Tokyo,

More information

Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected to Drop Impact

Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected to Drop Impact Materials Transactions, Vol. 53, No. 2 (12) pp. 291 to 295 Special Issue on APCNDT 9 12 The Japanese Society for Non-Destructive Inspection Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected

More information

Chapter 15 Fluids. Copyright 2010 Pearson Education, Inc.

Chapter 15 Fluids. Copyright 2010 Pearson Education, Inc. Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle Fluid Flow and Continuity

More information

Homework of chapter (3)

Homework of chapter (3) The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Hasan Almassri T.A: Eng. Mahmoud AlQazzaz First semester, 2013. Homework

More information

Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor)

Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Equipment Needed Qty Equipment Needed Qty Acceleration Sensor (CI-6558) 1 Dynamics Cart (inc. w/ Track) 1 Motion Sensor (CI-6742)

More information

EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER

EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER EFFECT OF CORNER CUTOFFS ON FLOW CHARACTERISTICS AROUND A SQUARE CYLINDER Yoichi Yamagishi 1, Shigeo Kimura 1, Makoto Oki 2 and Chisa Hatayama 3 ABSTRACT It is known that for a square cylinder subjected

More information

A Discrete, Multiphase Flow Approach to Monopropellant-Based Micropropulsion

A Discrete, Multiphase Flow Approach to Monopropellant-Based Micropropulsion A Discrete, Multiphase Flow Approach to Monopropellant-Based Micropropulsion M. Ryan McDevitt Advisor: Darren Hitt, Ph.D. Mechanical Engineering Program School of Engineering The University of Vermont

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

Simulation of Free Surface Flows with Surface Tension with ANSYS CFX

Simulation of Free Surface Flows with Surface Tension with ANSYS CFX Simulation of Free Surface Flows with Surface Tension with ANSYS CFX C. Kurt Svihla, Hong Xu ANSYS, Inc. Abstract Three different test cases involving free surface flows with surface tension were investigated

More information

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy 1 OUTLINE Overview of Oil Spill & its Impact Technical Challenges for Modeling Review

More information

Deborah Houssin-Agbomson, Jean-Yves Letellier, Philippe Renault, Simon Jallais

Deborah Houssin-Agbomson, Jean-Yves Letellier, Philippe Renault, Simon Jallais AN EXPERIMENTAL STUDY DEDICATED TO WIND INFLUENCE ON HELIUM BUILD-UP AND CONCENTRATION DISTRIBUTION INSIDE A 1-M 3 SEMI-CONFINED ENCLOSURE CONSIDERING HYDROGEN ENERGY APPLICATIONS CONDITIONS OF USE. Deborah

More information

Title. Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date Doc URL. Type. Note. File Information

Title. Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date Doc URL. Type. Note. File Information Title EVALUATING THE EFFECT OF MULTIPLE VERTICAL ORTHOGONA PHENOMENON IN RECTANGULAR TANKS SUBJECTED TO 3-DIMEN EXCITATIONS Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date 2013-09-11 Doc URL http://hdl.handle.net/2115/54196

More information

Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water

Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water 79 UMTAS 2013 Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water Muhammad Amir Mat Shah 1,* and Badrul Aisham Md Zain 2 Faculty of Mechanical and Manufacturing

More information

Friction properties of the face of a hand-held tennis racket

Friction properties of the face of a hand-held tennis racket Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 544 549 9 th Conference of the International Sports Engineering Association (ISEA) Friction properties of the face of a hand-held

More information

CASE STUDY FOR USE WITH SECTION B

CASE STUDY FOR USE WITH SECTION B GCE A level 135/01-B PHYSICS ASSESSMENT UNIT PH5 A.M. THURSDAY, 0 June 013 CASE STUDY FOR USE WITH SECTION B Examination copy To be given out at the start of the examination. The pre-release copy must

More information

STUDY OF SLUG CONTROL TECHNIQUES IN PIPELINE SYSTEMS

STUDY OF SLUG CONTROL TECHNIQUES IN PIPELINE SYSTEMS STUDY OF SLUG CONTROL TECHNIQUES IN PIPELINE SYSTEMS JOSÉ L. A,VIDAL Petrobrás Research Center - CENPES/PDEP/TOOL Av.Horácio de Macedo 95- Cidade Universitária 191-915 -Rio de Janeiro-RJ E-mail:josearias@petrobras.com.br

More information

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. Fluids 1a. [1 mark] The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. State the difference in terms of the velocity of the

More information

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

More information

Types of Forces. Pressure Buoyant Force Friction Normal Force

Types of Forces. Pressure Buoyant Force Friction Normal Force Types of Forces Pressure Buoyant Force Friction Normal Force Pressure Ratio of Force Per Unit Area p = F A P = N/m 2 = 1 pascal (very small) P= lbs/in 2 = psi = pounds per square inch Example: Snow Shoes

More information

FROTH: Fundamentals and Reliability of Offshore Structure Hydrodynamics EPSRC

FROTH: Fundamentals and Reliability of Offshore Structure Hydrodynamics EPSRC FROTH: Fundamentals and Reliability of Offshore Structure Hydrodynamics EPSRC 2012-2015 Drop Tests: experiments and numerical modelling T. Mai, D. Greaves & A. Raby School of Marine Science and Engineering

More information

A New Power-saving Device for Air Bubble Generation: Hydrofoil Air Pump for Ship Drag Reduction

A New Power-saving Device for Air Bubble Generation: Hydrofoil Air Pump for Ship Drag Reduction International Conference on Ship Drag Reduction SMOOTH-SHIPS, Istanbul, Turkey, 20-21 May 2010 A New Power-saving Device for Air Bubble Generation: Hydrofoil Air Pump for Ship Drag Reduction I. KUMAGAI,

More information

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases

More information

Experimental Study of an Air Lift Pump

Experimental Study of an Air Lift Pump Engineering, Technology & Applied Science Research Vol. 7, No. 3, 217, 1676-168 1676 Experimental Study of an Air Lift Pump Fawzy Sh. Abou Taleb Mechanical Engineering Department Engineering College Northern

More information

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE Jung-Hyun Kim*, Kyu-Hong

More information

Metallurgical and Materials Transactions B, Vol. 32B, No. 6, 2001, pp BUBBLE FORMATION DURING HORIZONTAL GAS INJECTION

Metallurgical and Materials Transactions B, Vol. 32B, No. 6, 2001, pp BUBBLE FORMATION DURING HORIZONTAL GAS INJECTION Metallurgical and Materials Transactions B, Vol. 32B, No. 6, 2001, pp. 1143-1159. 1 BUBBLE FORMATION DURING HORIZONTAL GAS INJECTION INTO DOWNWARD FLOWING LIQUID Hua Bai and Brian G. Thomas Hua Bai, former

More information

Experimental Determination of Temperature and Pressure Profile of Oil Film of Elliptical Journal Bearing

Experimental Determination of Temperature and Pressure Profile of Oil Film of Elliptical Journal Bearing International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 5 (2014), pp. 469-474 Research India Publications http://www.ripublication.com Experimental Determination of Temperature

More information

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES

COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES 5 th International Advanced Technologies Symposium (IATS 09), May 13-15, 2009, Karabuk, Turkey COMPUTER-AIDED DESIGN AND PERFORMANCE ANALYSIS OF HAWT BLADES Emrah KULUNK a, * and Nadir YILMAZ b a, * New

More information

Gas transfer in a bubbly wake flow

Gas transfer in a bubbly wake flow IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Gas transfer in a bubbly wake flow To cite this article: A Karn et al 2016 IOP Conf. Ser.: Earth Environ. Sci. 35 012020 View the

More information

Effects of seam and surface texture on tennis balls aerodynamics

Effects of seam and surface texture on tennis balls aerodynamics Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 140 145 9 th Conference of the International Sports Engineering Association (ISEA) Effects of seam and surface texture on tennis

More information

Bubble Dynamics in a Vibrating Liquid. By: James Wymer, Jaggar Henzerling, Aaron Kilgallon, Michael McIntire, Mohammed Ghallab

Bubble Dynamics in a Vibrating Liquid. By: James Wymer, Jaggar Henzerling, Aaron Kilgallon, Michael McIntire, Mohammed Ghallab Bubble Dynamics in a Vibrating Liquid By: James Wymer, Jaggar Henzerling, Aaron Kilgallon, Michael McIntire, Mohammed Ghallab Background In the early 1960 s a series of rocket failures plagued leading

More information

10.4 Buoyancy is a force

10.4 Buoyancy is a force Chapter 10.4 Learning Goals Define buoyancy. Explain the relationship between density and buoyancy. Discuss applications of Archimedes principle. 10.4 Buoyancy is a force Buoyancy is a measure of the upward

More information

FEDSM-ICNMM

FEDSM-ICNMM Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Proceedings Summer of Meeting FEDSM2010 and 8th International Conference on Nanochannels, ASME 2010 Fluids Microchannels, Engineering

More information

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE Proceedings of the 37 th International & 4 th National Conference on Fluid Mechanics and Fluid Power FMFP2010 December 16-18, 2010, IIT Madras, Chennai, India FMFP2010 341 MODELING AND SIMULATION OF VALVE

More information

Effect of the cross sectional shape of the recirculation channel on expulsion of air bubbles from FDBs used in HDD spindle motors

Effect of the cross sectional shape of the recirculation channel on expulsion of air bubbles from FDBs used in HDD spindle motors DOI 10.1007/s00542-015-2537-0 TECHNICAL PAPER Effect of the cross sectional shape of the recirculation channel on expulsion of air bubbles from FDBs used in HDD spindle motors Yeonha Jung 1 Gunhee Jang

More information

Development of a Simulation Model for Swimming with Diving Fins

Development of a Simulation Model for Swimming with Diving Fins Proceedings Development of a Simulation Model for Swimming with Diving Fins Motomu Nakashima 1, *, Yosuke Tanno 2, Takashi Fujimoto 3 and Yutaka Masutani 3 1 Department of Systems and Control Engineering,

More information

Effect of Gas-wetness on Gas-water Two-phase Seepage in Visual Microscopic Pore Models

Effect of Gas-wetness on Gas-water Two-phase Seepage in Visual Microscopic Pore Models Copyright 2013 Tech Science Press SL, vol.10, no.1, pp.19-26, 2013 Effect of Gas-wetness on Gas-water Two-phase Seepage in Visual Microscopic Pore Models G. C. Jiang 1,2, M. Zhang 1,2, X. X. Xing 3, S.

More information

FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics

FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics Civil Engineering Program, San Ignacio de Loyola University Objective Calculate the forces exerted by a fluid at rest on plane or

More information

Studies of Thermal Bubble Pump in a Microchannel Loop

Studies of Thermal Bubble Pump in a Microchannel Loop Studies of Thermal Bubble Pump in a Microchannel Loop Tzong-Shyng Leu, Yan-Hao Liu National Cheng Kung Univeristy, Tainan, Taiwan,701, R.O.C Tel :+886-6-2757575 x63638, Fax:+886-6-2389940, E-mail:tsleu@mail.ncku.edu.tw

More information