PETROLEUM ENGINEERING 310 FIRST EXAM. September 22, 2000

Size: px
Start display at page:

Download "PETROLEUM ENGINEERING 310 FIRST EXAM. September 22, 2000"

Transcription

1 Session: Name: PETROLEUM ENGINEERING 310 FIRST EXAM September 22, 2000 Do all your work on the test paper and the space provided for the answer, do no write on the back. Grading will be based on approach and answers. Remember to show all your work!!!! Answers with no evidence of calculations where they are required will not be graded. The point value of each question or problem is given in parentheses after the question or problem statement. Do not fold or un staple the examination booklet. Time allotted for the test is 120 minutes. This examination is closed book, closed notes, and closed mouth. Only interpretation questions to the instructor are allowed. Statement When you have finished the exam. Read and sign the statement below, then return in the examination booklet. I pledge that I have neither given nor received aid in completing this exam. I have followed the strictures of the Texas A&M University Aggie Code of honor during this exam. Signature: 1/13

2 2 1. Explain the process of ionic bonding and give one example of ionic bonding. (5) 2. Write down the molecular structure of each one of the following compounds (5) 2-methylheptane 2-methyl 1- pentene 3,3 dimethyl 1-pentyne Ethylcyclohexane Methylbenzene 2 of 13

3 3 3. Describe the homologous series alkanes. Items of interest are: distinguishing feature of molecules of the family, general formula other names for the family, physical and chemical properties of the family (5). 4. Describe the cause of "sour crude (3) 5. Sketch and explain the API trend versus time for the five reservoir fluids. (5) 3 of 13

4 4 6. List the rules of thumb by which a volatile oil can be identified from production data. (5) 7. Define Cricondenbar and Cricondentherm and ubble Point. (2) 8. Using the COX chart in the following page determine the following properties for propane. Indicate the points in the diagram as well. a. Saturation pressure for propane at 100 o F 4 of 13

5 5 Psat = psia b. Critical point Pc psia Tc= o F c. State (liquid, gas or two-phase) of propane at 50 o F and 150 psia and at 60 psia and 50 o F (5) 5 of 13

6 6 6 of 13

7 7 9. Using the following graph, which shows phase equilibrium data for methane and normal butane (C1 /n-c4) at 220 o F, indicate the following: (a) ubble point pressure for a mixture of 20% C1 (2.5) (b) Approximate critical pressure and composition (2.5) (c) Dew point pressure for a mixture of 30% C1 (2.5) (d) Retrograde composition range if any (2.5) (e) Equilibrium gas and liquid compositions and fraction of vapor for a mixture of 30% C1 at 600 psia. (5) 1600 PRESSURE-COMPOSITION DIAGRAM AT 220 F FOR A C1/n-C4 MIXTURE Pressure, psia Methane, %mol 7 of 13

8 8 10. Given the following ternary phase diagram for mixtures of methane, n-butane and n-decane at 180 o F and 2000 psia, answer the following questions. (a) Mark on the diagram a mixture of 20% methane, 30% n-butane and 50% n-decane (3) (b) Estimate the overall composition and the composition of equilibrium liquid and gas if 100 moles of the mixture from part (a) are mixed with 60 moles of pure C1 and brought to equilibrium at 180 o F and 2000 psia. (7) Overall (zi) % C 1 % n-c 4 % n-c 10 Gas % C 1 Liquid % C 1 % n-c 4 % n-c 4 % n-c 10 % n-c 10 8 of 13

9 9 (c) Calculate the molar fraction of the mixture described in part (b) that is gas. (5) Gas = % (d) maximum number of moles of C1 that can be mixed with 100 moles of the mixture in part (a) and still be fully miscible (single liquid phase) (5) 9 of 13

10 10 Mixture C1 / nc4 / p=2000 psia, T=180 F of 13

11 Assume the following gas mixture behaves like an ideal gas. Evaluate the mass and specific gravity of the gas mixture contained in a 1.5 ft 3 tank at 100 o F and 200 psia. Show intermediate calculations. (15) Composition Component (mole fraction) methane (C 1 ) 0.85 ethane (C 2 ) 0.10 propane (C 3 ) Mw (lb/lbmol) = Density (lb/ft 3 ) = Mass (lb)= Specific Gravity = Useful Information Species Molecular Weight (lb/lb mol) Gas Constant Air 29 R = psia ft 3 /lbmol o R Methane Ethane Propane of 13

12 You want to apply your knowledge from PETE 310 to evaluate the percentage of liquid propane in your lighter. The following information is available: Temperature = 75 o F Liquid density of propane = lb/ft 3 Volume of chamber in lighter = 2.12 X ft 3 Mass of fuel charged in the lighter = 3 X lb Hint: Use the COX charts and the ideal gas equation and write down your answers in the table provided. (15) Mass of Gas Mass of Liquid Total Mass (check) lb lb lb Volume of Gas ft 3 Volume of Liquid ft 3 Total Volume (check) ft 3 Volume Percent of liquid Pressure inside the lighter psia 12 of 13

13 13 13 of 13

PETROLEUM ENGINEERING 310 SECOND EXAM. October 23, 2002

PETROLEUM ENGINEERING 310 SECOND EXAM. October 23, 2002 PETROLEUM ENGINEERING 310 SECOND EXM October 23, 2002 Ground Rules Do all your work on the test paper and the space provided for the answer, do no write on the back. Grading will be based on approach and

More information

COPYRIGHT. Reservoir Fluid Core. Single Phase, Single Component Systems. By the end of this lesson, you will be able to:

COPYRIGHT. Reservoir Fluid Core. Single Phase, Single Component Systems. By the end of this lesson, you will be able to: Single Phase, Single Component Systems Learning Objectives Reservoir Fluid Core Single Phase, Single Component Systems By the end of this lesson, you will be able to: Define terms used to describe the

More information

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions. Another way to view this problem is to say that the final volume contains V m 3 of alcohol at 5.93 kpa and 20 C V m 3 of air at 94.07 kpa and 20 C V m 3 of air plus alcohol at 100 kpa and 20 C Thus, the

More information

GAS CONDENSATE RESERVOIRS. Dr. Helmy Sayyouh Petroleum Engineering Cairo University

GAS CONDENSATE RESERVOIRS. Dr. Helmy Sayyouh Petroleum Engineering Cairo University GAS CONDENSATE RESERVOIRS Dr. Helmy Sayyouh Petroleum Engineering Cairo University Introduction and Definitions Gas condensate production may be thought of as a type intermediate between oil and gas. The

More information

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

More information

Optimization of Separator Train in Oil Industry

Optimization of Separator Train in Oil Industry Optimization of Separator Train in Oil Industry Pawan jain a M.E. Petroleum Engineering, Maharashtra Institute of Technology, Pune-411038 ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Gases NO CALCULATORS MAY BE USED FOR THESE QUESTIONS

Gases NO CALCULATORS MAY BE USED FOR THESE QUESTIONS NO CALCULATORS MAY BE USED FOR THESE QUESTIONS Questions 1-3 refer to the following gases at 0 C and 1 atm. (A) Ar (B) NO 2 (C) Xe (D) H 2 (E) N 2 1. Has an average atomic or molecular speed closest to

More information

Gas viscosity ( ) Carr-Kobayashi-Burrows Correlation Method Lee-Gonzalez-Eakin Method. Carr-Kobayashi-Burrows Correlation Method

Gas viscosity ( ) Carr-Kobayashi-Burrows Correlation Method Lee-Gonzalez-Eakin Method. Carr-Kobayashi-Burrows Correlation Method Gas viscosity The viscosity of a fluid is a measure of the internal fluid friction (resistance) to flow. If the friction between layers of the fluid is small, i.e., low viscosity, an applied shearing force

More information

Basic concepts of phase behavior

Basic concepts of phase behavior Basic concepts of phase behavior 1) Single component system. Ethane is taken as an example for single component system. Ethane exists as gas phase at ordinary conditions. At other than ordinary conditions,

More information

Reservoir Fluid Fundamentals COPYRIGHT. Dry Gas Fluid Basic Workflow Exercise Review

Reservoir Fluid Fundamentals COPYRIGHT. Dry Gas Fluid Basic Workflow Exercise Review Pseudo-Critical Properties Reservoir Fluid Fundamentals Dry Gas Fluid Basic Workflow Exercise Review B C D E F 3 Separator Gas Specific Gravity 0.6300 [1/air] 0.6300 [1/air] 4 Separator Pressure 100.0

More information

Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3.

Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3. Gas density Because the density of a substance is defined as mass per unit volume, the density of gas (ρ g ), at given temperature and pressure can be derived as follows: If P in psia, T in ⁰R and R =

More information

16. Studio ScaleChem Calculations

16. Studio ScaleChem Calculations 16. Studio ScaleChem Calculations Calculations Overview Calculations: Adding a new brine sample Studio ScaleChem can be used to calculate scaling at one or more user specified temperatures and pressures.

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

1. A pure substance has a specific volume of 0.08 L/mol at a pressure of 3 atm and 298 K. The substance is most likely:

1. A pure substance has a specific volume of 0.08 L/mol at a pressure of 3 atm and 298 K. The substance is most likely: Name: September 19, 2014 EXAM 1 P a g e 1 1. A pure substance has a specific volume of 0.08 L/mol at a pressure of 3 atm and 298 K. The substance is most likely: a. Liquid b. Gas c. Supercritical Fluid

More information

NOTES: Behavior of Gases

NOTES: Behavior of Gases NOTES: Behavior of Gases Properties of Gases Gases have weight Gases take up space Gases exert pressure Gases fill their containers Gases are mostly empty space The molecules in a gas are separate, very

More information

ME 200 Thermodynamics I Spring 2010 (Last) (First) Thermo Number: CIRCLE YOUR LECTURE BELOW

ME 200 Thermodynamics I Spring 2010 (Last) (First) Thermo Number: CIRCLE YOUR LECTURE BELOW ME 200 Thermodynamics I Name: Spring 2010 Thermo Number: CIRCLE YOUR LECTURE BELOW Div. 1 8:30 am Div. 2 10:30 am Div. 3 12:30 pm Naik Tree Clark Div. 4 1:30 pm Kim Div. 5 3:30 pm Mathison EXAM 2 INSTRUCTIONS

More information

KNOWN: Mass, pressure, temperature, and specific volume of water vapor.

KNOWN: Mass, pressure, temperature, and specific volume of water vapor. .0 The specific volume of 5 kg of water vapor at.5 MPa, 440 o C is 0.60 m /kg. Determine (a) the volume, in m, occupied by the water vapor, (b) the amount of water vapor present, in gram moles, and (c)

More information

Fit for Purpose Compositional Input for Allocation Using Equations of State Thomas Hurstell, Letton Hall Group

Fit for Purpose Compositional Input for Allocation Using Equations of State Thomas Hurstell, Letton Hall Group UPM 15030 Fit for Purpose al Input for Allocation Using Equations of State Thomas Hurstell, Letton Hall Group Abstract Methods are presented to develop compositional input for use in allocation systems

More information

States of Matter. Q 7. Calculate the average of kinetic energy, in joules of the molecules in 8.0 g of methane at 27 o C. (IIT JEE Marks)

States of Matter. Q 7. Calculate the average of kinetic energy, in joules of the molecules in 8.0 g of methane at 27 o C. (IIT JEE Marks) Q 1. States of Matter Calculate density of NH 3 at 30 o C and 5 atm pressure Q 2. (IIT JEE 1978 3 Marks) 3.7 g of a gas at 25 o C occupied the same volume as 0.184g of hydrogen at 17 o C and at the same

More information

Questions/Reminders HW2 Question #3

Questions/Reminders HW2 Question #3 3. You determined that your workplace has fugitive o-cresol emissions with maximum annual o-cresol concentrations of 75 μg/m 3 (in air), and you would like to assess worker exposure to o-cresol. a) Calculate

More information

CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438

CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438 CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO. 10 Jerry Paul Smith Joel Clancy JPS Measurement Consultants, Inc Colorado Engineering Experiment Station, Inc (CEESI) 13002 Walnut Lake

More information

Feedstocks & Products Properties & Specifications

Feedstocks & Products Properties & Specifications Feedstocks & Products Properties & Specifications Topics Natural gas characterization Composition Characterization qualifiers Gas & liquid products Composition Other properties 2 Natural gas characterization

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test General Chemistry CH116 UMass Boston Summer 2013 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The pressure exerted by a column of

More information

Natural Gas Properties Analysis of Bangladesh: A Case Study of Titas Gas Field

Natural Gas Properties Analysis of Bangladesh: A Case Study of Titas Gas Field SUST Journal of Science and Technology, Vol. 16, No.2, 2012; P:26-31 Natural Gas Properties Analysis of Bangladesh: A Case Study of Titas Gas Field (Submitted: April 13, 2011; Accepted for Publication:

More information

PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PROPERTIES OF GASES. [MH5; Ch 5, (only)] PROPERTIES OF GASES [MH5; Ch 5, 5.1-5.5 (only)] FEATURES OF A GAS Molecules in a gas are a long way apart (under normal conditions). Molecules in a gas are in rapid motion in all directions. The forces

More information

PE096: Overview of Gas Processing Technology

PE096: Overview of Gas Processing Technology PE096: Overview of Gas Processing Technology PE096 Rev.001 CMCT COURSE OUTLINE Page 1 of 6 Training Description: This course is designed for a broad audience and is participative and interactive, utilizing

More information

To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure

To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure Standard Molar Volume To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure At STP, one mole of any gas has a volume of: 22.4 L = (This is a cube

More information

Ch. 11 Mass transfer principles

Ch. 11 Mass transfer principles Transport of chemical species in solid, liquid, or gas mixture Transport driven by composition gradient, similar to temperature gradients driving heat transport We will look at two mass transport mechanisms,

More information

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter.

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter. ROERIES OF GASES Gases are the least dense and most mobile of the three phases of matter. articles of matter in the gas phase are spaced far apart from one another and move rapidly and collide with each

More information

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics Page 1 of 5 Tank Indentification and Physical Characteristics Identification User Identification: City: State: Company: Type of Tank: Description: SRX-T-101 San Francisco AP California Mobius Vertical

More information

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015 FDE 211 Material & Energy Balances Instructor: Dr. Ilgin Paker Yikici Fall 2015 Material& Energy Balances first step in understanding a process leads to a better understanding of a process forces the engineer

More information

UNIT 10 - GASES. Notes & Worksheets - Honors

UNIT 10 - GASES. Notes & Worksheets - Honors Ideal Gas Equation 1 WKSHT 1.) What is the pressure exerted by 2.0 moles of an ideal gas when it occupies a volume of 12.0 L at 373 K? 2.) A flashbulb of volume 2.6 cm 3 contains O 2 gas at a pressure

More information

COPYRIGHT. Reservoir Fluid Fundamentals. Reservoir Brine Basic Workflow Exercise Review. Brine Density at Standard Conditions

COPYRIGHT. Reservoir Fluid Fundamentals. Reservoir Brine Basic Workflow Exercise Review. Brine Density at Standard Conditions Reservoir Fluid Fundamentals Reservoir Brine Basic Workflow Exercise Review Brine Density at Standard Conditions B C D E F Salinity 120,000 [ppm] 120000 [ppm] 4 Pressure of Interest 2,250 [psia] 15484.8

More information

17. CARGO MEASUREMENT AND CALCULATION

17. CARGO MEASUREMENT AND CALCULATION Page 1 17. CARGO MEASUREMENT AND CALCULATION 17.1 GENERAL Liquefied gas cargoes are measured and calculated in a similar manner to that of other bulk liquid cargoes such as crude oils and petroleum products.

More information

CHM 111 Unit 5 Sample Questions

CHM 111 Unit 5 Sample Questions Name: Class: Date: As you work these problems, consider and explain: A. What type of question is it? B. How do you know what type of question it is? C. What information are you looking for? D. What information

More information

To play movie you must be in Slide Show Mode CLICK HERE EXERCISE! EXERCISE! To play movie you must be in Slide Show Mode CLICK HERE

To play movie you must be in Slide Show Mode CLICK HERE EXERCISE! EXERCISE! To play movie you must be in Slide Show Mode CLICK HERE Boyle s Law Boyle s law Pressure and volume are inversely related (constant T, temperature, and n, # of moles of gas). PV k (kis a constant for a given sample of air at a specific temperature) P V P V

More information

Determination of Dissolved Gases in Ground Waters. By Ray Martrano Laboratory Director Seewald Laboratories Inc.

Determination of Dissolved Gases in Ground Waters. By Ray Martrano Laboratory Director Seewald Laboratories Inc. Determination of Dissolved Gases in Ground Waters By Ray Martrano Laboratory Director Seewald Laboratories Inc. Overview of Presentation What is a dissolved gas? Why do we want to study dissolved gases?

More information

Petroleum Reservoir Rock and Fluid Properties

Petroleum Reservoir Rock and Fluid Properties second edition Petroleum Reservoir Rock and Fluid Properties Abhijit Y. Dandekar CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis an Croup, informa

More information

Chapter 11. Recall: States of Matter. Properties of Gases. Gases

Chapter 11. Recall: States of Matter. Properties of Gases. Gases Chapter 11 Gases Recall: States of Matter Solids and Liquids: are closely related because in each case the particles are interacting with each other Gases: Properties of Gases Gases can be compressed Gases

More information

PVT analysis of. bottom hole sample from Well by Otto Rogne. STAT01 L EXPLORATION 81 PRODUCTlON LABORATORY

PVT analysis of. bottom hole sample from Well by Otto Rogne. STAT01 L EXPLORATION 81 PRODUCTlON LABORATORY PVT analysis of bottom hole sample from Well 3411 0-1 7 STAT01 L EXPLORATION 81 PRODUCTlON LABORATORY by Otto Rogne stcrtoil Den norske stats oljeselskap as Classification I Requested by J,Hanstveit, LET

More information

Question McGraw-Hill Ryerson Limited

Question McGraw-Hill Ryerson Limited Question 1 Which of the following cannot be explained by considering the empty space between the particles of a gas? A) Gases are more compressible than liquids. B) Gases have lower viscosities than liquids.

More information

Honors Chemistry Unit 7 Gas Laws Notes

Honors Chemistry Unit 7 Gas Laws Notes Honors Chemistry Unit 7 Gas Laws Notes Kinetic Molecular Theory 1. List the five assumptions: Assumption Description Extra Info 1 Basically means: the particles themselves have compared to the space between

More information

Gases. Unit 10. How do gases behave?

Gases. Unit 10. How do gases behave? Gases Unit 10 How do gases behave? Gases are perhaps the most mysterious of all of the phases of matter. For the most part gases are invisible to us, and it was once believed that in the air there is no

More information

Chapter 4, Problem 30.

Chapter 4, Problem 30. Chapter 4, Problem 30. A well-insulated rigid tank contains 5 kg of a saturated liquid vapor mixture of water at l00 kpa. Initially, three-quarters of the mass is in the liquid phase. An electric resistor

More information

stat0il Tone Orke Reservoir Fluid Study for Statoil, Well by Arne M.Martinsen LAB Den norske stab ol.ieselskap a.

stat0il Tone Orke Reservoir Fluid Study for Statoil, Well by Arne M.Martinsen LAB Den norske stab ol.ieselskap a. stat0il Den norske stab ol.ieselskap a.s c Classification Requested by K n Hanstveit, PL-050 Subtitle Co-workers Tone Orke Reservoir Fluid Study for Statoil, Well 3411 0-1 1 STATOI L EXPLORATION & PRODUCTION

More information

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation Characteristics of Gases Chapter 10 Gases Pressure The Gas Laws The Ideal-Gas Equation Applications of the Ideal-Gas Equation Gas mixtures and partial pressures Kinetic-Molecular Theory Real Gases: Deviations

More information

CHEMISTRY 102D ASSIGNMENTS. WEEK 1 (August 23-27) Introduction, Classification of Matter, Significant Figures, Dimensional Analysis

CHEMISTRY 102D ASSIGNMENTS. WEEK 1 (August 23-27) Introduction, Classification of Matter, Significant Figures, Dimensional Analysis CHEMISTRY 102D ASSIGNMENTS WEEK 1 (August 23-27) Topics: Introduction, Classification of Matter, Significant Figures, Dimensional Analysis Reading: Zumdahl*, Chapter 1.1-1.3, 1.5-1.7, 1.9, Appendix A1.1

More information

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure

More information

Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI

Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI Outline: Pure Substance Phases of pure substance Phase change process of pure substance Saturation temperature and saturation pressure

More information

Classes at: - Topic: Gaseous State

Classes at: - Topic: Gaseous State PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Topic:

More information

Countercurrent Stagewise Operations Equilibrium Stage Number of Actual Stages Definition of The Design Problem...

Countercurrent Stagewise Operations Equilibrium Stage Number of Actual Stages Definition of The Design Problem... Countercurrent Stagewise Operations All rights reserved, Armando B. Corripio 2013 Contents Countercurrent Stagewise Operations... 1 1 Equilibrium Stage... 4 1.1 Number of Actual Stages.... 5 2 Definition

More information

THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL EXAMINATION APRIL 2014 PLEASE READ ALL INSTRUCTIONS CAREFULLY BEFORE YOU BEGIN THIS EXAMINATION

THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL EXAMINATION APRIL 2014 PLEASE READ ALL INSTRUCTIONS CAREFULLY BEFORE YOU BEGIN THIS EXAMINATION THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL EXAMINATION APRIL 2014 ourse ode and Title: MATERIAL BALANE Programme: NETD HEMIAL ENGINEERING Date and Time: Tuesday 22 nd April 2014, 9.00 a.m. 12.00 noon Duration:

More information

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

Under pressure pushing down

Under pressure pushing down Under pressure pushing down on me When Dalton was conducting his studies, which led him to the atomic-molecular theory of matter, he also included studies of the behaviour of gases. These led him to propose,

More information

Worksheet 12 - Partial Pressures and the Kinetic Molecular Theory of Gases

Worksheet 12 - Partial Pressures and the Kinetic Molecular Theory of Gases Worksheet 12 - Partial Pressures and the Kinetic olecular Theory of Gases Dalton's Law of Partial Pressures states that the sums of the pressures of each gas in the mixture add to give the total pressure

More information

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT: AP Chemistry Ms. Ye Name Date Block Kinetic Molecular Theory Explains properties of gases, liquids, and solids in terms of energy using an ideal gas, an imaginary which fits all the assumptions of kinetic

More information

APPLICANT CHECKLIST FOR NEW REFRIGERANT APPLICATION SUBMISSION TO ASHRAE SSPC 34 DESIGNATION AND NOMENCLATURE INFORMATION.

APPLICANT CHECKLIST FOR NEW REFRIGERANT APPLICATION SUBMISSION TO ASHRAE SSPC 34 DESIGNATION AND NOMENCLATURE INFORMATION. APPLICANT CHECKLIST FOR NEW REFRIGERANT APPLICATION SUBMISSION TO SSPC 34 DESIGNATION AND NOMENCLATURE INFORMATION June 27 th, 2016 DISCLAIMER: This checklist has been prepared by SSPC 34 to assist Applicant

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

International Journal of Petroleum and Geoscience Engineering Volume 03, Issue 01, Pages 56-60, 2015

International Journal of Petroleum and Geoscience Engineering Volume 03, Issue 01, Pages 56-60, 2015 International Journal of Petroleum and Geoscience Engineering Volume 03, Issue 01, Pages ISSN: 2289-4713 Investigation of Under-Saturated Oil Viscosity Correlations under Reservoir Condition; A Case Study

More information

Unit 9: Gas Laws REGENTS CHEMISTRY

Unit 9: Gas Laws REGENTS CHEMISTRY Name: Unit 9: Gas Laws REGENTS CHEMISTRY 1 Name: Unit 9: Gas Laws The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg

1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg Score 1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg 2. [Chang7 5.P.019.] The volume of a gas is 5.80 L, measured at 1.00 atm. What is the pressure of the gas in mmhg if

More information

EVALUATING RESERVOIR PRODUCTION STRATEGIES IN MISCIBLE AND IMMISCIBLE GAS-INJECTION PROJECTS

EVALUATING RESERVOIR PRODUCTION STRATEGIES IN MISCIBLE AND IMMISCIBLE GAS-INJECTION PROJECTS EVALUATING RESERVOIR PRODUCTION STRATEGIES IN MISCIBLE AND IMMISCIBLE GAS-INJECTION PROJECTS A Thesis by IMAN FARZAD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

PREPARING SOLUBILITY DATA FOR USE UPDATING KEY RESOURCES BY THE GAS PROCESSING INDUSTRY:

PREPARING SOLUBILITY DATA FOR USE UPDATING KEY RESOURCES BY THE GAS PROCESSING INDUSTRY: PREPARING SOLUBILITY DATA FOR USE Mapping Midstream s Future 2012 GPA Convention BY THE GAS PROCESSING INDUSTRY: UPDATING KEY RESOURCES Darryl Mamrosh and Kevin Fisher Trimeric Corporation Jeff Matthews

More information

Technical Committee on LP-Gas at Utility Gas Plants

Technical Committee on LP-Gas at Utility Gas Plants Technical Committee on LP-Gas at Utility Gas Plants Addendum to the Agenda Sheraton Denver Downtown 1550 Court Place Denver, CO 80202 August 7-8, 2013 The following items relate to item 5.B of the Agenda:

More information

PSI Chemistry: Gases Multiple Choice Review

PSI Chemistry: Gases Multiple Choice Review PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kinetic-molecular theory, particles of matterare in constant motion (A) have different shapes (B) have different

More information

Compositional Grading Theory and Practice

Compositional Grading Theory and Practice SPE 63085 Compositional Grading Theory and Practice Lars Høier, Statoil Curtis H. Whitson, NTNU and Pera Theory Simple 1D Gradient Models Isothermal Gravity/Chemical Equilibrium Defining General Characteristics

More information

GASES. Unit #8. AP Chemistry

GASES. Unit #8. AP Chemistry GASES Unit #8 AP Chemistry I. Characteristics of Gases A. Gas Characteristics: 1. Fills its container a. no definite shape b. no definite vol. 2. Easily mixes w/ other gases 3. Exerts pressure on its surroundings

More information

Problems of Chapter 3

Problems of Chapter 3 Problems of Chapter 3 Section 3.1 Molecular Model of an Ideal Gas 3. A sealed cubical container 20 cm on a side contains three times Avogadro s number of molecules at a temperature of 20 C. Find the force

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Level *0337350796* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Level CHEMISTRY 9701/53 Paper 5 Planning, Analysis and Evaluation October/November 2012 1 hour

More information

Blending to Maximize Crude Oil Revenue & Reid Vapor Pressure: The Most Misunderstood Measurement

Blending to Maximize Crude Oil Revenue & Reid Vapor Pressure: The Most Misunderstood Measurement 1 Blending to Maximize Crude Oil Revenue & Reid Vapor Pressure: The Most Misunderstood Measurement Reid Vapor Pressure 2 Reid vapor pressure (RVP) is a common measure of the volatility of gasoline. It

More information

Name Hour. The Behavior of Gases. Practice B

Name Hour. The Behavior of Gases. Practice B Name Hour The Behavior of Gases Practice B B 1 Objective 1: Apply Boyle s Law, Charles s Law, and Gay-Lussac s Law to solve problems involving pressure and volume and temperature. 1. A high-altitude balloon

More information

MINING STUDIES AND RESEARCH CENTER (MSRC) FACULTY OF ENGINEERING CAIRO UNIVERSITY NATURAL GAS ENINEERING DIPLOMA

MINING STUDIES AND RESEARCH CENTER (MSRC) FACULTY OF ENGINEERING CAIRO UNIVERSITY NATURAL GAS ENINEERING DIPLOMA MINING STUDIES AND RESEARCH CENTER (MSRC) FACULTY OF ENGINEERING CAIRO UNIVERSITY NATURAL GAS ENINEERING DIPLOMA COURSE CONTENTS Section I DR.Helmy 1-Properties of N.G and Condensate Systems 2-Gas Reservoirs

More information

Field verification of on-line HC dew point measurements

Field verification of on-line HC dew point measurements Field verification of on-line HC dew point measurements Andy Benton, Technical Consultant, Michell Instruments Limited, Ely, UK andy.benton@michell.com www.michell.com Introduction: The Michell Condumax

More information

Interchangeability Criteria.

Interchangeability Criteria. Interchangeability Criteria. A substitute gas should burn satisfactorily with negligible change in burner performance on all types of burners without the need for special adjustment. The important requirements

More information

By: Eng. Ahmed Deyab Fares - Mobile:

By: Eng. Ahmed Deyab Fares -  Mobile: Distillation Column 1 Workshop Separation of light products is present in any Hydrocarbons operations. In this module, a column will be modeled to separate Light and heavy components from each other using

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

More information

4.) There are no forces of attraction or repulsion between gas particles. This means that

4.) There are no forces of attraction or repulsion between gas particles. This means that KINETIC MOLECULAR (K-M) THEORY OF MATTER NOTES - based on the idea that particles of matter are always in motion - assumptions of the K-M Theory 1.) Gases consist of large numbers of tiny particles that

More information

44 (0) E:

44 (0) E: FluidFlow Relief Valve Sizing Handbook Flite Software 2016 Flite Software N.I. Ltd, Block E, Balliniska Business Park, Springtown Rd, Derry, BT48 0LY, N. Ireland. T: 44 (0) 2871 279227 E: sales@fluidflowinfo.com

More information

CHEM1901/3 Worksheet 8: The Ideal Gas Law: PV = nrt

CHEM1901/3 Worksheet 8: The Ideal Gas Law: PV = nrt CHEM1901/3 Worksheet 8: The Ideal Gas Law: PV = nrt The Ideal Gas Law Model 1: The Gas Laws T (K) Kelvin or absolute temperature = T ( C) + 273. T(K) is always 0 K Boyle s Law (1660). The volume of a gas

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

Dynamic Simulation for T-9 Storage Tank (Holding Case)

Dynamic Simulation for T-9 Storage Tank (Holding Case) Dynamic Simulation for T-9 Storage Tank (Holding Case) CASE 1: 19,642 Kg/Hr (Holding: 52 o C), No Liquid Draw Workshop Description Estimation of vapor flow rate coming out from the T-9 tank for holding

More information

IRC 2011 All Rights Reserved

IRC 2011 All Rights Reserved 1 2 3 The enthalpy of saturated vapor and the enthalpy of saturated liquid is evaluated at the fully accumulated relief device set pressure (P=P set * 1.1 + 14.7). Set Pressure (psig) h fg (Btu/lbm) 150

More information

Boyle s Law Practice

Boyle s Law Practice Boyle s Law Practice Boyle s Law is an indirect relationship. Most of these problems can be done in your head without showing your work. 1. Herman has 30.0 L of helium gas trapped in a cylinder by a piston.

More information

Moles, mixtures, and densities Properties of gases Stephen Lower (2011)

Moles, mixtures, and densities Properties of gases Stephen Lower (2011) Moles, mixtures, and densities Properties of gases Stephen Lower (2011) Although all gases closely follow the ideal gas law PV = nrtunder appropriate conditions, each gas is also a unique chemical substance

More information

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

More information

Behavior of Gases Chapter 12 Assignment & Problem Set

Behavior of Gases Chapter 12 Assignment & Problem Set Behavior of Gases Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Behavior of Gases 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

1 PIPESYS Application

1 PIPESYS Application PIPESYS Application 1-1 1 PIPESYS Application 1.1 Gas Condensate Gathering System In this PIPESYS Application, the performance of a small gascondensate gathering system is modelled. Figure 1.1 shows the

More information

Natural Gas Gathering

Natural Gas Gathering Natural Gas Gathering Course No: R04-002 Credit: 4 PDH Jim Piter, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info@cedengineering.com

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

More information

CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University. Final Exam

CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University. Final Exam CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University Final Exam 8 pages, front & back, not including reference sheets; 21 questions An excerpt from the NCEES Fundamentals

More information

Gas Law Review. Honors Chem.

Gas Law Review. Honors Chem. Gas Law Review Honors Chem. Question 1: KMT 1: What does KMT stand for? 2: Gas particles have no or. 3: Gas particles are not to or by each other. 4: measures the average kinetic energy of gas particles.

More information

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt Experiment 13 Molar Mass of a Gas Purpose In this experiment you will use the ideal gas law to calculate the molar mass of a volatile liquid compound by measuring the mass, volume, temperature, and pressure

More information

Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003

Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003 Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003 From textbook: 7-33 odd, 37-45 odd, 55, 59, 61 1. Which gaseous molecules (choose one species) effuse slowest? A. SO 2 (g) B. Ar(g) C. NO(g) D. Ne(g) E.

More information

Unit 8: Kinetic Theory Homework Packet (90 points)

Unit 8: Kinetic Theory Homework Packet (90 points) Name: Key Period: By the end of Unit 8, you should be able to: Kinetic Theory Chapter 13-14 4. Define kinetic theory of gases including collisions 5. Define pressure, including atmospheric pressure, vapor

More information

FUNDAMENTALS OF NATURAL GAS LIQUID MEASUREMENT. Don Sextro, Targa Resources. Dan Comstock, The University of Texas (PETEX)

FUNDAMENTALS OF NATURAL GAS LIQUID MEASUREMENT. Don Sextro, Targa Resources. Dan Comstock, The University of Texas (PETEX) FUNDAMENTALS OF NATURAL GAS LIQUID MEASUREMENT Don Sextro, Targa Resources Dan Comstock, The University of Texas (PETEX) Introduction The measurement of natural gas liquids (NGL) is similar in many respects

More information

The Pennsylvania State University. The Graduate School. Department of Energy and Mineral Engineering FIELD PERFORMANCE ANALYSIS AND OPTIMIZATION OF

The Pennsylvania State University. The Graduate School. Department of Energy and Mineral Engineering FIELD PERFORMANCE ANALYSIS AND OPTIMIZATION OF The Pennsylvania State University The Graduate School Department of Energy and Mineral Engineering FIELD PERFORMANCE ANALYSIS AND OPTIMIZATION OF GAS CONDENSATE SYSTEMS USING ZERO-DIMENSIONAL RESERVOIR

More information

Considerations for Sampling Wet, High Pressure, and Supercritical Natural Gas. Presented by: Shannon M. Bromley

Considerations for Sampling Wet, High Pressure, and Supercritical Natural Gas. Presented by: Shannon M. Bromley Considerations for Sampling Wet, High Pressure, and Supercritical Natural Gas Presented by: Shannon M. Bromley Introduction The key to analyzer performance and accurate analysis is proper sample conditioning

More information

Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10)

Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10) Practice MC Test unit D (Ch 10) Gas Laws (pg 1 of 10) This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions outlined below. DO

More information