Some Clinical Aspects on the Blood Gas Physiology

Size: px
Start display at page:

Download "Some Clinical Aspects on the Blood Gas Physiology"

Transcription

1 Special Article* Some Clinical Aspects on the Blood Gas Physiology Hiroshi Sasamoto Professor and Chairman, Department of Medicine, School of Medicine Keio University, Shinjuku, Tokyo Recent trends on the clinical hematology were mostly concentrated upon the morphological studies. In this presentation the emphasis was placed upon the physiological aspects of the blood to transport the respiratory gases as well as to maintain the homeostasis. The treatment of respiratory insufficiency was also referred to. 1) Alveolar Gas Exchange and Blood Gases: The quantitative estimation of the uneven VA/Qdistribution in the lungs was done on (1) the alveolar-arterial gas tension differences (O2 and N2), (2) the compartmental analysis based upon the inert gas elimination, (3) the lung scanning by use of the radioisotope tracers and on (4) the CO pulmonary diffusing capacity. The alveolar-arterial O2 tension differences on breathing air as well as other gas mixtures of different O2 tension and the arterial-alveolar N2 difference were measured on the anesthetized dogs or on the healthy human subjects to establish their normal values. AaDo2upon breathing O2 of 40%or higher concentration revealed somewhat smaller values than those previously expected (Table 1). Table 1. The Proposed Normal Alveolar-Arterial Gas Tension Differences (Men, Supine) The short pulmonary capillary transit time less than 0.5 sec. observed in cases with pulmonary hypertension was considered as a possible factor to increase AaDo2. * Presented at the 66th Annual Meeting of the Japanese Society of Internal Medicine, April 2, 1969, in Sendai.

2 148 Sasamato Jap. J. Med It was also concluded, through some experimental observations, that the leftwards shifting of the O2 dissociation curve may cause increased AaDo2. AaDo2on 21% O2 and on 40% O2 was measured on the cases with typical chronic non-specific lung diseases. Significant increase in AaDo2 was found in diffuse pulmonary fibrosis. In cases with bronchitis AaDo2revealed increase of various degree. In emphysematous patients AaDo2 appeared larger both on different O2 levels. aadn2on 96 healthy aged demonstrated somewhat skewed frequency distribution while those on 67 healthy young revealed the normal distribution. Some aged subjects demonstrated large aadn2even though they were accompanied by FEV1% within normal limits. The author thus assumes that the uneven VA/Qdistribution may be one of the physiological features in the so-called senescence lungs. Some young bronchitic patients also revealed larger aadn2with normal FEV1%indicating the uneven VA/Qdistribution could be one of the physiological disturbances. Both AaDo2 and aadn2 exhibited reverse correlation with DLco so that the CO pulmonary diffusing capacity also considered to represent the uneven VA/Q distribution as well as the true diffusion impairment (Fig. 1). 20J By the multiple inert gas elimination method one can detect the compartment with any VA/Qby use of a pair of adequate inert gases io- x of different solubilities. On the fl.nesthp.hzph dogs the methane-ethane elimination allowed a us to evaluate the compartment having VA/Q 20 3cT less than 0.1 quantitatively. This method cannot p Fig. 1. Arterial-alveolarN2dif-.. inpoint. the geometrical u... location,. of the... spaces,, A-rc - having any abnormality as the radioisotopic terence vs. pulmonary diffusing capacity (breath-holding method). method can do. 2) Oxygen Transport: Factors to cause the leftwards shifting of the O2 dissociation curve, such as the hypothermia, alkaline infusion, or CO inhalation brought up any increase in AaDo2. In those dogs with anemia, COintoxication and with hypothermia the mixed venous oxygen tension revealed significant depression. Although VO2/Qwas increased in either acid- or alkaline infused dogs the mixed venous oxygen tension was decreased only in the alkaline infused dogs while it remained unchanged in the acid-infused dogs. Blood gas studies on anemic patients revealed decreased O2 content with normal arterial oxygen tension. The patients were also accompanied by the respiratory alkalosis due to compensatory alveolar hyperventilation. AaDo2in most of the cases remained normal. Relative high cardiac output and depressed mixed venous oxygen.

3 "Vol. 9-, No. 3 BLOOD GAS PHYSIOLOGY 14^ tension were observed. 3) Tissue Oxygen Utilization and Blood Gases: To estimate the gas tension in various tissue the author studied the gas tension in various venous blood on the anesthetized dogs. In the figure the venous points representing the pulmonary artery, the coronary-^ the jugular-, the portal- and the renal veins are demonstrated on the O2-CO2diagram (Fig. 2). The estimated renal blood flow was significantly higher than those in other organs. The subcutaneous and/or the intraperitoneal gas pockets madeon the rats were also used to estimate the tissue gas tension experimentally. The pocket gas tension on 907 subcutaneous pockets and on 394 intraperitoneal pocket was distributed, on the O2-CO2 diagram, between and around the blood R-line of 0.6 and 1.0. TheO2 tension in the intraperitoneal pocket appeared a little higher than that in the subcutaneous pockets. Upon breathing COmixture, changes in oxygen tension of the rat's pocket gas were mmhg 60 CM & O2-CO2 DIAGRAM ( VENOUS BLOOD ) JUGULAR HAL Bo mmhg Fig. 2. The venous blood gas tensions on the O2-CO2 diagram. found significant depending on the inspired COconcentration. The observation was. also performed on the rats, on which thyroid preparations were experimentally administered. Rats, which revealed significantly increased oxygen consumption,, were accompanied by any depressed O2 tension in the gas pockets. The data were suggestive to the changes of tissue gas tension to be applied on the patients with hyperthyroidism or with high fever. The rats exposed to the environment of various O2 tension revealed the symptoms of oxygen intoxication accompanied by the convulsion, hemoptysis and the death. The incidence of these symptoms was related to the inspired O2 tension as well as the duration exposed to the environment. The observation on the effect of THAM to prevent oxygen intoxication was done on the rat's subcutaneous gas pocket. THAM inhibited the prevalence of oxygen intoxication, but also produced any depression of the tissue O2 tension, which diminished the essential effects of hyperbaric O2 administration itself. 4) Acid-Base Regulation and CO2 Transport: Since it is difficult to obtain complete information on the acid-base regulation by the arterial blood analysis, the author madefurther experimental trial to estimate the intracellular ph by the DMOmethod on the excised rat's heart muscle and diaphragm. The intracellular ph was found approximately 7.00 against the extracel-

4 150 Sasamoto Jap. J. Med lular ph of The intracellular ph was found variable in terms of CO2 tension in the media while its intracellular bicarbonate concentration remained unchanged. On clinical practice, the acid-base disturbance be assessed on the arterial blood analysis although the information obtained be not perfect. The data shownare the proposed normal values for the arterial ph, CO2tension and the plasma bicarbonate concentration (Table 2). Table 2. The Proposed Normal Values for the Acid-Base Regulation ACID-BASE REGULATION ( CLINICAL CASES ) Pto 2 mmhg Fig. 3. The plasma bicarbonate ion concentration vs. arterial CO2 tension in cases with chronic stable acid-base disturbances. The acid-base balance in cases with chronic stable hypercapnia was studied to establish the so-called significance band represented by the relationship between arterial CO2tension vs. plasma bicarbonate ion concentration. Further studies were conducted on the cases with chronic metabolic acid-base disturbance to demonstrate the relationship of the plasm bicarbonate concentration with the arterial CO2tension. The figure summarizes the findings of acid-base disturbances in cases with chronic stable acid-base impairment (Fig. 3). 5) The Respiratory Insufficiency and Its Treatment : The author proposes to define the respiratory insufficiency and the pulmonary failure as follows : the respiratory insufficiency be the condition accompanied by any abnormal blood gas (O2 and/or CO2) data so that the patient cannot perform her normal physical activities. The pulmonary failure may be defined to be the condition, under which the patient's pulmonary function be impaired to meet his physical demand. The respiratory insufficiency is defined on the physiological basis while the pulmonary failure is rather on the clinical background. The oxygen therapy for the respiratory insufficiency was discussed on three

5 Vol. 9, No. 3 BLOOD GAS PHYSIOLOGY 151 different conditions. (1) patients with the alveolar hypoventilation, (2) patients accompanied by severe hypoxemia due to uneven ventilation-per fusion ratio distribution and/or diffusion impairment, (3) patients with acute CO intoxication. Excepting for the type (3) the oxygen therapy may be given aiming to maintain the arterial O2 tension of mm.Hgif the CO2accumulation could be avoided. The author is to emphasize the importance to secure the alveolar ventilation during the treatment in parallel to give any intensive correction on the acid-base disturbance. 40% O2 may be sufficient to maintain the necessary arterial O2 tension. The patients accompanied by significant arterial O2 desaturation due to uneven ventilation-per fusion-ratio distribution and/or diffusion impairment should receive oxygen of high concentration. The patients with acute COintoxication should especially be treated by the intensive O2 administration, possibly by the hyperbaric oxygenation. Upon treatment on the cases with hypercapnia the sudden correction for the impaired acid-base regulation should be avoided. Acetazole amide or THAMmay be administered to overcome the severe CO2 retention if the proper ventilation be sufficiently maintained. 6) Conclusion: The physiological significance of the blood gases was discussed on the experimental as well as on the clinical basis. The abnormal blood gases may be brought up on variety of diseases. The discussion included not only on the patients with pulmonary diseases, but also on other patients with blood diseases, metabolic diseases, etc. The physiological significance of the venous blood gas tensions was discussed with regard to the tissue gas tension. The criteria of respiratory insufficiency and of pulmonary failure was proposed and the treatment of respiratory insufficiency was discussed basing upon three types of respiratory insufficiency. The discussion was also extended to the correction of acid-base disturbances. References Date, T. and Okuda, M.: Kokyuu to Junkan, 16: 636, Ohta, Y., Nakayama, H. and Yokoyama, T.: Kokyuu to Junkan, 14: Rahn, H., and Farhi, L.E. : Handbook of Physiology, Section III, vol. 1, pp. 735 (edited by W. 0. Fenn and H. Rahn), American Physiological Society, Washington D. C, Sasamoto, H.: Japanese J. of Thoracic Dis., 6: 1, Sasamoto, H. and Ohta, Y.: Nihon Rinshoo, 25: 1933, Sasamoto, H. and Kunieda, T. : Nihon Kyoobu Rinshoo, 26: 193, Sasamoto, H.: Kokyuu to Junkan, 15: 187, Sasamoto, H. and Yokoyama, T.: Kokyuu to Junkan, 17: 4, Sato, S., Okuda, M. and Date, T.: Kokyuu to Junkan, 16: 871, 1968.

6 152 Sasamoto Jap. J. Med Yokoyama, T., Yamaoka, S. and Date, T.: Jap. J. Int. Med., 57: 1092, Yokoyama, T. and Ohtsuka, H.: Kokyuu to Junkan, 15: 861, Yokoyama, T.: Japanese J. Thoracic Dis., 6: 34, Yokoyama, T. : 17th Convention of Japanese Medical Association, Proceedings of Scientific Papers, 1967, IV: 903, Farhi, L.E. and Yokoyama, T. : Respiration Physiology, 3 : 12, Yokoyama, T. and Farhi, L.E. : Respiration Physiology, 3 : 166, 1967.

Respiratory physiology II.

Respiratory physiology II. Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

More information

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here Respiratory Medicine A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics See online here Alveolar gas equation helps to calculate the partial pressure of oxygen in alveoli and A-a gradient is the

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Essential Skills Course Acute Care Module Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Acknowledgements This pre course workbook has been complied and updated with reference to the original

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning CHAPTER 6 Oxygen Transport Normal Blood Gas Value Ranges Table 6-1 OXYGEN TRANSPORT Oxygen Dissolved in the Blood Plasma Dissolve means that the gas maintains its precise molecular structure About.003

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

Ch 16: Respiratory System

Ch 16: Respiratory System Ch 16: Respiratory System SLOs: Explain how intrapulmonary pressures change during breathing Explain surface tension and the role of surfactant in respiratory physiology. Compare and contrast compliance

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE Instant download and all chapters Test Bank Respiratory Care Anatomy and Physiology Foundations for Clinical Practice 3rd Edition Will Beachey https://testbanklab.com/download/test-bank-respiratory-care-anatomy-physiologyfoundations-clinical-practice-3rd-edition-will-beachey/

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have - How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have the highest blood flow of all organs, which makes them

More information

Respiratory Physiology. Adeyomoye O.I

Respiratory Physiology. Adeyomoye O.I Respiratory Physiology By Adeyomoye O.I Outline Introduction Hypoxia Dyspnea Control of breathing Ventilation/perfusion ratios Respiratory/barometric changes in exercise Intra-pulmonary & intra-pleural

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

Alveolus and Respiratory Membrane

Alveolus and Respiratory Membrane Alveolus and Respiratory Membrane thin membrane where gas exchange occurs in the lungs, simple squamous epithelium (Squamous cells have the appearance of thin, flat plates. They fit closely together in

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS VENTILATION AND PERFUSION IN HEALTH AND DISEASE Dr.HARIPRASAD VS Ventilation Total ventilation - total rate of air flow in and out of the lung during normal tidal breathing. Alveolar ventilation -represents

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

exchange of carbon dioxide and of oxygen between the blood and the air in

exchange of carbon dioxide and of oxygen between the blood and the air in M. M. HENRY WILLIAMS, JR.*Cardiorespiratory Laboratory, Grasslands WILLIAMS, JR.* Hospital, Valhalla, New York SOME APPLICATIONS OF PULMONARY PHYSIOLOGY TO CLINICAL MEDICINE During the past ten years a

More information

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

Rodney Shandukani 14/03/2012

Rodney Shandukani 14/03/2012 Rodney Shandukani 14/03/2012 OXYGEN THERAPY Aerobic metabolism accounts for 90% of Oxygen consumption by tissues. generates ATP by oxidative phosphorylation. Oxygen cascade: Oxygen exerts a partial pressure,

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood Breathing rate is regulated by blood ph and C02 breathing reduces plasma [CO2]; plasma [CO2] increases breathing. When C02 levels are high, breating rate increases to blow off C02 In low C02 conditions,

More information

Respiratory Signs: Tachypnea (RR>30/min), Desaturation, Shallow breathing, Use of accessory muscles Breathing sound: Wheezing, Rhonchi, Crepitation.

Respiratory Signs: Tachypnea (RR>30/min), Desaturation, Shallow breathing, Use of accessory muscles Breathing sound: Wheezing, Rhonchi, Crepitation. Respiratory Signs: Tachypnea (RR>30/min), Desaturation, Shallow breathing, Use of accessory muscles Breathing sound: Wheezing, Rhonchi, Crepitation. Paradoxical breathing Hyper-resonance on percussion:

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi Oxygen and Carbon dioxide Transport Dr. Laila Al-Dokhi Objectives 1. Understand the forms of oxygen transport in the blood, the importance of each. 2. Differentiate between O2 capacity, O2 content and

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives exercise 7 Respiratory System Mechanics Objectives 1. To explain how the respiratory and circulatory systems work together to enable gas exchange among the lungs, blood, and body tissues 2. To define respiration,

More information

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Blood gas adventures at various altitudes Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Mount Everest 8848 M Any point in bird watching here? Respiration is gas exchange: the process

More information

The Safe Use and Prescription of Medical Oxygen. Luke Howard

The Safe Use and Prescription of Medical Oxygen. Luke Howard The Safe Use and Prescription of Medical Oxygen Luke Howard Consultant Respiratory Physician Imperial College Healthcare NHS Trust & Co-Chair, British Thoracic Society Emergency Oxygen Guideline Group

More information

Respiratory Lecture Test Questions Set 3

Respiratory Lecture Test Questions Set 3 Respiratory Lecture Test Questions Set 3 1. The pressure of a gas: a. is inversely proportional to its volume b. is unaffected by temperature changes c. is directly proportional to its volume d. does not

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%)

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%) 148 PHYSIOLOGY CASES AND PROBLEMS Case 26 Carbon Monoxide Poisoning Herman Neiswander is a 65-year-old retired landscape architect in northern Wisconsin. One cold January morning, he decided to warm his

More information

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

PHTY 300 Wk 1 Lectures

PHTY 300 Wk 1 Lectures PHTY 300 Wk 1 Lectures Arterial Blood Gas Components The test provides information on - Acid base balance - Oxygenation - Hemoglobin levels - Electrolyte blood glucose, lactate, renal function When initially

More information

Respiratory System Study Guide, Chapter 16

Respiratory System Study Guide, Chapter 16 Part I. Clinical Applications Name: Respiratory System Study Guide, Chapter 16 Lab Day/Time: 1. A person with ketoacidosis may hyperventilate. Explain why this occurs, and explain why this hyperventilation

More information

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES GENERAL PROVISIONS: EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES Individuals providing Inter-facility transport with Mechanical Ventilator must have successfully completed

More information

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility.

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility. Physiology, sheet #9 Oxygen, is first dissolved in the plasma and the cytosol of the rbc, we have around blood constitutes 7% of our body weight, oxygen, in the capillaries is present in the rbc s and

More information

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

medical physiology :: Pulmonary Physiology in a Nutshell by:

medical physiology :: Pulmonary Physiology in a Nutshell by: medical physiology :: Pulmonary Physiology in a Nutshell by: Johan H Koeslag Medical Physiology Stellenbosch University PO Box 19063 Tygerberg, 7505. South Africa Mail me INTRODUCTION The lungs are not

More information

Some major points on the Effects of Hypoxia

Some major points on the Effects of Hypoxia Some major points on the Effects of Hypoxia Source: Kings College London http://www.kcl.ac.uk/teares/gktvc/vc/dental/year1/lectures/rbmsmajorpoints/effectsofhypoxia.htm Cells obtain their energy from oxygen.

More information

Respiratory system & exercise. Dr. Rehab F Gwada

Respiratory system & exercise. Dr. Rehab F Gwada Respiratory system & exercise Dr. Rehab F Gwada Objectives of lecture Outline the major anatomical components & important functions of the respiratory system. Describe the mechanics of ventilation. List

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System VI edit Pag 451-499 Chapter 13 The Respiratory System V edit. Pag 459-509 Tissue cell Alveoli of lungs Atmosphere 1 External respiration Ventilation or gas exchange between the atmosphere and air sacs

More information

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System Introduction Respiration Chapter 10 The Respiratory System Provides a means of gas exchange between the environment and the body Plays a role in the regulation of acidbase balance during exercise Objectives

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity other minor gases argon,

More information

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biophysics of breathing.

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biophysics of breathing. Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno Biophysics of breathing. Spirometry 1 Lecture outline Mechanisms of gas exchange between organism and

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity and minor gases argon,

More information

49 Arterial Blood Gases

49 Arterial Blood Gases 49 Arterial Blood Gases E. P. TRULOCK, III Definition Arterial blood gases (ABGs) is a collective term applied to three separate measurements-ph, Pco 2, and Poe -generally made together to evaluate acid-base

More information

Recitation question # 05

Recitation question # 05 Recitation and Lab # 05 The goal of this recitations / labs is to review material related to the CV and respiratory lectures for the second test of this course. Info required to answer this recitation

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

Respiratory Physiology Gaseous Exchange

Respiratory Physiology Gaseous Exchange Respiratory Physiology Gaseous Exchange Session Objectives. What you will cover Basic anatomy of the lung including airways Breathing movements Lung volumes and capacities Compliance and Resistance in

More information

Respiration. The resspiratory system

Respiration. The resspiratory system Respiration The resspiratory system The Alveoli The lungs have about 300 million alveoli, with a total crosssec onal area of 50 70 m2.. Each alveolar sac is surrounded by blood capillaries. The walls of

More information

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE Hypoxia Office COL Brian W. Smalley DO, MSPH, CPE Or this Or even this Hypoxia State of oxygen deficiency in the blood cells and tissues sufficient to cause impairment of function 4 Types Hypoxic Hypemic

More information

Pulmonary Circulation Linda Costanzo Ph.D.

Pulmonary Circulation Linda Costanzo Ph.D. Pulmonary Circulation Linda Costanzo Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The differences between pressures in the pulmonary and systemic circulations. 2. How

More information

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC 66 LAB 7 HUMAN RESPIRATORY LAB Assignments: Due before lab: Quiz: Three Respiratory Interactive Physiology Animations pages 69 73. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

More information

Lung Volumes and Ventilation

Lung Volumes and Ventilation Respiratory System ssrisuma@rics.bwh.harvard.edu Lung Volumes and Ventilation Minute ventilation Volume of an inspired or expired air per minute = tidal volume (V T ) x respiratory rate Dead space ventilation

More information

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi Course : PG Pathshala-Biophysics Paper 13 : Physiological Biophysics Module 17 : Gas transport and pulmonary circulation Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

P215 Respiratory System, Part 2

P215 Respiratory System, Part 2 P15 Respiratory System, Part Gas Exchange Oxygen and Carbon Dioxide constant need for oxygen constant production of carbon dioxide exchange (and movement) lung alveoli pulmonary arteries pulmonary capillaries

More information

Physiology of Respiration

Physiology of Respiration Physiology of Respiration External Respiration = pulmonary ventilation breathing involves 2 processes: inspiration expiration Inspiration an active process involves contraction of diaphragm innervated

More information

RESPIRATORY MONITORING AND OXIMETRY

RESPIRATORY MONITORING AND OXIMETRY RESPIRATORY MONITORING AND OXIMETRY EE 471 F2016 Prof. Yasser Mostafa Kadah Introduction Respiratory monitoring includes measurement, evaluation, and monitoring of parameters of respiratory system, First

More information

B. A clinical emergency exists in which a profound hypoxia is determined to be present.

B. A clinical emergency exists in which a profound hypoxia is determined to be present. I. Subject: Oxyhood-Oxygen Therapy for Neonates II. Policy: Oxygen therapy by oxyhood shall be initiated upon a physician's order by nurses and Respiratory Therapy personnel trained in the principles of

More information

Respiratory Pulmonary Ventilation

Respiratory Pulmonary Ventilation Respiratory Pulmonary Ventilation Pulmonary Ventilation Pulmonary ventilation is the act of breathing and the first step in the respiratory process. Pulmonary ventilation brings in air with a new supply

More information

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY Louis Al-Saleem 5/4/13 OXYGEN PHYSIOLOGY AND PULSE OXIMETRY A very experienced senior resuscitation nurse approached me at work recently, and asked if there was any circulating academic evidence about

More information

Mechanical Ventilation

Mechanical Ventilation PROCEDURE - Page 1 of 5 Purpose Scope Physician's Order Indications Procedure Mechanical Artificial Ventilation refers to any methods to deliver volumes of gas into a patient's lungs over an extended period

More information

PROBLEM SET 7. Assigned: April 1, 2004 Due: April 9, 2004

PROBLEM SET 7. Assigned: April 1, 2004 Due: April 9, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

PHYSIOLOGICAL REVIEW

PHYSIOLOGICAL REVIEW PHYSIOLOGICAL REVIEW Coordination of Ventilation and Perfusion* Richard M. Peters, M.D. N either ventilation of areas of the lung that are inadequately perfused with blood returning from the systemic venous

More information

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system Chapter 16 Respiration Functions of the respiratory system Respiration The term respiration includes 3 separate functions: Ventilation: Breathing. Gas exchange: Occurs between air and blood in the lungs.

More information

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration.

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration. Biology 12 Respiration Divisions of Respiration Breathing: entrance and exit of air into and out of the lungs External Respiration: exchange of gases(o2 and CO2) between air (in alveoli) and blood Internal

More information

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD Respiratory System Prepared by: Dorota Marczuk-Krynicka, MD, PhD Lungs: Ventilation Perfusion Gas Exchange - Diffusion 1. Airways and Airway Resistance (AWR) 2. Mechanics of Breathing and Lung (Elastic)

More information

The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases

The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases ERJ Express. Published on October 16, 214 as doi: 1.1183/931936.39214 REVIEW IN PRESS CORRECTED PROOF The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine Acknowledgment: Antine Stenbit MD

Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine Acknowledgment: Antine Stenbit MD Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine 2013 Acknowledgment: Antine Stenbit MD Objectives Knowledge: Understand the difference between hypoxia and hypoxemia

More information

RESPIRATION III SEMESTER BOTANY MODULE II

RESPIRATION III SEMESTER BOTANY MODULE II III SEMESTER BOTANY MODULE II RESPIRATION Lung Capacities and Volumes Tidal volume (TV) air that moves into and out of the lungs with each breath (approximately 500 ml) Inspiratory reserve volume (IRV)

More information

Chapter 11: Respiratory System Review Assignment

Chapter 11: Respiratory System Review Assignment Name: Date: Mark: / 45 Chapter 11: Respiratory System Review Assignment Multiple Choice = 45 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following

More information

Gas Exchange Respiratory Systems

Gas Exchange Respiratory Systems alveoli gills Gas Exchange Respiratory Systems elephant seals 2008-2009 Why do we need a respiratory system? respiration for respiration Need O 2 in for aerobic cellular respiration make ATP Need CO 2

More information

Public Assessment Report Scientific discussion. Lung test gas CO (He) AGA, 0.28%, inhalation gas, compressed (carbon monoxide, helium) SE/H/1154/01/MR

Public Assessment Report Scientific discussion. Lung test gas CO (He) AGA, 0.28%, inhalation gas, compressed (carbon monoxide, helium) SE/H/1154/01/MR Public Assessment Report Scientific discussion Lung test gas CO (He) AGA, 0.28%, inhalation gas, compressed (carbon monoxide, helium) SE/H/1154/01/MR This module reflects the scientific discussion for

More information

Table of Contents. By Adam Hollingworth

Table of Contents. By Adam Hollingworth By Adam Hollingworth Table of Contents Oxygen Cascade... 2 Diffusion... 2 Laws of Diffusion... 2 Diffusion & Perfusion Limitations... 3 Oxygen Uptake Along Pulmon Capillary... 4 Measurement of Diffusing

More information

Chapter 22 The Respiratory System

Chapter 22 The Respiratory System Chapter 22 The Respiratory System 1 Respiration Pulmonary ventilation (breathing): movement of air into and out of the lungs External respiration: O 2 and CO 2 exchange between the lungs and the blood

More information

Gases and Respiration. Respiration Overview I

Gases and Respiration. Respiration Overview I Respiration Overview I Respiration Overview II Gas Laws Equation of State: PV = nrt Same volumes of different gases have same # of molecules BTPS: body temp, atmospheric pressure, saturated ATPS: ambient

More information

GAS EXCHANGE & PHYSIOLOGY

GAS EXCHANGE & PHYSIOLOGY GAS EXCHANGE & PHYSIOLOGY Atmospheric Pressure Intra-Alveolar Pressure Inspiration 760 mm HG at Sea Level (= 1 atm) Pressure due to gases (N2, O2, CO2, Misc.) Pressure inside the alveolus (air sac) Phrenic

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Louis D Alecy, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

BREATHING CIRCUIT. II. PULMONARY FIBROSIS

BREATHING CIRCUIT. II. PULMONARY FIBROSIS DISTRIBUTION OF RESPIRATORY GASES IN A CLOSED BREATHING CIRCUIT. II. PULMONARY FIBROSIS AND EMPHYSEMA BY A. COU'RNAND, H. C. A. LASSEN AND D. W. RICHARDS, JR. (From the Department of Medicine, College

More information

Blood Gas Interpretation

Blood Gas Interpretation Blood Gas Interpretation Pa O2 Saturation (SaO 2 ) Oxygen Therapy Monitoring Oxygen content (O( 2 Ct) Venous Oximetry Mixed venous oxygen saturation SvO 2 Surrogate for Systemic oxygen delivery and

More information

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange By: Aseel Jamil Al-twaijer Lec : physical principles of gas exchange Date:30 /10/2017 this lecture is about the exchange of gases between the blood and the alveoli. I might add some external definitions

More information

Presentation Overview. Monitoring Strategies for the Mechanically Ventilated Patient. Early Monitoring Strategies. Early Attempts To Monitor WOB

Presentation Overview. Monitoring Strategies for the Mechanically Ventilated Patient. Early Monitoring Strategies. Early Attempts To Monitor WOB Monitoring Strategies for the Mechanically entilated Patient Presentation Overview A look back into the future What works and what may work What s all the hype about the WOB? Are ventilator graphics really

More information

LUNG CLEARANCE INDEX. COR-MAN IN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark

LUNG CLEARANCE INDEX. COR-MAN IN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark LUNG CLEARANCE INDEX METHOD COR-MAN-0000-008-IN Issue A, Rev. 3 2013-07-01 INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark Tel.: +45 65 95 91 00 Fax: +45 65 95 78 00 info@innovision.dk www.innovision.dk

More information

CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY

CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY CARBON DIOXIDE METABOLISM Production Transportation Elimination Carbon Dioxide production CO 2 is the metabolite produced by the utilization by cells of oxygen

More information