Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip.

Size: px
Start display at page:

Download "Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip."

Transcription

1 Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip. CEE Summer 2012 SAFETY The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water and items running on standard line voltages (the pump and the computer) you should pay attention to the possibility of electric shock. If water spills on the desktop, please clean it up IF there is no risk of shock. If water gets near a 110V electrical connection (i.e. a wall outlet or anything connected to it) DO NOT clean it up. Seek a TA, Tinoco (HLS 369), or one of the CEE technicians (Tim Brock, Paul Charles, or Cameron Willkens, who have offices across from the lab) for help. Always work with a minimum of two people. OBJECTIVES In this laboratory you will: 1. Measure pressure using a computerized data acquisition system. 2. Build and test a bubbler system to measure the depth of water in a tank based on the relationship between pressure and depth of water. The bubbler system is a model of typical systems used by the United States Geological Survey (USGS) to monitor river stage (depth). 3. Experiment with pressure on an object (the bubbler) in freefall, and 4. Look with a critical eye at surface tension. THEORY Pressure Transducers A transducer is any device that converts energy of one form, in this case pressure work done on an elastic membrane, to energy of another form, in this case an electrical voltage. Pressure transducers produce a voltage output that is proportional to the applied pressure. Pressure transducers are available in gage, absolute, and differential configurations. The pressure transducers used in this experiment are differential and thus can be used as gage pressure transducers by connecting only one of the two ports. Our pressure transducers contain a flexible diaphragm with strain gages bonded to it. The strain gage converts deflection in the diaphragm due to the applied pressure difference into a voltage. The strain gage output is affected by temperature changes and the zero value (no applied pressure) would normally vary from sensor to sensor. Pressure transducers contain circuitry to compensate for temperature and to zero the output (i.e., for a gage transducer to read zero under atmospheric pressure). Our sensors are cheap so they need to be re-zeroed regularly and we provide a software method for doing this. Data Acquisition System Pressure transducers produce a voltage output that is proportional to the applied pressure difference. The output voltages are all sampled by a data acquisition card which is controlled by a dedicated data server computer. Software receives the digitized voltage 1

2 data and converts it to the measured physical property using a conversion of the form: Y = a(v V 0 ) b (1) where V is the measured voltage, V 0 is a voltage offset, the coefficients a and b are user defined, and Y has the desired physical units. The voltage offset is how the sensor is zeroed and it may be measured at a reference pressure such as atmospheric pressure. We will use Easy Data software, which can monitor any voltage data being acquired using the data server. It is capable of monitoring eight channels per lab station at once. Additionally, each channel can be calibrated for its own unique data monitoring hardware. To launch Easy Data, double-click on the Easy Data icon on the desktop, generally the lower left of all the icons. Pressure Transducer Calibration The pressure transducer used for this experiment (shown in Figure 1 ) measures the differential pressure between two ports. The pressure transducers for this lab have a range of 0 to 6.8kPa. The pressure transducer can be calibrated to determine the actual relationship between volts (the measured signal) and pressure differential by connecting a pressure transducer to a static column of water. Alternately, the relationship between pressure and voltage can be obtained from the pressure transducer specifications ( For this semester we have permanently selected the factory provided calibration of the sensor so the output is units of Pascals (Pa). Accuracy Both the pressure transducers and the data acquisition system contribute to the measurement errors. According to the manufacturers specifications the pressure transducers we are working with have an accuracy of 1% FS (FS is their full-scale measurement) and a hysteresis and repeatability of 0.2% FS. Figure 1: Differential pressure transducer with tubes connected to each port. Statics Pressure variation with depth in an incompressible fluid is linear: p = γh (2) The simple relationship between pressure and depth suggests that pressure transducers can be used to measure either pressure or depth. Bubbler System Bubbler systems are used by the USGS to measure stage (depth) of streams and rivers. Stations that use a bubbler system can be located hundreds of feet from the stream. In a bubbler system, an orifice is attached securely below the water surface and connected to the instrumentation by a length of tubing. Pressurized gas (usually nitrogen or air) is forced through the tubing and out the orifice. Because the pressure in the tubing is a function of the depth of water over the orifice, a change in the stage of the river produces a corresponding change in pressure in the tubing. The accuracy of a bubbler system is affected by pressure losses due to frictional effects of the gas flowing through the tubing (we will see this later in the semester, both in class and lab!). Another source of error is the pressure variation due to the formation of small air bubbles at the end of the tube. The 2

3 small radius of curvature of the bubbles can result in a significant pressure increase in the gas line. As the bubbles are formed the radius of curvature will vary from close to infinite to the radius of the released bubbles and the pressure in the line will vary. We should expect this as for spherical bubbles we know the pressure is inversely related to the radius: p = 2σ r (3) Freefall Experiment The second part of this lab is a brief experiment that explores the nature of pressure in a fluid in freefall. You will simply be measuring the water pressure inside the bubblers prior to, during, and after a drop. Would you feel the water pressure around you if you were to swim over Niagara Falls? You will find out by doing this experiment! Surface Tension and Free-Body Diagrams The final part of this lab is to do some critical viewing of surface tension in action and sketch the appropriate free-body diagram. DATA ACQUISITION Software Start the Easy Data software bring up the software control palette (shown in Figure 2). The software displays pressure values in Pascals from a pressure transducer that has been connected to one of the numbered ports on the Data Acquisition Interface Box (DAIB) (see Figure 3). The ports on the DAIB are numbered and the numbers correspond to channels in the Easy Data software. The software should be configured to immediately begin this lab. The pressure sensor should be in the AI0 port (upper-left). Drag the mouse over the buttons on the program for hints on what tasks they perform. You will notice that as soon as you open the software, it begins to read the pressure values being measured by the transducer (assuming the transducer is plugged into the DAIB). Note that these values are not being Figure 2: Easy Data Acquisition screen recorded, but are only flashing on the screen in real time (the red flashing button on the upper right indicates data not being saved ). Throughout this lab, you will have the option to log your pressure data to a file for future use by clicking the log button. The first time you do this, you need to make a directory for your group in the folder on the desktop titled CEE3310. The full path if you need it will be: C:\Documents and Settings\Lab\Desktop\CEE3310\YourTeam sname\ For the entire semester you can keep your data files collected in labs here. If you want to move a file from the computer someplace else these computers are on the network. The computers have a USB slot in front so you can take files with you using a USB memory stick as well. Note that the software is currently set up to sample at a maximum frequency of 500 Hz (you will use this frequency for the freefall portion of the lab). Often times, however, it is more convenient to record your data at a lower frequency. If you choose a slower frequency, the Easy Data software internally records data at the higher rate, but will only report the average value over the time period you have chosen (i.e., if you choose 1 Hz, it will take the average of all 500 measurements it took over every second and report it as one value). Prior to starting the lab, it is highly recommended that your group takes about two minutes to practice using the software and get comfortable with each of 3

4 plastic tube is used to measure the relationship between depth and pressure. Figure 3: Data Acquisition Interface Box the main features (i.e., zeroing, freezing the screen, toggling between plot types, locking/unlocking plot view, and adjusting the sample frequency). Knowing how to use the software will significantly cut the time you spend in the lab! EXPERIMENTAL PROCEDURES If you have signed up for a TA-available slot the TA will meet you at the beginning of lab (please be on time), but then they will go and do their own work. The TA s will let you know where they will be/how to contact them at the beginning of lab so you can find them when you re ready for checkout. If you sign up when they are not available, schedule a meeting with them or Tinoco to check out. A) Experimental Procedure - Bubbler A 10cm diameter tube that can be filled with up to 50cm of water is used to model a small reservoir (see Figure 4). A pressure transducer connected to a clear Figure 4: Experimental apparatus The pressure transducer is connected to a port in the DAIB. Use the peristaltic pump (shown in Figure 4) as your air supply. The 6mm diameter tube can be submerged to variable depths in the tank of water to test your bubbler system. The pump begins pumping air when start is pressed. Adjust the flow rate by using the up and down arrows to the right of the displayed numbers so that a bubble is formed every 2 to 5 seconds. Note that the motor direction is always clockwise for this pump, and because you want to push air out of the bubbler, you should attach the tube to the right side of the pump (if you attach the tube to the left side you will suck water out of the cylinder and pump it all over the desk). Ensure that the 7kPa pressure transducer is plugged into the correct channel on the DAIB. Verify that the Easy Data software is set-up for the 7kPa sensor (see right side of main screen). 1. Prior to logging any data, you need to be sure to zero the pressure sensor (you are accounting for drift and atmospheric pressure changes and telling Easy Data that you want the current pres- 4

5 sure in the room to be considered 0, or atmospheric pressure in gage). Do this by removing the entire bubbler tube from the water and then zero the sensor with the Easy Data software. Obtain the following data sets (Be sure you re logging your data!): 2. Submerge the bubbler rod to a selected depth (with the air pump running). Record pressure data with Easy Data software for a minimum of 1 minute (see instructions above) at the sample frequency of 5 Hz. Repeat this step for a total of 5 different depth measurements. To ensure repeatability, measure the pressure at each of the five depths again (for a total of two one-minute measurements at each depth). 3. Choose any depth for this measurement. Start with the bubbler pumping air, and then, using the stop button on the pump, stop the flow of air. Perform this measurement twice at the same depth. Log the data for two-minutes after you stop the bubbler. 4. Submerge the bubbler to a shallow depth with the bubbler pumping air. Once the pressure stabilizes, rapidly submerge the bubbler to a much deeper depth. Allow time for the pressure to stabilize once again. Then, rapidly return the bubbler to a roughly similar shallow depth (it does not have to be the same exact shallow depth). Log data until the pressure stabilizes once again. Repeat this experiment twice. Checkout A1. Using Excel or Matlab, open the data you collected for part one, and plot the relationship between pressure and depth. Does the relationship between the two measurements seem to match the result predicted in Eq. 2? Calculate the specific weight of water, γ, from this data. Does the value of γ match the value tabulated in the book? Discuss. A2. Discuss what you saw when you turned off the pump. Could you see the bubble? Does the pressure measurement in your data agree with what you saw at the moment of air-flow stoppage? Explain how the formation of bubbles at the end of the tube can cause error in this method of measurement (Hint: It may help to closely observe 10 seconds of your data that was collected during bubbling... do you see a pattern?). A3. Explain why it is necessary to continually pump air through the bubbler. A4. What happened to the rate of bubble formation during the rapid changes of depth? Explain why the bubbler system responds slowly to some changes in depth (include example plots from your data). What could you do to decrease the response time? B) Experimental Procedure - Freefall 1. Increase sample frequency to 500Hz and ensure that data is registering on the screen 2. Clamp bubbler tube (lightly just enough to hold it don t crush it!) to the side of the cylindrical tank. 3. Begin logging data. 4. Raise entire bubbler system off desk to eye level holding with BOTH hands low on the cylinder. 5. Pull hands simultaneously JUST away from cylinder sides and CATCH the cylinder before the top passes below your hands! For this to work you must have a moment when BOTH hands are OFF the cylinder and it is free falling. It may be convenient to have somebody man the computer screen during the drop and click the Freeze button shortly after the bubbler drops to examine the pressure changes while they are still on the screen. 6. Perform the bubbler drop experiment three separate times (steps 3-5). 5

6 When you have completed the lab, prepare your answers to the "Checkout" questions and find one of the TA s. Please have everything in presentable form. This means label Excel/Matlab plots and have them up on the computer screen, have all sketches completed, and be ready to answer all of the "Checkout" questions to the best of your ability. You don t need to have written answers. Figure 5: Bending the paper clip (left). Pushing the paper clip through the water surface and pulling it back out again (right). Checkout: B1. What happened during the freefall? What are your thoughts on this? C) Experimental Procedure Surface Tension This short part of the lab has nothing to do with the bubbler system. You will use a paper clip to explore surface tension a little more. You will find a small plastic cup and some paper clips on the lab table. Fill the cup with water. Take one of the paper clips and bend it as illustrated in Figure 5. Now, carefully watch the water surface as you push the paper clip through the surface and pull it back out again as shown in Figure 5. Notice which way the water surface bends. Try to float an un-bent paper clip on the surface of the water (Hint: make sure the paper clip is dry). Checkout: C1. Sketch a free-body diagram of the paper clip as you push it down through the water surface (at the instant before the surface breaks). Also sketch the water surface, showing the way it bends near the paper clip (note that the water surface is not part of the free body diagram of the paper clip, but you can sketch it in the same picture if you like). C2. Sketch a free-body diagram of the paper clip as you pull it up through the water surface. Also sketch the water surface near the paper clip. 6

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 CEE 331 Lab 1 Page 1 of 9 SAFETY Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 Laboratory exercise based on an exercise developed by Dr. Monroe Weber-Shirk The major safety hazard in this

More information

Lab #4 Pipe Flow, Minor and Major Losses, and Walking in Osborne Reynolds Shoes CEE 331 Fall 2006

Lab #4 Pipe Flow, Minor and Major Losses, and Walking in Osborne Reynolds Shoes CEE 331 Fall 2006 CEE 331 Lab 4 Page 1 of 5 Lab #4 Pipe Flow, Minor and Major Losses, and Walking in Osborne Reynolds Shoes CEE 331 Fall 2006 Safety The major safety hazard in this laboratory is a shock hazard. Given that

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Cover Page for Lab Report Group Portion. Head Losses in Pipes

Cover Page for Lab Report Group Portion. Head Losses in Pipes Cover Page for Lab Report Group Portion Head Losses in Pipes Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 February 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

Cover Page for Lab Report Group Portion. Drag on Spheres

Cover Page for Lab Report Group Portion. Drag on Spheres Cover Page for Lab Report Group Portion Drag on Spheres Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 29 September 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Lab 1c Isentropic Blow-down Process and Discharge Coefficient

Lab 1c Isentropic Blow-down Process and Discharge Coefficient 058:080 Experimental Engineering Lab 1c Isentropic Blow-down Process and Discharge Coefficient OBJECTIVES - To study the transient discharge of a rigid pressurized tank; To determine the discharge coefficients

More information

Cover Page for Lab Report Group Portion. Lift on a Wing

Cover Page for Lab Report Group Portion. Lift on a Wing Cover Page for Lab Report Group Portion Lift on a Wing Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 17 January 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

LAB 13: FLUIDS OBJECTIVES

LAB 13: FLUIDS OBJECTIVES 217 Name Date Partners LAB 13: FLUIDS Fluids are an important part of our body OBJECTIVES OVERVIEW Fluid Properties To learn how some fundamental physical principles apply to fluids. To understand the

More information

LAB 13: FLUIDS OBJECTIVES

LAB 13: FLUIDS OBJECTIVES 205 Name Date Partners LAB 13: FLUIDS Fluids are an important part of our body OBJECTIVES OVERVIEW Fluid Properties To learn how some fundamental physical principles apply to fluids. To understand the

More information

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION Application Note Doc. G8108-001 Rev. A - 23-Jul-02 ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION For more information regarding Digiquartz products contact: Paroscientific,

More information

The University of Hong Kong Department of Physics Experimental Physics Laboratory

The University of Hong Kong Department of Physics Experimental Physics Laboratory The University of Hong Kong Department of Physics Experimental Physics Laboratory PHYS2260 Heat and Waves 2260-1 LABORATORY MANUAL Experiment 1: Adiabatic Gas Law Part A. Ideal Gas Law Equipment Required:

More information

Physics Experiment 17 Ideal Gas Law Qualitative Study

Physics Experiment 17 Ideal Gas Law Qualitative Study Physics 210 17-1 Experiment 17 Ideal Gas Law Qualitative Study Note 1: Parts of this lab involve using a laptop computer and the PASCO ScienceWorkshop Interface to collect data. The lab also involves use

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

Physics 1021 Experiment 4. Buoyancy

Physics 1021 Experiment 4. Buoyancy 1 Physics 1021 Buoyancy 2 Buoyancy Apparatus and Setup Materials Force probe 1000 ml beaker Vernier Calipers Plastic cylinder String or paper clips Assorted bars and clamps Water Attach the force probe

More information

EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW)

EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW) EXPERIMENT 12 GAS LAWS ( BOYLE S AND GAY-LUSSAC S LAW) INTRODUCTION: In order to specify fully the condition of a gas it is necessary to know its pressure, volume, and temperature. This quantities are

More information

UNIVERSITY OF WATERLOO

UNIVERSITY OF WATERLOO UNIVERSITY OF WATERLOO Department of Chemical Engineering ChE 524 Process Control Laboratory Instruction Manual January, 2001 Revised: May, 2009 1 Experiment # 2 - Double Pipe Heat Exchanger Experimental

More information

σ = force / surface area force act upon In the image above, the surface area would be (Face height) * (Face width).

σ = force / surface area force act upon In the image above, the surface area would be (Face height) * (Face width). Aortic Root Inflation Introduction You have already learned about the mechanical properties of materials in the cantilever beam experiment. In that experiment you used bending forces to determine the Young

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we will use is air,

More information

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high)

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high) Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Absolute and Gage Pressure P abs = P gage + P atm where P abs = Absolute pressure P abs = Gage pressure P abs = atmospheric pressure A perfect vacuum is the lowest possible pressure.

More information

Exploring the Properties of Gases

Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment and materials and some general

More information

Hydrostatics Physics Lab XI

Hydrostatics Physics Lab XI Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in

More information

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams.

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams. Heat Engine Equipment: Capstone, 2 large glass beakers (one for ice water, the other for boiling water), temperature sensor, pressure sensor, rotary motion sensor, meter stick, calipers, set of weights,

More information

Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler.

Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler. Exercise 5-2 Bubblers EXERCISE OBJECTIVE Learn to measure the level in a vessel using a bubbler. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Bubblers How to measure

More information

Experiment 11: The Ideal Gas Law

Experiment 11: The Ideal Gas Law Experiment 11: The Ideal Gas Law The behavior of an ideal gas is described by its equation of state, PV = nrt. You will look at two special cases of this. Part 1: Determination of Absolute Zero. You will

More information

BAPI Pressure Line of Products - FAQs

BAPI Pressure Line of Products - FAQs Table of Contents 1. Several manufacturers produce pressure transmitters, why should I purchase from BAPI?... p. 2 2. BAPI makes several styles of pressure transmitters. What are the features of each?...

More information

Lab 10 - Fluids. Fluids are an important part of our body. To learn how some fundamental physical principles apply to fluids.

Lab 10 - Fluids. Fluids are an important part of our body. To learn how some fundamental physical principles apply to fluids. Lab 10 Fluids L10-1 Name Date Partners Lab 10 - Fluids Fluids are an important part of our body OBJECTIVES To learn how some fundamental physical principles apply to fluids. To understand the difference

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

Experiment P18: Buoyant Force (Force Sensor)

Experiment P18: Buoyant Force (Force Sensor) PASCO scientific Physics Lab Manual: P18-1 Experiment P18: (Force Sensor) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 300/500/700 P18 P18_BUOY.SWS EQUIPMENT NEEDED CONSUMABLES

More information

Armfield Distillation Column Operation Guidelines

Armfield Distillation Column Operation Guidelines Armfield Distillation Column Operation Guidelines 11-2016 R.Cox Safety SAFETY GLASSES ARE REQUIRED WHEN OPERATING THE DISTILLATION COLUMN Wear gloves when mixing alcohol feedstock The column will become

More information

Instrumentation & Data Acquisition Systems

Instrumentation & Data Acquisition Systems Instrumentation & Data Acquisition Systems Section 4 - Pressure Robert W. Harrison, PE Bob@TheHarrisonHouse.com Made in USA 1 Definition of Pressure Pressure is the amount of force applied perpendicular

More information

Cover Page for Lab Report Group Portion. Boundary Layer Measurements

Cover Page for Lab Report Group Portion. Boundary Layer Measurements Cover Page for Lab Report Group Portion Boundary Layer Measurements Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 30 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

The Gas Laws: Boyle's Law and Charles Law

The Gas Laws: Boyle's Law and Charles Law Exercise 6 Page 1 Illinois Central College CHEMISTRY 130 Name The Gas Laws: Boyle's Law and Charles Law Objective The simple laws governing the properties of gases can be readily demonstrated experimentally.

More information

Installation and Operation Manual

Installation and Operation Manual Manual Static pressure transducer with controller Differential static pressure transducer with analog output and optional PI control mode Large diaphragm element with differential transformer Transducer

More information

GA-300 Gas Analyzer. Technical Note. Overview. Front Panel. iworx Systems, Inc. GA-300

GA-300 Gas Analyzer. Technical Note. Overview. Front Panel. iworx Systems, Inc. GA-300 Technical Note GA-300 Overview The GA-300 CO2 and O2 Gas Analyzer is easy to use, robust, and adaptable to human, animal, and plant applications. The GA-300 has two analog outputs to allow recording and

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

HPFM GEN3 - High Pressure Flow Meter

HPFM GEN3 - High Pressure Flow Meter HPFM GEN3 - High Pressure Flow Meter Principle of Measurement Specifications System overview Features & Benefits Operation Procedure Calibration Applications HPFM - Hydraulic Conductance The HPFM is an

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Lab. Manual. Fluid Mechanics. The Department of Civil and Architectural Engineering

Lab. Manual. Fluid Mechanics. The Department of Civil and Architectural Engineering Lab. Manual of Fluid Mechanics The Department of Civil and Architectural Engineering General Safety rules to be followed in Fluid Mechanics Lab: 1. Always wear shoes before entering lab. 2. Do not touch

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid

More information

Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases Computer 6 The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use

More information

Lab 13: Hydrostatic Force Dam It

Lab 13: Hydrostatic Force Dam It Activity Overview: Students will use pressure probes to model the hydrostatic force on a dam and calculate the total force exerted on it. Materials TI-Nspire CAS handheld Vernier Gas Pressure Sensor 1.5

More information

AE2610 Introduction to Experimental Methods in Aerospace AERODYNAMIC FORCES ON A WING IN A SUBSONIC WIND TUNNEL

AE2610 Introduction to Experimental Methods in Aerospace AERODYNAMIC FORCES ON A WING IN A SUBSONIC WIND TUNNEL AE2610 Introduction to Experimental Methods in Aerospace AERODYNAMIC FORCES ON A WING IN A SUBSONIC WIND TUNNEL Objectives The primary objective of this experiment is to familiarize the student with measurement

More information

Pressure Measurement. Introduction. Engr325 Instrumentation. Dr Curtis Nelson 3/12/18

Pressure Measurement. Introduction. Engr325 Instrumentation. Dr Curtis Nelson 3/12/18 3/12/18 Pressure Measurement Engr325 Instrumentation Dr Curtis Nelson Introduction A cluster of 72 helium-filled balloons over Temecula, California in April of 2003. The helium balloons displace approximately

More information

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation Lab 1 Standing Waves on a String Learning Goals: To distinguish between traveling and standing waves To recognize how the wavelength of a standing wave is measured To recognize the necessary conditions

More information

Pool Plunge: Linear Relationship between Depth and Pressure

Pool Plunge: Linear Relationship between Depth and Pressure Activity 3 Pool Plunge: Linear Relationship between Depth and Pressure If you dive to the bottom of a swimming pool you will feel an increasing pressure on your eardrums as you descend. The deeper you

More information

Expert Hydrostatic Level Transmitters

Expert Hydrostatic Level Transmitters Expert Hydrostatic s General Features MJK Expert hydrostatic level transmitters are designed for level measurement by submerging the transmitter in open channels, drains and tanks. Expert hydrostatic level

More information

BUYER S GUIDE AQUAlogger 520

BUYER S GUIDE AQUAlogger 520 OCEAN & ENVIRONMENTAL BUYER S GUIDE AQUAlogger 520 Mini Temperature and Pressure Logger AQUAlogger 520 Aquatec s primary temperature and depth model, the AQUAlogger 520, combines years of product development

More information

HOBO U20L Water Level Logger (U20L-0x) Manual

HOBO U20L Water Level Logger (U20L-0x) Manual Test Equipment Depot - 800.517.8431-99 Washington Street Melrose, MA 02176 - TestEquipmentDepot.com HOBO U20L Water Level Logger (U20L-0x) Manual The HOBO U20L Water Level Logger is used for monitoring

More information

Ideal gas law. Introduction

Ideal gas law. Introduction Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls. The

More information

Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control

Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control 25 GDS Helpsheet Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control World Leaders in Computer Controlled Testing Systems for Geotechnical Engineers and Geologists 1. Digital

More information

1.2 Example 1: A simple hydraulic system

1.2 Example 1: A simple hydraulic system Note: It is possible to use more than one fluid in the Hydraulic library. This is important because you can model combined cooling and lubrication systems of a library. The hydraulic library assumes a

More information

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model Fluid Flow Equipment: Water reservoir, output tubes of various dimensions (length, diameter), beaker, electronic scale for each table. Computer and Logger Pro software. Lots of ice.temperature probe on

More information

LABORATORY INVESTIGATION

LABORATORY INVESTIGATION LABORATORY INVESTIGATION MEASURING THE RATE OF PHOTOSYNTHESIS Light and Photosynthesis About 2.5-3 billion years ago a new chemical process, photosynthesis, was evolved by a unicellular life form. This

More information

INSTRUCTOR RESOURCES

INSTRUCTOR RESOURCES Gases: Dalton s Law INSTRUCTOR RESOURCES By Dale A. Hammond, PhD LEARNING OBJECTIVES introduce the concept of ideal gases. experimentally determine the relationship between pressure and amount of gas,

More information

MCQ Gas Blender 100 Series 3 Channels Gas Mixer

MCQ Gas Blender 100 Series 3 Channels Gas Mixer Channels Gas Mixer Revision 1.8 October 2016 High Performance Digital Gas flow Gas Dilutor Blender & Gas for Mixing flow Mixing Gases System and Calibration Routines Technical Data Sheet Lab in a box From

More information

Boyle s Law: Pressure-Volume. Relationship in Gases

Boyle s Law: Pressure-Volume. Relationship in Gases Boyle s Law: Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we use will be air,

More information

Lab 1. Adiabatic and reversible compression of a gas

Lab 1. Adiabatic and reversible compression of a gas Lab 1. Adiabatic and reversible compression of a gas Introduction The initial and final states of an adiabatic and reversible volume change of an ideal gas can be determined by the First Law of Thermodynamics

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

PRESSURE SENSOR - ABSOLUTE (0 TO 700 kpa)

PRESSURE SENSOR - ABSOLUTE (0 TO 700 kpa) Instruction Sheet for the PASCO Model CI-6532A PRESSURE SENSOR - ABSOLUTE (0 TO 700 kpa) 012-06859B 10/98 $1.00 polyurethane tubing syringe cable with DIN s to computer interface quick release s (4) pressure

More information

Technical Bulletin. Seametrics Smart Sensors: Barometric Compensation (with optional DTW setting) Introduction. How Pressure is Measured

Technical Bulletin. Seametrics Smart Sensors: Barometric Compensation (with optional DTW setting) Introduction. How Pressure is Measured Seametrics Smart Sensors: Precision Environmental Sensors An ONICON Brand The Barometric Compensation Utility is specifically for the PT2X and LevelSCOUT sensors. It uses barometric data to compensate

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 5-3 Wet Reference Leg EXERCISE OBJECTIVE Learn to measure the level in a vessel using a wet reference leg. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Measuring

More information

HOBO U20 Water Level Logger (U x and U x-Ti) Manual

HOBO U20 Water Level Logger (U x and U x-Ti) Manual HOBO U20 Water Level Logger (U20-001-0x and U20-001-0x-Ti) Manual The HOBO U20 Water Level Logger is used for monitoring changing water levels in a wide range of applications including streams, lakes,

More information

O2100C Oxygen Measurement Module Technical Use Notes do not use other wall adapters with the O2100Cmodule. 10% / V 5% / V 2% / V 1% / V 10% / V

O2100C Oxygen Measurement Module Technical Use Notes do not use other wall adapters with the O2100Cmodule. 10% / V 5% / V 2% / V 1% / V 10% / V O2100C Oxygen Measurement Module The O2100C module measures the partial pressure of O2 and thus the module output is proportional to the pressure in the sample cell. Gas sampled must be free of liquids

More information

RM-80 respiration monitor

RM-80 respiration monitor RM-80 respiration monitor User Manual September 18, 2015 0025-003M 950 North Hague Avenue Columbus, Ohio 43204-2121 USA Sales: sales@colinst.com Service: service@colinst.com Phone: (614) 276-0861 Fax:

More information

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller CHEMICAL ENGINEERING LABORATORY CHEG 239W Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller Objective The experiment involves tuning a commercial process controller for temperature

More information

Onset Computer Corporation Inside this package: HOBO U20 Water Level Logger Calibration Certificate

Onset Computer Corporation Inside this package: HOBO U20 Water Level Logger Calibration Certificate Onset Computer Corporation Inside this package: HOBO U20 Water Level Logger Calibration Certificate Models The Water Level logger is available in the following models: U20-001-01 (30 foot depth) and U20-001-01-Ti

More information

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW

AC : MEASUREMENT OF HYDROGEN IN HELIUM FLOW AC 2010-2145: MEASUREMENT OF HYDROGEN IN HELIUM FLOW Randy Buchanan, University of Southern Mississippi Christopher Winstead, University of Southern Mississippi Anton Netchaev, University of Southern Mississippi

More information

Exploring the Properties of Gases

Exploring the Properties of Gases Exploring the Properties of Gases LabQuest 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

Module 2, Add on Lesson Depth Sensor. Teacher. 90 minutes

Module 2, Add on Lesson Depth Sensor. Teacher. 90 minutes Module 2, Add on Lesson Depth Sensor 90 minutes Teacher Purpose of this lesson Investigate the relationship between pressure and depth Construct a sensor to measure the depth of water Graph data and reason

More information

BekkTech s Procedures For Performing In Plane Membrane Conductivity Testing

BekkTech s Procedures For Performing In Plane Membrane Conductivity Testing BekkTech s Procedures For Performing In Plane Membrane Conductivity Testing Important Equipment and Software Considerations in Conductivity Testing Work Performed Under US DOE Contract # DE FC36 06GO16028

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

KEM Scientific, Inc. Instruments for Science from Scientists

KEM Scientific, Inc. Instruments for Science from Scientists KEM Scientific, Inc. Instruments for Science from Scientists J-KEM Scientific, Inc. 6970 Olive Blvd. St. Louis, MO 63130 (314) 863-5536 Fax (314) 863-6070 E-Mail: jkem911@jkem.com Precision Vacuum Controller,

More information

_ pressure transducers. User Manual

_ pressure transducers. User Manual _ pressure transducers User Manual summary introduction DescriPTION preliminary checks Installation taking measurements data management Troubleshooting maintenance Appendix 1 Page 4 Page 5 Page 6 Page

More information

1. Photosynthesis and Light. See real-time evidence that light causes photosynthesis to occur!

1. Photosynthesis and Light. See real-time evidence that light causes photosynthesis to occur! Y OU LIGHT UP MY LIFE 1. Photosynthesis and Light You Light Up My Life Student Instruction Sheet Challenge See real-time evidence that light causes photosynthesis to occur! Equipment and Materials computer

More information

HS Bubbler Technology. HyQuest Solutions New Zealand User Group August 2017

HS Bubbler Technology. HyQuest Solutions New Zealand User Group August 2017 HS Bubbler Technology HyQuest Solutions New Zealand User Group August 2017 Origins of Gas Purge Technology 1940 s - Developed By Dutch Engineer Late 1940 s 1954 - Adopted by State of Illinois Water Group

More information

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

More information

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004

Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 Sontek RiverSurveyor Test Plan Prepared by David S. Mueller, OSW February 20, 2004 INTRODUCTION Sontek/YSI has introduced new firmware and software for their RiverSurveyor product line. Firmware changes

More information

Air Bubbler Depth Gauge DG2200 Installation and Reference Manual

Air Bubbler Depth Gauge DG2200 Installation and Reference Manual Air Bubbler Depth Gauge DG2200 Installation and Reference Manual Rev. 3.2.2 06/2011 Installation and Reference Manual Page 2 Contents Chapter 1: Installation and Overview... 3 1.1 DG2200 Location Diagram...

More information

Pneumatic high-pressure controller Model CPC7000

Pneumatic high-pressure controller Model CPC7000 Calibration technology Pneumatic high-pressure controller Model CPC7000 WIKA data sheet CT 27.63 Applications Healthcare and avionics industry Industry (laboratory, workshop and production) Transmitter

More information

Experiment AMe-1: Small Animal Respiratory Exchange Ratio (RER)

Experiment AMe-1: Small Animal Respiratory Exchange Ratio (RER) Experiment AMe-1: Small Animal Respiratory Exchange Ratio (RER) Background There are two main sources of energy available for animal metabolism: carbohydrates (CHO) and fats. These molecules are broken

More information

HEATEC TEC-NOTE. Setting Siemens Pressure Transmitter. Used on Heatec Vertical Asphalt Tanks. Publication No , Revised

HEATEC TEC-NOTE. Setting Siemens Pressure Transmitter. Used on Heatec Vertical Asphalt Tanks. Publication No , Revised HEATEC TEC-NOTE, Revised 1-5-15 Setting Siemens Pressure Transmitter Used on Heatec Vertical Asphalt Tanks This document provides information on setting Siemens pressure transmitters used on Heatec vertical

More information

Pegas 4000 MF Gas Mixer InstructionManual Columbus Instruments

Pegas 4000 MF Gas Mixer InstructionManual Columbus Instruments Pegas 4000 MF Gas Mixer InstructionManual Contents I Table of Contents Foreword Part I Introduction 1 2 1 System overview... 2 2 Specifications... 3 Part II Installation 4 1 Rear panel connections...

More information

Design, Building and Teaching with a Hydrostatic and Buoyancy Apparatus

Design, Building and Teaching with a Hydrostatic and Buoyancy Apparatus Design, Building and Teaching with a Hydrostatic and Buoyancy Apparatus Mir M. Atiqullah and Norman Russell Southern Polytechnic State University Marietta, GA. ABSTRACT A typical Fluid Mechanics laboratory

More information

Fluid Machinery Introduction to the laboratory measurements

Fluid Machinery Introduction to the laboratory measurements Fluid Machinery Introduction to the laboratory measurements Csaba H s (csaba.hos@hds.bme.hu) Ferenc Hegedus (hegedusf@hds.bme.hu) February 21, 2014 1 Requirements related to the measurement part of the

More information

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION Exercise 2-2 Second-Order Interacting Processes EXERCISE OBJECTIVE Familiarize yourself with second-order interacting processes and experiment with the finer points of controller tuning to gain a deeper

More information

Pressure Measurements

Pressure Measurements ME 22.302 Mechanical Lab I Pressure Measurements Dr. Peter Avitabile University of Massachusetts Lowell Pressure - 122601-1 Copyright 2001 A transducer is a device that converts some mechanical quantity

More information

Precision level sensing with low-pressure module MS

Precision level sensing with low-pressure module MS The task on hand Level sensing as it is understood in modern process automation is much more than simply "tank half full" or "tank a quarter full". Using suitable sensors, levels, inlets and outlets can

More information

Chapter 7. SCIIB Pressure Sensor Performance Evaluations: Experiments, Results and Discussions

Chapter 7. SCIIB Pressure Sensor Performance Evaluations: Experiments, Results and Discussions : Experiments, Results and Discussions This chapter will summarize the experiments and results associated with the development of the single-mode fiber-based SCIIB pressure sensor system. We will start

More information

where ρ f is the density of the fluid, V is the submerged volume of the object, and g is the acceleration due to gravity.

where ρ f is the density of the fluid, V is the submerged volume of the object, and g is the acceleration due to gravity. July 23 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

More information

Instruction Manual. Pipe Friction Training Panel

Instruction Manual. Pipe Friction Training Panel Instruction Manual HL 102 Pipe Friction Training Panel 100 90 80 70 60 50 40 30 20 10 HL 102 Instruction Manual This manual must be kept by the unit. Before operating the unit: - Read this manual. - All

More information

Exp. 5 Ideal gas law. Introduction

Exp. 5 Ideal gas law. Introduction Exp. 5 Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls.

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

PRODUCT SHEET. Order probe only as RXPROBE02

PRODUCT SHEET. Order probe only as RXPROBE02 SS69L DISSOLVED OXYGEN PROBE TRANSDUCER Order probe only as RXPROBE02 Order interface only as BSL-TCI16 SS69L Components The SS69L transducer measures dissolved oxygen. The SS69L includes a dissolved oxygen

More information

Air Ball! Evaluation copy

Air Ball! Evaluation copy Air Ball! Computer 24 Do you ever wonder how the National Basketball Association (NBA) decides how much air should be in the basketballs used during a game? The NBA measures the pressure inside the ball

More information

WIKA INSTRUMENT CORPORATION

WIKA INSTRUMENT CORPORATION WIKA INSTRUMENT CORPORATION Instruction Manual DIFFERENTIAL PRESSURE GAUGE Series 1500 Series 1000 Series 300 WIKA Instrument Corporation 1000 Wiegand Boulevard Lawrenceville, GA 30043 1-888-945-2872 http://www.wika.com

More information

Old-Exam.Questions-Ch-14 T072 T071

Old-Exam.Questions-Ch-14 T072 T071 Old-Exam.Questions-Ch-14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density

More information

Experiment AMe-1: Small Animal Respiratory Exchange Ratio (RER)

Experiment AMe-1: Small Animal Respiratory Exchange Ratio (RER) Experiment AMe-1: Small Animal Respiratory Exchange Ratio (RER) Background There are two main sources of energy available for animal metabolism: carbohydrates (CHO) and fats. These molecules are broken

More information