GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT

Size: px
Start display at page:

Download "GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT"

Transcription

1 GENETIC INFLUENCE ON FACTORS OF OXYGEN TRANSPORT Claudio Marconi IBFM-Sect. of Muscle Physiology and Proteome National Research Council Milano, Italy

2 % s.l. VO 2 max ALTITUDE (km)

3 O 2 transport system

4 . 5 VO 2 max (l min -1 ) * * * 5050m 2850m Time (days)? 6 3 Altitude (km)

5 ADAPTATION A change which allows an organism to live and reproduce successully in a given environment At high altitude the main stressor is the reduction of O 2 availability. Adaptations involve the O 2 transport system

6

7 . VO 2 max 60 (ml kg -1 min-1 ) 50 HANS Tibetans Genetic adaptation 40 Acclimatization 30 Developmental adaptation (Niu et al., 1995) Lhasa (3.680 m) months

8 High altitude populations (>3,500 m) Sherpas Tibetans Aymaras Quechuas

9 BACKGROUND Anecdotally, high altitude natives, particularly Tibetans including Sherpas and Amerindians, have been considered more apt to carry out aerobic exercise in chronic hypoxia than acclimatized lowlanders.

10 VO 2 max (ml kg -1 min -1 ) Caucasians (Cerretelli, 1976) Sherpas (Cerretelli, 1976) Andeans (Frisancho et al., 1973) Accl. Peruvians (Frisancho et al., 1973) Caucasians (Frisancho et al., 1973) Aymara (Greska et al., 1985) Caucasians (Greska et al., 1985) Tibetans (Sun et al., 1990) Han (Sun et al., 1990) Accl. Peruvians (Frisancho et al., 1973) ALTITUDE (km) (Cerretelli e Hoppeler, 1996)

11 WORKING HYPOTHESIS The maximal aerobic power of high-altitude natives is in the range of normal for sea-level values.. Can this feature be explained by a genetic and/or acquired adaptation of some determinants of VO 2 max, affecting O 2 transport and utilization at the tissue level?

12 AIMS 1) To show that factors determining oxygen transport at peak exercise carried out at high altitude differ among groups of individuals with different history of exposition to chronic hypoxia. 2) To provide evidence to support the hypothesis that genetic factors are responsible for the better adaptation of Tibetans compare to other high-altitude populations.

13 Fick s equation...(ca-cv)o2max VO2max = Qmax Oxygen delivery

14 O 2 DELIVERY TO TISSUES CaO 2 x Q. [Hb] x K x SaO 2 % HR x SV O 2 diffusion VA/Q mismatch

15 HAEMOGLOBIN CONCENTRATION

16 Hb (g%) Acclimatized lowlanders 8 7 RBC (10 6 ml -1 ) 4540 m RBC Hb HCT 60 HCT (%) TIME (weeks) 40

17 (22.5) Caucasians Sherpas Tib lowlanders (Redrawn by Beall, 2001)

18 Hb (g dl -1 ) Lowlanders Skyrunners Tibetans Climbers Hb concentration of acclimatized Tibetan lowlanders is < than that of Caucasians ALTITUDE (km)

19 Benefits deriving from low [Hb] Lower cardiac after load (due to a concurrent drop i hematocrit and blood viscosity). Higher leg blood flow and vascular conductance

20 MOLECULAR BASIS OF THE INCREASE IN HB CONCENTRATION ACUTE HYPOXIA ERYTHROPOIETIN Blood Erythropoietin concentration increases sharply within few hours upon arrival at altitude Thereafter it decreases attaining a value slightly higher than that at sea level

21 In Andean and Tibetan highlanders erythropoietin concentration is in the range of the sea-level values

22 mu/ml Erythropoietin Quechua Indians Sherpas Andean highlanders respond as if they are anemic (Winslow et al., JAP 1989) Hct (%)

23 ARTERIAL OXYGEN SATURATION (SaO 2 %) is an index of the efficiency of lung gas exchange, depending on: -O 2 diffusion - alveolar ventilation-pulmonary blood flow ratio

24 REST

25 SEA LEVEL PO 2 (mmhg) 140 inspired 120 alveolar mixed venous 20 PB = 760 Torr VO 2 = 300 ml / min end-capillary Time along pulmonary capillary (s) (West & Wagner, 1980)

26 PO 2 (mmhg) MT. EVEREST SUMMIT PB = 253 Torr VO 2 = 350 ml / min inspired alveolar end-capillary mixed venous Time along pulmonary capillary (s) (West, 1983)

27 SaO 2 AT PEAK EXERCISE (after 1 mo at 5,050 m) 100 (%) Tib 2 Sh altit C C runn untr tr

28 IN THE ABSENCE OF GENETIC ADAPTATIONS SaO 2 peak OF ACCLIMATIZED LOWLANDERS MAY TAKE YEARS TO APPROACH THE VALUES FOUND IN ALTITUDE NATIVES.

29 Tibetan natives of and Han 8 year residents at 100 Lhasa (3658 m) SaO 2 peak (%) (Sun et al., 1990) Tibetans Hans

30 SaO 2 peak of altitude Tibetans is greater than that of acclimatized lowlanders, likely due to : Less extravascular accumulation of fluids in the lungs More limited ventilation-perfusion inequalities

31 HYPOXIC PULMONARY VASOCONSTRICTION At sea level, this mechanism is active in the fetal life and is immediately released upon exposure to normoxia

32 O 2 O 2 breathing reduces PAP only partially, due to muscle cells in the small pulmonary vessels

33 MOLECULAR BASIS FOR PULMONARY VASOCONSTRICTION A DOWNREGULATION OF PULMONARY SYNTHESIS OF NITRIC OXIDE, A POWERFUL VASODILATOR

34 HYPOXIC VENTILATORY RESPONSE (HVR) HVR can be defined as an Increase in ventilation induced by acute hypoxia During acclimatization HVR progressively decreases until resting pulmonary ventilation resumes sea-level values: acquired blunting of HVR.

35

36 Tibetans ventilate as much as acclimatized lowlanders, whereas Andeans hypoventilate

37

38 HVR 1. In acclimatized lowlanders, HVR progressively declines. 2. In high-altitude native Andeans HVR is blunted. 3. In Tibetans, HVR is in the normal for sea-level range.

39 CARDIAC OUTPUT

40 . Qmax (l/min) High altitude long-distance runners Andean natives ALTITUDE (km)

41 . Q (l/min) s.l m (Cerretelli, 1980) VO 2 (l/min)

42 ACCLIMATIZATION-INDUCED INDUCED REDUCTION IN Qmax Expanded blood volume Reduced plasma volume Lower cardiac filling pressures Increased blood viscosity. lower Qmax Increased [Hb] Reduced myocardial Isovolemic hemodilution contractility -Water shifting out of the vascular space -Sweating -Respiration -Urine production. Muscle deterioration.. lower wmaxw max and VO 2 max Lower HRmax Adaptations in ANS

43 200 HRmax (b/min) * 5050m 2850m * * Time (days) Altitude (km)

44 % s.l. HRmax Astrand 1958 Christensen and Forbes 1937 Cerretelli 1976 Balke 1956 Niu 1995 Grassi et al., 1996 Saltin et al., 1968 Vogel et al., 1967 Hartley et al., 1974 Buskirk et al., 1967 Pugh et al., 1964 West et al., 1983 EAST-1994 EAST simulated hypoxia ALTITUDE (km)

45 beats min MAXIMAL HEART RATE ALTITUDE (km) Untrained lowlanders Trained lowlanders Skyrunners Tibetans Climbers A. D. P. B. C.

46 HR max (beats min -1 ) HANS Tibetans (Niu et al., 1995) Lhasa (3.680 m) months

47 OXYGEN CONVECTIVE TRANSPORT TO TISSUES IN ACCLIMATIZED LOWLANDERS AND ANDEANS. (15-20%) Qmax x [HbO 2 ] P50 (~30%)

48 CONCLUSIONS Acclimatized lowlanders and high-altitude natives maintain adequate maximal O 2 delivery to tissues, by different means: -increasing [Hb] (acclimatized lowlanders and Andeans) -keeping high values of HRpeak and SaO 2 % (Tibetans).

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning CHAPTER 6 Oxygen Transport Normal Blood Gas Value Ranges Table 6-1 OXYGEN TRANSPORT Oxygen Dissolved in the Blood Plasma Dissolve means that the gas maintains its precise molecular structure About.003

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

Pulmonary Circulation Linda Costanzo Ph.D.

Pulmonary Circulation Linda Costanzo Ph.D. Pulmonary Circulation Linda Costanzo Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The differences between pressures in the pulmonary and systemic circulations. 2. How

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

Rodney Shandukani 14/03/2012

Rodney Shandukani 14/03/2012 Rodney Shandukani 14/03/2012 OXYGEN THERAPY Aerobic metabolism accounts for 90% of Oxygen consumption by tissues. generates ATP by oxidative phosphorylation. Oxygen cascade: Oxygen exerts a partial pressure,

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS VENTILATION AND PERFUSION IN HEALTH AND DISEASE Dr.HARIPRASAD VS Ventilation Total ventilation - total rate of air flow in and out of the lung during normal tidal breathing. Alveolar ventilation -represents

More information

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi Oxygen and Carbon dioxide Transport Dr. Laila Al-Dokhi Objectives 1. Understand the forms of oxygen transport in the blood, the importance of each. 2. Differentiate between O2 capacity, O2 content and

More information

Table of Contents. By Adam Hollingworth

Table of Contents. By Adam Hollingworth By Adam Hollingworth Table of Contents Oxygen Cascade... 2 Diffusion... 2 Laws of Diffusion... 2 Diffusion & Perfusion Limitations... 3 Oxygen Uptake Along Pulmon Capillary... 4 Measurement of Diffusing

More information

Respiratory physiology II.

Respiratory physiology II. Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

More information

Control of Respiration. Central Control of Ventilation

Control of Respiration. Central Control of Ventilation Central Control of Goal: maintain sufficient ventilation with minimal energy Process steps: mechanics + aerodynamics Points of Regulation Breathing rate and depth, coughing, swallowing, breath holding

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease

Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease Biology 212: Anatomy and Physiology II Lab #7: Exercise Physiology in Health and Disease References: Saladin, KS: Anatomy and Physiology, The Unity of Form and Function 7 th (2015) Be sure you have read

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie RESPIRATORY PHYSIOLOGY Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie Outline Ventilation Diffusion Perfusion Ventilation-Perfusion relationship Work of breathing Control of Ventilation 2 This image

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

The Journal of Physiology

The Journal of Physiology J Physiol 593.8 (2015) pp 1841 1856 1841 Effects of lung ventilation perfusion and muscle metabolism perfusion heterogeneities on maximal O 2 transport and utilization I. Cano 1,2,J.Roca 1,2 and P. D.

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan The Physiologic Basis of DLCO testing Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan Objectives Review gas transport from inhaled gas to the rest of the

More information

Pulmonary Circulation

Pulmonary Circulation Pulmonary Circulation resin cast of pulmonary arteries resin cast of pulmonary veins Blood Flow to the Lungs Pulmonary Circulation Systemic Circulation Blood supply to the conducting zone provided by the

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Respiratory Physiology. Adeyomoye O.I

Respiratory Physiology. Adeyomoye O.I Respiratory Physiology By Adeyomoye O.I Outline Introduction Hypoxia Dyspnea Control of breathing Ventilation/perfusion ratios Respiratory/barometric changes in exercise Intra-pulmonary & intra-pleural

More information

Fysiologie van de ademhaling - gasuitwisseling

Fysiologie van de ademhaling - gasuitwisseling What you will learn in this lecture... Lessenreeks co s 014-015 Fysiologie van de ademhaling - gasuitwisseling Professor Dr. Steffen Rex Department of Anesthesiology University Hospitals Leuven Department

More information

αo 2 : solubility coefficient of O 2

αo 2 : solubility coefficient of O 2 Version 2006 Dr. Puntarica Suwanprathes 1) Fick s law of diffusion 2) facts which limit gas transfer 3) diffusion capacity gas volume gaseous phase dissolved gas exert pressure*** Solubility of Gas C =P.

More information

GAS EXCHANGE & PHYSIOLOGY

GAS EXCHANGE & PHYSIOLOGY GAS EXCHANGE & PHYSIOLOGY Atmospheric Pressure Intra-Alveolar Pressure Inspiration 760 mm HG at Sea Level (= 1 atm) Pressure due to gases (N2, O2, CO2, Misc.) Pressure inside the alveolus (air sac) Phrenic

More information

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here Respiratory Medicine A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics See online here Alveolar gas equation helps to calculate the partial pressure of oxygen in alveoli and A-a gradient is the

More information

Limits of human lung function at high altitude

Limits of human lung function at high altitude The Journal of Experimental Biology 24, 3121 3127 (21) Printed in Great Britain The Company of Biologists Limited 21 JEB3296 3121 Limits of human lung function at high altitude Robert B Schoene* Department

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch

Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Blood gas adventures at various altitudes Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Mount Everest 8848 M Any point in bird watching here? Respiration is gas exchange: the process

More information

Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians

Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians J Physiol 556.2 (2004) pp 661 671 661 Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians Claudio Marconi, Mauro Marzorati, Bruno Grassi, Buddha Basnyat, Angelo

More information

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi Course : PG Pathshala-Biophysics Paper 13 : Physiological Biophysics Module 17 : Gas transport and pulmonary circulation Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION

More information

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have

- How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have - How do the carotid bodies sense arterial blood gases? o The carotid bodies weigh 25mg, yet they have their own artery. This means that they have the highest blood flow of all organs, which makes them

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine Acknowledgment: Antine Stenbit MD

Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine Acknowledgment: Antine Stenbit MD Deborah Dewaay MD Division of General Internal Medicine and Geriatrics Hospital Medicine 2013 Acknowledgment: Antine Stenbit MD Objectives Knowledge: Understand the difference between hypoxia and hypoxemia

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

Blood Gas Interpretation

Blood Gas Interpretation Blood Gas Interpretation Pa O2 Saturation (SaO 2 ) Oxygen Therapy Monitoring Oxygen content (O( 2 Ct) Venous Oximetry Mixed venous oxygen saturation SvO 2 Surrogate for Systemic oxygen delivery and

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity and minor gases argon,

More information

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG GAS EXCHANGE AND TRANSPORT I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O 2 to generate CO 2 & H 2 O. This is cellular respiration II. HOW GAS ENTERS A CELL A. The composition of air: 79% N

More information

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange By: Aseel Jamil Al-twaijer Lec : physical principles of gas exchange Date:30 /10/2017 this lecture is about the exchange of gases between the blood and the alveoli. I might add some external definitions

More information

The Safe Use and Prescription of Medical Oxygen. Luke Howard

The Safe Use and Prescription of Medical Oxygen. Luke Howard The Safe Use and Prescription of Medical Oxygen Luke Howard Consultant Respiratory Physician Imperial College Healthcare NHS Trust & Co-Chair, British Thoracic Society Emergency Oxygen Guideline Group

More information

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility.

Pco2 *20times = 0.6, 2.4, so the co2 carried in the arterial blood in dissolved form is more than the o2 because of its solubility. Physiology, sheet #9 Oxygen, is first dissolved in the plasma and the cytosol of the rbc, we have around blood constitutes 7% of our body weight, oxygen, in the capillaries is present in the rbc s and

More information

Muscular Factors Muscular Factors

Muscular Factors Muscular Factors 2014 IDEA World Fitness Convention Running Secrets to Success: Skills and Drills for Trainers Jason Karp, Ph.D. Run-Fit.com 2011 IDEA Personal Trainer of the Year Cardiovascular Factors Cardiac output

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%)

660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%) 148 PHYSIOLOGY CASES AND PROBLEMS Case 26 Carbon Monoxide Poisoning Herman Neiswander is a 65-year-old retired landscape architect in northern Wisconsin. One cold January morning, he decided to warm his

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Louis D Alecy, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE Instant download and all chapters Test Bank Respiratory Care Anatomy and Physiology Foundations for Clinical Practice 3rd Edition Will Beachey https://testbanklab.com/download/test-bank-respiratory-care-anatomy-physiologyfoundations-clinical-practice-3rd-edition-will-beachey/

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity other minor gases argon,

More information

Section 01: The Pulmonary System

Section 01: The Pulmonary System Section 01: The Pulmonary System Chapter 12 Pulmonary Structure and Function Chapter 13 Gas Exchange and Transport Chapter 14 Dynamics of Pulmonary Ventilation HPHE 6710 Exercise Physiology II Dr. Cheatham

More information

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE Hypoxia Office COL Brian W. Smalley DO, MSPH, CPE Or this Or even this Hypoxia State of oxygen deficiency in the blood cells and tissues sufficient to cause impairment of function 4 Types Hypoxic Hypemic

More information

RESPIRATORY AND CIRCULATORY CONTROL AT HIGH ALTITUDES BY JOHN B. WEST

RESPIRATORY AND CIRCULATORY CONTROL AT HIGH ALTITUDES BY JOHN B. WEST J. exp. Biol. (1982), 100, 147-157 I47 With 6 figures Printed in Great Britain RESPIRATORY AND CIRCULATORY CONTROL AT HIGH ALTITUDES BY JOHN B. WEST Section of Physiology, M-023 University of California,

More information

Limiting factors of performance at moderate altitude : consequences for training.

Limiting factors of performance at moderate altitude : consequences for training. Limiting factors of performance at moderate altitude : consequences for training. Granada Feb 28 Jean-Paul Richalet Laboratoire Réponses cellulaires et fonctionnelles à l hypoxie, Hôpital Avicenne, Bobigny

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

DOWNLOAD OR READ : VENTILATION BLOOD FLOW AND DIFFUSION PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : VENTILATION BLOOD FLOW AND DIFFUSION PDF EBOOK EPUB MOBI DOWNLOAD OR READ : VENTILATION BLOOD FLOW AND DIFFUSION PDF EBOOK EPUB MOBI Page 1 Page 2 ventilation blood flow and diffusion ventilation blood flow and pdf ventilation blood flow and diffusion Title:

More information

Some major points on the Effects of Hypoxia

Some major points on the Effects of Hypoxia Some major points on the Effects of Hypoxia Source: Kings College London http://www.kcl.ac.uk/teares/gktvc/vc/dental/year1/lectures/rbmsmajorpoints/effectsofhypoxia.htm Cells obtain their energy from oxygen.

More information

Altitude Physiology Dr Barry Fudge. Talk to English Athletics - 20 th April 2011 Font Romeu

Altitude Physiology Dr Barry Fudge. Talk to English Athletics - 20 th April 2011 Font Romeu Altitude Physiology Dr Barry Fudge Talk to English Athletics - 20 th April 2011 Font Romeu Altitude Training George Gandy Soft Tissue Coach/Athlete: Therapy Scientist: John Nuttall Does altitude training

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

Module Two. Objectives: Objectives cont. Objectives cont. Objectives cont.

Module Two. Objectives: Objectives cont. Objectives cont. Objectives cont. Transition to the New National EMS Education Standards: EMT-B B to EMT Module Two Objectives: Upon completion, each participant will do the following to a degree of accuracy that meets the Ntl EMS Education

More information

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

Hyperbarics and Wound Care: A Perfect Partnership

Hyperbarics and Wound Care: A Perfect Partnership Hyperbarics and Wound Care: A Perfect Partnership Juan O Bravo MD CWSP UHM Medical Director Center for Wound Care and Hyperbaric Medicine at Broward Health Coral Springs Disclosures I am part of the advisory

More information

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood Breathing rate is regulated by blood ph and C02 breathing reduces plasma [CO2]; plasma [CO2] increases breathing. When C02 levels are high, breating rate increases to blow off C02 In low C02 conditions,

More information

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY Louis Al-Saleem 5/4/13 OXYGEN PHYSIOLOGY AND PULSE OXIMETRY A very experienced senior resuscitation nurse approached me at work recently, and asked if there was any circulating academic evidence about

More information

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System Introduction Respiration Chapter 10 The Respiratory System Provides a means of gas exchange between the environment and the body Plays a role in the regulation of acidbase balance during exercise Objectives

More information

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD

Respiratory System. Prepared by: Dorota Marczuk-Krynicka, MD, PhD Respiratory System Prepared by: Dorota Marczuk-Krynicka, MD, PhD Lungs: Ventilation Perfusion Gas Exchange - Diffusion 1. Airways and Airway Resistance (AWR) 2. Mechanics of Breathing and Lung (Elastic)

More information

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e 2 Yanal Jumana Jihad Jamil Nazzal 0 P a g e note: this sheet was written and corrected according to the records from section 2 so you may find differences in the arrangement of topics from the records

More information

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

More information

Gas exchange and ventilation perfusion relationships in the lung

Gas exchange and ventilation perfusion relationships in the lung ERJ Express. Published on July 28, 214 as doi: 1.1183/931936.3714 REVIEW IN PRESS CORRECTED PROOF Gas exchange and ventilation perfusion relationships in the lung Johan Petersson 1,2 and Robb W. Glenny

More information

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Essential Skills Course Acute Care Module Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Acknowledgements This pre course workbook has been complied and updated with reference to the original

More information

4. For external respiration to occur effectively, you need three parameters. They are:

4. For external respiration to occur effectively, you need three parameters. They are: Self Assessment Module D Name: ANSWER KEY 1. Hypoxia should be assumed whenever the PaO 2 is below 45 mm Hg. 2. Name some clinical conditions that will result in hyperventilation (respiratory alkalosis).

More information

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system

Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system Chapter 16 Respiration Functions of the respiratory system Respiration The term respiration includes 3 separate functions: Ventilation: Breathing. Gas exchange: Occurs between air and blood in the lungs.

More information

1.2 The structure and functions of the cardio-respiratory system Learning objectives

1.2 The structure and functions of the cardio-respiratory system Learning objectives 1.2 The structure and functions of the cardio-respiratory system Learning objectives To understand the functions of the circulatory system. To be able to identify the differences between veins, arteries

More information

OXYGEN THERAPY. (Non-invasive O2 therapy in patient >8yrs)

OXYGEN THERAPY. (Non-invasive O2 therapy in patient >8yrs) OXYGEN THERAPY (Non-invasive O2 therapy in patient >8yrs) Learning aims Indications and precautions for O2 therapy Targets of therapy Standard notation O2 delivery devices Taps, tanks and tubing Notation

More information

medical physiology :: Pulmonary Physiology in a Nutshell by:

medical physiology :: Pulmonary Physiology in a Nutshell by: medical physiology :: Pulmonary Physiology in a Nutshell by: Johan H Koeslag Medical Physiology Stellenbosch University PO Box 19063 Tygerberg, 7505. South Africa Mail me INTRODUCTION The lungs are not

More information

Influence of Acyclic Sports on Figures of the Respiratory System of Young Athletes of Years

Influence of Acyclic Sports on Figures of the Respiratory System of Young Athletes of Years Influence of Acyclic Sports on Figures of the Respiratory System of Young Athletes of 10-12 Years Sabralieva T.M. PhD Abdyrakhmanova D.O PhD Assistant Professor 720044, Bishkek Kyrgyzstan Mira Avenue 56

More information

P215 Respiratory System, Part 2

P215 Respiratory System, Part 2 P15 Respiratory System, Part Gas Exchange Oxygen and Carbon Dioxide constant need for oxygen constant production of carbon dioxide exchange (and movement) lung alveoli pulmonary arteries pulmonary capillaries

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The tissues exchange O 2 directly with the air in

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The cell exchange O 2 directly with the air in the

More information

12. Laboratory testing

12. Laboratory testing 12. Laboratory testing The performance lab of a Sports Medical Center offers various tests. In this paper we elaborate the testing of the aerobic system of a runner on a treadmill. To test the aerobic

More information

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 Summary: This set of notes gives an overview of respiration and then follows the overview with a detailed discussion

More information

Developmental Functional Adaptation to High Altitude: Review

Developmental Functional Adaptation to High Altitude: Review AMERICAN JOURNAL OF HUMAN BIOLOGY 25:151 168 (2013) Review Article Developmental Functional Adaptation to High Altitude: Review A. ROBERTO FRISANCHO* Department of Anthropology and Center for Human Growth

More information

The diagram shows an alveolus next to a blood capillary in a lung. (a) (i) Draw a ring around the correct answer to complete the sentence. diffusion.

The diagram shows an alveolus next to a blood capillary in a lung. (a) (i) Draw a ring around the correct answer to complete the sentence. diffusion. BREATHING / GAS EXCHANGE. NAME. Q.Gas exchange takes place in the lungs. The diagram shows an alveolus next to a blood capillary in a lung. The arrows show the movement of two gases, A and B. (a) (i) Draw

More information

82 Respiratory Tract NOTES

82 Respiratory Tract NOTES 82 Respiratory Tract NOTES RESPIRATORY TRACT The respiratory tract conducts air to the lungs where gaseous exchange occurs. It is separated into air-conducting and respiratory (where gas exchange occurs)

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

Gas Exchange & Circulation

Gas Exchange & Circulation Why is gas exchange important? Gas Exchange & Circulation Read Ch. 42 start with 42.5: Gas Exchange in Animals Respiration: C 6 H 12 O 6 + O 2! Energy + CO 2 + H 2 O Photosynthesis: Energy + CO 2 + H 2

More information

ISSN: IJBPAS, June, 2013, 2(6): THE EFFECT OF ASCENT TO THE HEIGHT OF SATURATION PERCENT OXYGEN

ISSN: IJBPAS, June, 2013, 2(6): THE EFFECT OF ASCENT TO THE HEIGHT OF SATURATION PERCENT OXYGEN IJBPAS, June, 01, (6): 166-17 ISSN: 77 4998 THE EFFECT OF ASCENT TO THE HEIGHT OF SATURATION PERCENT OXYGEN POURFAZELI B 1*, GHAFARI ZADEH S, BATHAEE SA, MAHMOUDI TEIMOURABAD S 4, GHAEDI SH 5 AND MORSHEDI

More information

birth: a transition better guidelines better outcomes the birth experience a challenging transition the fountains of life: 2/8/2018

birth: a transition better guidelines better outcomes the birth experience a challenging transition the fountains of life: 2/8/2018 better guidelines better outcomes neonatal resuscitation Anne G. Wlodaver, MD neonatology OU medical center the birth experience a challenging transition birth requires major and sudden transitions some

More information

The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases

The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases ERJ Express. Published on October 16, 214 as doi: 1.1183/931936.39214 REVIEW IN PRESS CORRECTED PROOF The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial

More information

ALTITUDE ACCLIMATIZATION AND ILLNESS MANAGEMENT

ALTITUDE ACCLIMATIZATION AND ILLNESS MANAGEMENT TECHNICAL BULLETIN ALTITUDE ACCLIMATIZATION AND ILLNESS MANAGEMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. HEADQUARTERS, DEPARTMENT OF THE ARMY September 2010 This page intentionally left

More information

Decompression Sickness in Extravehicular Activities

Decompression Sickness in Extravehicular Activities XX Convegno Nazionale A.I.M.A.S. - Firenze I.S.M.A. Decompression Sickness in Extravehicular Activities Cap Angelo Landolfi Reparto Medicina Aeronautica e Spaziale - Pratica di Mare (RM)- Leonov,, 1965

More information

Human Biology Respiratory System

Human Biology Respiratory System Human Biology Respiratory System Respiratory System Responsible for process of breathing Works in cooperation with Circulatory system Three types: 1. Internal Respiration 2. External Respiration 3. Cellular

More information