Limits of Wave Runup and Corresponding Beach- Profile Change from Large-Scale Laboratory Data

Size: px
Start display at page:

Download "Limits of Wave Runup and Corresponding Beach- Profile Change from Large-Scale Laboratory Data"

Transcription

1 University of South Florida Scholar Coons Geology Faculty Publications Geology 1-21 Liits of Wave Runup and Corresponding Beach- Profile Change fro Large-Scale Laboratory Data Tiffany M. Roberts University of South Florida, Ping Wang University of South Florida, Nicholas C. Kraus U.S. Ary Engineer Research and Developent Center, Coastal and Hydraulics Laboratory 399 Halls Ferry Road Vicksburg Follow this and additional works at: Part of the Geology Coons Scholar Coons Citation Roberts, Tiffany M.; Wang, Ping; and Kraus, Nicholas C., "Liits of Wave Runup and Corresponding Beach-Profile Change fro Large-Scale Laboratory Data" (21). Geology Faculty Publications. Paper This Article is brought to you for free and open access by the Geology at Scholar Coons. It has been accepted for inclusion in Geology Faculty Publications by an authorized adinistrator of Scholar Coons. For ore inforation, please contact

2 Roberts, T. M., Wang, P., and Kraus, N. C. 27. Liits of Beach and Dune Erosion in Response to Wave Runup Elucidated Fro SUPERTANK. Proceedings Coastal Sedients 7 Conference, ASCE Press, Reston, VA, LIMITS OF BEACH AND DUNE EROSION IN RESPONSE TO WAVE RUNUP ELUCIDATED FROM SUPERTANK Tiffany M. Roberts 1, Ping Wang 1, Nicholas C. Kraus 2 1. Departent of Geology, University of South Florida, 422 E. Fowler Ave., Tapa, FL 3362, USA. trobert@cas.usf.edu 2. U.S. Ary Engineer Research and Developent Center, Coastal and Hydraulics Laboratory, 399 Halls Ferry Road, Vicksburg, MS , USA. Nicholas.C.Kraus@erdc.usace.ary.il. Abstract: The unique dataset fro SUPERTANK is analyzed to exaine the upper liit of beach change in response to elevated water level caused by wave runup. Thirty SUPERTANK runs are investigated, including both erosional and accretionary wave conditions under rando and onochroatic waves. The upper liit of beach change approxiately equals the axiu vertical excursion of swash runup. Exceptions to this direct relationship are those with beach or dune scarps. The vertical extent of wave runup above ean water level on a non-scarped beach is approxiately equal to the significant breaking wave height. Scarps substantially liit the uprush of swash otion, resulting in a uch reduced axiu runup. Predictions of wave runup are not iproved by including a slope-dependent surf-siilarity paraeter. The liit of wave runup is substantially less for onochroatic waves than for rando waves, attributed to absence of low-frequency otion for onochroatic waves. INTRODUCTION Quantification of wave runup and its relationship to the upper liit of beach-profile change are required for understanding and predicting beach and dune erosion, especially during stors. Wave runup is coposed of wave setup, defined as a super-elevation of the ean water level, and swash runup, or fluctuations about that ean (Holan and Sallenger 1985; Nielsen 1988; Yaaoto et al. 1994; Holland et al. 1995). Nuerous studies on the liits of wave runup have been conducted, resulting in the developent of several predictive odels, fro three approaches.

3 Report Docuentation Page For Approved OMB No Public reporting burden for the collection of inforation is estiated to average 1 hour per response, including the tie for reviewing instructions, searching existing data sources, gathering and aintaining the data needed, and copleting and reviewing the collection of inforation. Send coents regarding this burden estiate or any other aspect of this collection of inforation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Inforation Operations and Reports, 1215 Jefferson Davis Highway, Suite 124, Arlington VA Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to coply with a collection of inforation if it does not display a currently valid OMB control nuber. 1. REPORT DATE REPORT TYPE 3. DATES COVERED --27 to TITLE AND SUBTITLE Liits of Beach and Dune Erosion in Response to Wave Runup Elucidated fro Supertank 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Ary Engineer Research and Developent Center,Coastal and Hydraulics Laboratory,399 Halls Ferry Road,Vicksburg,MS, PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 1. SPONSOR/MONITOR S ACRONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unliited 11. SPONSOR/MONITOR S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES Proceedings Coastal Sedients 7 Conference, May 27, New Orleans, LA, ASCE Press, ABSTRACT The unique dataset fro SUPERTANK is analyzed to exaine the upper liit of beach change in response to elevated water level caused by wave runup. Thirty SUPERTANK runs are investigated, including both erosional and accretionary wave conditions under rando and onochroatic waves. The upper liit of beach change approxiately equals the axiu vertical excursion of swash runup. Exceptions to this direct relationship are those with beach or dune scarps. The vertical extent of wave runup above ean water level on a non-scarped beach is approxiately equal to the significant breaking wave height. Scarps substantially liit the uprush of swash otion, resulting in a uch reduced axiu runup. Predictions of wave runup are not iproved by including a slope-dependent surf-siilarity paraeter. The liit of wave runup is substantially less for onochroatic waves than for rando waves, attributed to absence of low-frequency otion for onochroatic waves. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Sae as Report (SAR) 18. NUMBER OF PAGES 14 19a. NAME OF RESPONSIBLE PERSON Standard For 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

4 The earliest physics-based approach is developed upon a theoretical derivation for onochroatic waves. Bowen et al. (1968) derived a wave setup slope inside the surf zone for onochroatic (sinusoidal) waves as: η h 2 1 = K K = ( γ ) (1) x x where h = still-water depth, η = wave setup, x = cross-shore coordinate, γ = H/( η + h) and H = wave height. Based on both theory and laboratory easureents, the axiu set-up under a onochroatic wave, η M, was found to occur at the shoreline: ηm =.3γ (2) H b where H b = breaking wave height (Battjes 1974). The above equations concern only the wave setup portion of the runup. The second approach is based ainly on field easureents ade on dissipative beaches. Guza and Thornton (1981) suggested that the setup at the shoreline, η sl, is linearly proportional to the significant deepwater wave height H o : η sl =.17Ho (3) In a following study, Guza and Thornton (1982) found that the significant wave runup, R s, (including both wave setup and swash runup) is also linearly proportional to the significant deepwater wave height: Rs = Ho (units of centieters) (4) Coparing Eqs. (3) and (4), the entire wave runup is approxiately 4 ties the wave setup, i.e., swash runup constitutes a significant portion of the total elevated water level. According to Huntley et al. (1993), Eq.(4) is the best choice for predicting wave runup on dissipative beaches. Based on field easureents on highly dissipative beaches, Ruessink et al (1998) and Ruggiero (24) also found linear relationships, but with different epirical coefficients. The third and ore recent approach, proposed by Holan (1986) and several siilar studies (Holan and Sallenger 1985; Ruggiero et al. 24; Stockdon et al. 26), argued that ore accurate predictions can be obtained by including the surf siilarity paraeter, ξ: ξ = β 1/2 ( Ho / Lo) (5) where L o is the deepwater wavelength, and β is the beach slope. Holan (1986) found a dependence of the 2% exceedence of runup R 2 on the deepwater significant wave height and the surf siilarity paraeter: R2 = (.83ξ o +.2) Ho (6) Stockdon et al. (26) expanded upon the Holan (1986) analysis and developed the epirical equation: 2

5 HL o o(.563β f +.4) 2 R2 = β f ( HoLo) + (7) 2 Realizing the variability of beach slope in ters of both definition and easureent, Stockdon et al. (26) define the foreshore beach slope as the average slope over a region of two ties the standard deviation of continuous water level record. Most field studies were conducted on gentle sloping dissipative beach and found wave runup within the swash zone to be doinated by infragravity frequency coponents, or surf beat. Mechaniss for generating low-frequency otion at the shoreline include 1) obliquely incident wave groups (Gallagher 1971; Bowen and Guza 1978), 2) tievarying wave breaking (Syonds et al. 1982; List 1992), and 3) bound long wave generated by periodical variations of ean water level due to wave groupiness outside the surf zone (Longuet-Higgins and Stewart 1962). In contrast to nuerous studies on wave runup, little data are available relating the liit of wave runup with that of the beach-profile change. In this paper, data fro the prototype-scale SUPERTANK experient (Kraus et al 1992; Kraus and Sith 1994) are exained to study the liit of wave runup and corresponding liit of beach dune erosion. Specifically, this study exaines 1) the level of swash runup and wave setup; 2) tie-series beach-profile changes under erosional and accretionary waves; 3) the relationship between the above two phenoena; and 4) the accuracy of existing wave runup prediction ethods. A new epirical forula predicting the liits of wave runup and that of beach change is proposed based on the SUPERTANK data. SUPERTANK EXPERIMENTS One of the largest and ost densely instruented laboratory ovable-bed studies to date is the SUPERTANK experient. This ulti-institutional effort sponsored by the Corps of Engineers was conducted at the O.H. Hinsdale Wave Research Laboratory at Oregon State University fro July 29 to Septeber 2, 1991 (Fig. 1). This facility is the largest wave channel in the United States that can contain a sandy beach through which experients coparable to the agnitude of naturally occurring waves can be conducted (Kraus et al. 1992). Fig. 1. Layout of SUPERTANK experients. Diensions are in feet and inches. 3

6 The SUPERTANK experient easured total-channel hydrodynaics and sedient transport along with the resulting beach-profile changes. The wave channel was 14 long, 3.7 wide, and 4.6 deep (the still water level was typically 1.5 below the top) with a constructed sandy beach extending 76 offshore (Fig. 1). The beach was coposed of 6 3 of fine, well-sorted quartz sand with a edian size of.22 and a fall speed of 3.3 c/s. The wave generator and wave channel were equipped with a sensor to absorb the energy of reflected waves. The water-level fluctuations were easured with 16 resistance and 1 capacitance gauges. These 26 gauges, spaced 3.7 apart, provided detailed wave propagation patterns, especially in the swash zone. The beach profile was surveyed following each wave run. The initial profile was constructed based on the equilibriu beach profile developed by Dean (1977) and Bruun (1954) as: 2 3 hx ( ) = Ax (8) where h = still-water depth, x = horizontal distance fro the shoreline, and A = a shape paraeter corresponding to a ean grain size of.3. The initial beach was built steeper with a greater A-value to ensure adequate water depth in the offshore area (Wang and Kraus 25). For efficiency, ost SUPERTANK tests were initiated with the final profile of the previous run. Approxiately 35 surveys were conducted using an autotracking, infrared Geodieter targeting pris attached to a survey rod ounted on a carriage pushed by researchers. Although three lines, two along the wave-channel wall and one in the center, were surveyed, only the center line is exained in this study. Wave-processing procedures are discussed in Kraus and Sith (1994). To separate incident-band wave otion fro low-frequency otion, a non-recursive, low-pass filter was applied. The period cutoff for the filter was set to twice the peak period of the incident waves. After inspection of all 2 SUPERTANK tests, 5 tests with 3 wave runs were selected for analysis in the present study. The selection was based on the particular purpose of the wave run, the trend of net sedient transport, and easured beach change. Tieseries beach-profile changes and cross-shore distribution of wave height and ean water level were analyzed. The breaker point is defined at the location with a sharp decrease in wave height (Wang et al. 22). The axiu runup is defined by the location and beach elevation of the swash gauge that contained a value larger than zero wave height, i.e., water reached that particular gauge. There ay be soe differences in the runup easured in this study as copared to the video ethod (e.g., Holland et al. 1995) and horizontally elevated wires (e.g., Guza and Thornton 1982). The differences are not expected to be significant. RESULTS AND DISCUSSION The subject 3 wave runs are suarized in Table 1. The thirty cases are coposed of 12 erosional rando wave runs (ER), 3 erosional onochroatic wave runs (EM), 7 accretionary rando wave runs (AR), 3 accretionary onochroatic wave runs (AM), and 5 dune erosion rando wave runs (DE). The first two nubers in the Wave Run ID 1A_6ER indicate the ajor data collection test, the letter A indicates a particular wave condition, and 6 describes the inutes of wave action. The erosional and accretionary cases are designed based on the Dean nuber N, 4

7 H b N = (9) wt where w = fall speed of the sedient, and T = wave period. Table 1. Suary of Selected Wave Runs and Input Wave and Beach Conditions (Notation is explained at the botto of the table). Wave Run ID H o T p s L o n N H b β s ξ H b _ h M H b _ l H sl _ h H sl _ l 1A_6ER A_13ER A_27ER B_2ER B_6ER B_13ER E_13ER E_2ER E_27ER F_11ER F_13ER F_17ER G_6EM M G_14EM M G_21EM M A_6AR A_13AR A_2AR C_13AR C_2AR C_27AR D_4AR I_8AM M I_29AM M I_59AM M A_4DE A_6DE B_2DE B_4DE B_6DE n = spectral peakedness; β s. = beach slope defined as the slope of the section approxiately 1 landward and 1 seaward of the shoreline; H b _ h = incident band wave height at the breaker line; H b _ l = low frequency band wave height at the breaker line; H sl _ h = incident band wave height at the shoreline; H sl _ l = low-frequency band wave height at the shoreline. Beach Profile Change Typically, erosion is defined as a net offshore transport of sand resulting in a loss of beach volue above the ean water line. Accretion is defined as a total net onshore transport of sand, building the beach above ean water level. As expected, a larger Dean nuber N resulted in erosion, and a saller N induced accretion (Table 1). Significant profile change occurred during the first erosional wave run case, 1A, over the onotonic initial profile (Eq. 8). Substantial shoreline recession occurred along with the developent of an offshore bar (Fig. 2A). Initially, the foreshore exhibited a convex shape while the end profile was concave. The 27-in profile was substantially steeper near the shoreline than the initial profile. A bar fored after 6 in of wave action. 5

8 After 27 in, the bar oved 4 further offshore. The axiu beach-face recession occurred at the +.37 contour line. The subsequent wave runs were conducted over the barred beach. The beach-profile changes are detectable, but uch ore subtle. Fig. 2B shows an exaple of shoreline accretion and onshore bar oveent. Elevation relative to MWL () A A: Equilibriu Erosion (Rando) initial 6 in 13 in. 27 in. Ho =.8 Tp = 3 s n = Distance () Elevation relative to MWL () B D: Equilibriu Accretion (Rando) initial 4 in Ho =.5 Tp = 9 s n = Distance () Fig. 2. (A) Bar developent over onotonic equilibriu beach-profile, and (B) profile developed under accretionary rando waves In soe of the erosional wave runs, a scarp developed (Fig 3A). Beach slope iediately seaward of the scarp tends to be steeper than on a non-scarped beach. The nearly vertical scarp had significant influence on the wave runup, liiting the swash uprush abruptly. Monochroatic waves tend to create erratic and undulating profiles (Fig 3B), in contrast to the sooth profiles under rando waves, likely because of wave reflection. The erratic profile evolution did not see to approach a stable equilibriu 6

9 shape. In addition, the profile shape developed under onochroatic waves does not represent profiles typically easured in the field (Wang and Davis 1998). Elevation relative to MWL () A: Scarp initial 4 in. 6 in. Ho =.7 Tp = 3 s n = 3.3 Elevation relative to MWL () -1.8 A Distance () I: Equilibriu Accretion (Monochroatic) Ho =.5 Tp = 8 s MON B -1.8 initial 8 in 29 in 59 in Distance () Fig. 3. (A) Scarp developent, and (B) beach profiles under onochroatic waves. The tie-series of beach profiles (e.g., Figs. 2 and 3) were exained to deterine the trend of erosion or accretion, and the upper and lower liits of change during each wave run (Table 2). Table 2 also suarizes the easured and predicted liits of wave runup, discussed in the following section. For the scarped cases, the upper liit of profile change was at the top of the scarp. Thus, it is controlled by the height of the beach ber or dune, and does not directly represent the extent of wave action. In 7

10 Table 2, the listed upper liit used for the scarped cases was the elevation of the scarp toe. The purpose is to link toe erosion or accretion to the wave condition. For the studied 3 wave runs, the incident breaking wave height ranged fro.39 to 1.18 (Table 2). The easured upper liit of profile change, including the scarped cases, ranged fro.27 to.7. The lower liit of beach change ranged fro.65 to Relationship between the profile change and wave condition is discussed in the following sections. Table 2. Suary of Upper and Lower Liit of Beach Changes and Measured and Predicted Wave Runup Equations. Wave Run ID H b R ax UL LL Scarp Eq 4 Eq 6 M Eq 7 Eq 1 1A_6ER No A_13ER No A_27ER No B_2ER No B_6ER No B_13ER No E_13ER No E_2ER No E_27ER No F_11ER Yes F_13ER Yes F_17ER Yes G_6EM No G_14EM Yes G_21EM Yes A_6AR No A_13AR No A_2AR No C_13AR No C_2AR No C_27AR No D_4AR No I_8AM No I_29AM No I_59AM Yes A_4DE Yes A_6DE Yes B_2DE Yes B_4DE Yes B_6DE yes R ax = easured axiu wave runup; UL, LL = upper and lower liit of beach change, respectively. Wave Runup Measured and predicted wave runup is suarized in Table 2. Three exaples, a rando wave run without scarp (Fig. 4A), a rando case with scarp (Fig. 4B), and a onochroatic case (Fig. 4C), are given. The non-scarp rando wave cases are ost copatible with existing field studies. The easured wave runup for the scarp cases are uch lower than that for the non-scarp cases, apparently liited by the steep scarp. Wave runup generated by onochroatic waves is also uch saller than that by rando waves with siilar statistical wave height and period. 8

11 ean water level () A 1A_ER distance () 6 in 13 in 27 in ean water level ().2.1 6A_DE B distance () 4 in 6 in ean water level () I_AM C distance () 8 in 29 in 59 in Fig. 4. Exaples of wave runup under rando wave (A), over a scarped beach, and (B) under onochroatic waves (C). 9

12 A direct relationship between the easured runup height on non-scarp beach and breaker height as developed with the SUPERTANK data is: Rax = 1. Hb (1) Copared to the various existing epirical forulas, Eq. (1) adopts the approach introduced by Guza and Thornton (1982) and is siple, involving only the breaking wave height. Except for three wave runs, the observed wave runup equals the breaking wave height. Eq. (1) reproduced the easured values closely (Fig. 5). Agreeent between easured and predicted values was reduced by including the surf siilarity paraeter, ξ. Eqs. (6) and (7) under-predicted the easured wave runup significantly for the erosional cases with steep waves, while over-predicted for accretionary cases. Loss of predictive capability is caused by the substantially greater ξ for the gentle long-period accretionary waves than the steep short-period erosional waves (Table 1)..9.8 Swash Runup () D_4AR 3C_27AR 3C_2AR 3C_13AR 3A_2AR 3A_13AR 3A_6AR 1E_27ER 1E_2ER 1E_13ER 1B_13ER 1B_6ER 1B_2ER 1A_27ER 1A_13ER 1A_6ER Wave Run No. easured Eq. 1 Eq. 6 Eq. 7 Fig. 5. Coparison of easured and predicted wave runup by three equations. Douglass (1992) re-analyzed the Holan (1986) data set and found no correlation between runup and beach-face slope. He further argued that beach slope is a dependent variable that is free to respond to the incident wave energy and should not be included in a runup prediction. In practice, beach face slope is a difficult paraeter to define and deterine. Except for Stockdon et al. (26), a clear definition of beach slope is not given in ost studies. However, the Stockdon et al. definition of beach slope is difficult to utilize. In the present paper, the slope is defined over that portion of the beach extending roughly 1 landward and seaward fro the shoreline. The accretionary cases tend to have greater slope,.13 to.2, whereas the erosional case have slopes of.8 to.14 (Table 1). Exaination of Fig. 3 indicates that the beach face is curved instead of planar. Therefore, substantially different beach slopes can be obtained by iposing different definitions. Including the beach slope thus adds abiguity in applying the 1

13 epirical forulas. Deterining offshore wave height ay also cause uncertainty. In ost field studies, the offshore wave height was taken to be that easured at a wave gage in the study area. Siilarly, here it is taken as that fro the offshore-ost gauge. Under extree stor conditions, estiating the offshore wave height ay not be straightforward (Wang et al. 26). One of the first epirical forulas (Eq. 4) predicting the significant runup height R was developed by Guza and Thornton (1982) based on field easureents. As discussed previously, wave runup height easured here is expected to approxiate the axiu runup R ax. If a Raleigh distribution of wave height is assued, the axiu wave height should be 1.4 ties the significant height. Multiplying the proportional constant of.71 in Eq. (4) by 1.4 yields approxiately 1, which is the epirical coefficient obtained here. Therefore, the siple forula found in this study agrees with the for found by Guza and Thornton (1982). It has been docuented in any field studies perfored on gently sloping beach that the swash otion and, therefore runup, is doinated by low-frequency wave energy. Typically, the low-frequency energy is defined as that carried by the wave coponents exceeding twice the incident peak period. The agnitudes of the incident and lowfrequency energy are copared at the breaker line, H b _ h and H b _ l, and at shoreline, H sl _ h and H sl _ l (Table 1). For onochroatic waves, little low-frequency energy was easured at the breaker line and the shoreline. Lack of low-frequency odulation ay explain the relatively low swash runup easured during the regular wave cases (Table 2). For the rando wave cases, energy fro the incident band doinates at the breaker line (Table 1). The incident-band energy decreased significantly at the shoreline, whereas the low-frequency energy increased. This is readily apparent for the short-period steep erosional waves, where low-frequency energy doinated at the shoreline. The wave spectral peakedness n does not see to have great influence on this trend. For the longer period gentle accretionary waves, the decrease of incident-band energy was not as rapid and low-frequency energy did not becoe the doinant band at the shoreline (Table 1). The low-frequency coponent is defined dynaically here as exceeding twice the incident peak period. For the erosional waves, the low-frequency coponent starts at 6 or 9 s, whereas for the longer accretionary waves, it starts at 16 or 18 s. Relationship between Wave Runup and Liit of Beach-Profile Change A ajor goal of studying the axiu wave runup is to predict the upper liit of beach changes. Knowledge of the axiu runup is valuable in evaluating the liit of storinduced beach or dune erosion. For the rando wave runs without scarps, the easured upper liit of beach-profile change roughly equals the easured wave runup (Fig. 6). Thus, the wave runup, predictable using significant breaking wave height, can be directly used to calculate the upper liit of beach erosion. For cases with beach or dune scarps, the upper liit of the beach change is controlled by the elevation of the backbeach ber or dune (Fig. 3A). Once a scarp fors, the overlying sedient will eventually collapse under gravity and cause significant change above the upward liit of 11

14 water excursion. The easured wave runup is subdued by the nearly vertical scarp and the steep beach slope directly seaward of the scarp; and it cannot be predicted by known epirical forulas. Beach-profile change under onochroatic waves differs greatly fro that under the ore realistic rando waves. Both wave runup and upper liit of beach-profile change are significantly saller than those under rando waves with siilar statistical wave height and period. Findings fro laboratory onochroatic ovable-bed studies are not directly applicable to field conditions, as also discussed by Wang and Kraus (25). Although not a focus of this study, the lower liit of beach changes was also easured and is listed in Table 2. Typically, the lower liit of beach-profile change is 1.5 to 3 ties the significant breaking wave height. Longer period waves see to influence beach change in deeper water (~ 3 ties H s ), as copared to shorted period waves (~ 2 ties H s ). It was beyond the scope of this paper to exaine factors controlling the lower liit of the beach change Breaking Wave Height Beach Change Wave Runup Monochroatic Wave Cases Upper Liit () Non-scarped Rando Wave Cases Scarped Rando Wave Cases.2 1A_6ER 1A_27ER 1B_6ER 1E_13ER 1E_27ER 3A_13AR 3C_13AR 3C_27AR Wave Run No. 1F_13ER 6A_4DE 6B_2DE 6B_6DE G_6EM G_21EM I_29AM Fig. 6. Coparison of wave runup, upper liit of beach change, and breaking wave height. CONCLUDING DISCUSSION SUPERTANK s unique dataset was analyzed to exaine the effects of elevated water level caused by wave setup and swash runup on the upper liit of beach and dune change. Thirty SUPERTANK wave runs were investigated. The investigated runs deonstrate that the Dean Nuber is a reliable indicator for predicting the general trend of beach erosion and accretion. In fact, the SUPERTANK experients were designed in this way (Kraus and Sith 1992). The SUPERTANK data indicate that the vertical extent of wave runup above ean water 12

15 level on a non-scarped beach is approxiately equal to the significant breaking wave height. A siple epirical forula for predicting the axiu wave runup, Rax: Rax = 1. Hb, is therefore developed. This forula agrees with the original runup forula concept of Guza and Thornton (1982). The reliability of the calculated wave runup decreased, as copared to easured values, by including the surf siilarity paraeter. An exception to the direct relationship between breaking wave height and runup concerns dune or beach scarping. The steep scarp substantially liits the uprush of swash otion, resulting in a uch reduced axiu level, as copared with the non-scarping situation. For onochroatic waves, the easured wave runup is uch saller than the breaking wave height. The lack of low-frequency odulation liits the wave runup for onochroatic waves. Based on the SUPERTANK experients, the upper liit of beach-profile change was found to be approxiately equal to the axiu vertical excursion of swash runup. Therefore, the liit of swash runup can serve as an estiate of the landward liit of beach change. Physical situations that are exceptions to this direct relationship are those with beach or dune scarping. For the scarping cases, the upper liit of beach change is uch higher than the axiu swash runup and is controlled by the elevation of backbeach/ber or dune. ACKNOWLEDGEMENTS This study was jointly funded by the Coastal Inlets Research Progra (CIRP) conducted by the U.S Ary Corps of Engineers (USACE), and by the University of South Florida. Perission was granted by Headquarters, USACE, to publish this inforation. REFERENCES Battjes, J.A Coputations of set-up, longshore currents, run-up overtopping due to wind-generated waves. Rep. 74-2, Delft Univ. Technol., Delft, The Netherlands. Bowen, A.J., Inan, D.L., and Sions, V.P Wave set-down and set-up. J. Geophys. Res., 73(8), Bowen, A.J., and Guza, R.T Edge waves and surf beat. J. Geophys. Res., 83(4), Bruun, P Coastal erosion and the developent of beach profiles. Tech. Meo. No. 44, Beach Erosion Board, U.S. Ary Corps of Engineers. Dean, R.G Equilibriu beach profiles: U.S. Atlantic and Gulf coasts. Ocean Engineering Rep. No. 12, Dept. of Civil Eng., Univ. of Delaware, Newark, DE. Douglass, S.L Estiating extree values of run-up on beaches. J. Waterway, Port, Coastal and Ocean Eng., 118, Gallagher, B Generation of surf beat by non-linear wave interactions. J. Fluid Mech., 49(1), 1-2. Guza, R.T., and Thornton, E.B Wave set-up on a natural beach. J. Geophys. Res., 86(C5), Guza, R.T., and Thornton, E.B Swash oscillations on a natural beach. J. Geophys. Res. 87(C1), Holland, K.T., Raubenheier, B., Guza, R.T., and Holan, R.A Runup 13

16 kineatics on a natural beach. J. Geophys. Res., 1(C3), Holan, R.A Extree value statistics for wave run-up on a natural beach. Coastal Eng., 9, Holan, R.A., and Sallenger, A.H Setup and swash on a natural beach. J. Geophys. Res., 9(C1), Huntley, D.A., Davidson, M., Russell, P., Foote, Y., and Hardisty, J Long waves and sedient oveent on beaches: Recent observations and iplications for odeling. J. Coastal Res., 15, Kraus, N.C., and Sith, J.M., (Eds.) SUPERTANK Laboratory Data Collection project, Volue 1: Main text. Tech. Rep. CERC-94-3, U.S. Ary Eng. Waterways Experient Station, Coastal Eng.. Res. Center, Vicksburg, MS. Kraus, N.C., Sith, J.M., and Sollitt, C.K SUPERTANK Laboratory data collection project. Proc.23rd Coastal Eng. Conf, ASCE, List, J.H A odel for the generation of two-diensional surf beat. J. Geophys. Res., 97(C4), Longuet-Higgins, M.S., Stewart, R.W Radiation stress and ass transport in gravity waves, with application to Surf Beat. J.Fluid Mech., 13, Nielsen, P Wave setup: A field study. J. Geophys. Res., 93(C12), 15, Ruesslink, B.G., Kleinhans, M.G., and van den Beukel, P.G.L Observations of swash under highly dissipative conditions, J. Geophys. Res., 13, Ruggiero, P., Holan, R.A., and Beach, R.A. 24. Wave run-up on a high-energy dissipative beach. J. Geophys. Res., 19(C625), Stockdon, H.F., Holan, R.A., Howd, P.A., and Sallenger, A.H. 26. Epirical paraeterization of setup, swash, and runup. Coastal Eng., 53, Syonds, G., Huntley, D.A., and Bowen, A.J Two-diensional surf beat: long wave generation by a tie-varying breakpoint. J. Geophys. Res., 87(C1), Wang, P., Ebersole, B.A., Sith, E.R., and Johnson, B.D. 22. Teporal and special variations of surf-zone currents and suspended-sedient concentration. Coastal Eng., 46, Wang, P., and Davis, R.A., Jr A beach profile odel for a barred coast case study fro Sand Key, west-central Florida. J. Coastal Res., 14, Wang, P., and Kraus, N.C. 25. Beach profile equilibriu and patterns of wave decay and energy dissipation across the surf zone elucidated in a large-scale laboratory experient. J. Coastal Res., 21, Wang, P., Kirby, J.H., Haber, J.D., Horwitz, M.H., Knorr, P.O., and Krock, J.R., 26. Morphological and sedientological ipacts of Hurricane Ivan and iediate poststor beach recovery along the northwestern Florida barrier-island coasts, J. Coastal Res., 22(6), 1,382-1,42. Yaaoto, Y., Tanioto, K., and Harshinie, K.G Run-up of irregular waves on gently sloping beach. Proc.23 rd Coastal Eng. Conf, ASCE,

Limits of beach and dune erosion in response to wave runup from large-scale laboratory data

Limits of beach and dune erosion in response to wave runup from large-scale laboratory data University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2008 Limits of beach and dune erosion in response to wave runup from large-scale laboratory data Tiffany M.

More information

Limits of Wave Runup and Corresponding Beach-Profile Change from Large-Scale Laboratory Data

Limits of Wave Runup and Corresponding Beach-Profile Change from Large-Scale Laboratory Data Journal of Coastal Research 26 1 184 198 West Palm Beach, Florida January 2010 Limits of Wave Runup and Corresponding Beach-Profile Change from Large-Scale Laboratory Data Tiffany M. Roberts, Ping Wang,

More information

EROSION AND ACCRETION ON CURVED BEACH

EROSION AND ACCRETION ON CURVED BEACH EROSION AND ACCRETION ON CURVED BEACH Kideok Do 1, Nobuhisa Kobayashi 2 and Kyung-Duck Suh 3 The perforance of a large nourishent project on Bethany Beach, Delaware is evaluated using available beach profile,

More information

Wave Force on Coastal Dike due to Tsunami

Wave Force on Coastal Dike due to Tsunami Wave Force on Coastal Dike due to Tsunai by Fuinori Kato 1, Shigeki Inagaki 2 and Masaya Fukuhaa 3 ABSTRACT This paper presents results of large-scale experients on wave force due to tsunai. A odel of

More information

Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory Experiment

Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory Experiment Journal of Coastal Research 21 3 522 534 West Palm Beach, Florida May 2005 Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory

More information

Kelly Legault, Ph.D., P.E. USACE SAJ

Kelly Legault, Ph.D., P.E. USACE SAJ Kelly Legault, Ph.D., P.E. USACE SAJ Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including

More information

PREDICTION OF ERODED VERSUS ACCRETED BEACHES

PREDICTION OF ERODED VERSUS ACCRETED BEACHES CETN-II-2 6/88 PREDICTION OF ERODED VERSUS ACCRETED BEACHES PURPOSE: To present revised procedures for predicting whether a beach profile of a specified sand size will tend to erode or accrete under incident

More information

Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory Experiment

Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory Experiment Journal of Coastal Research 21 3 522 534 West Palm Beach, Florida May 2005 Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory

More information

First Year Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida

First Year Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida University of South Florida Scholar Commons Geology Faculty Publications Geology 1-2012 First Year Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida Katherine Brutsche University

More information

( max)o Wind Waves 10 Short Swell (large wave steepness) 25 Long Swell (small wave steepness) 75

( max)o Wind Waves 10 Short Swell (large wave steepness) 25 Long Swell (small wave steepness) 75 CEPi-I-18 REvKn, 3188 IRREGULAR WAVE DIFFRACTION BY GODA'S KETHOD PURPOSE : To provide a simplified method for determining random wave diffraction coefficients for a semi-infinite breakwater. GENERAL :

More information

IMPROVED SPECTRAL WAVE MODELLING OF WHITE-CAPPING DISSIPATION IN SWELL SEA SYSTEMS

IMPROVED SPECTRAL WAVE MODELLING OF WHITE-CAPPING DISSIPATION IN SWELL SEA SYSTEMS Proceedings of OMAE 2004: 23rd International Conference on Offshore Mechanics and Arctic Engineering 20-25 June 2004, Vancouver, Canada OMAE2004-51562 IMPROVED SPECTRAL WAVE MODELLING OF WHITE-CAPPING

More information

Characterizing The Surf Zone With Ambient Noise Measurements

Characterizing The Surf Zone With Ambient Noise Measurements Characterizing The Surf Zone With Ambient Noise Measurements LONG-TERM GOAL Grant Deane Marine Physical Laboratory Scripps Institution of Oceanography La Jolla, CA 93093-0213 phone: (619) 534-0536 fax:

More information

Air-Sea Interaction Spar Buoy Systems

Air-Sea Interaction Spar Buoy Systems DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited Air-Sea Interaction Spar Buoy Systems Hans C. Graber CSTARS - University of Miami 11811 SW 168 th Street, Miami,

More information

BRRAKING WAVE FORCES ON WALLS

BRRAKING WAVE FORCES ON WALLS CETN-III-38 3/88 BRRAKING WAVE FORCES ON WALLS PURPOSE: To introduce the Goda method as an alternative to the Minikin method for the determination of breaking wave forces on semirigid wall structures.

More information

Wind Blow-out Hollow Generated in Fukiage Dune Field, Kagoshima Prefecture, Japan

Wind Blow-out Hollow Generated in Fukiage Dune Field, Kagoshima Prefecture, Japan R. Nishi Wind Blow-out Hollow Generated in Fukiage Dune Field, Kagoshima Prefecture, Japan Ryuichiro Nishi, Li Elikson and Myokhin PREFACE A sand dune is vulnerable to severe waves and wind. Therefore,

More information

Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby

Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby Ping Wang and Tiffany M. Roberts Coastal Research Laboratory University of South Florida July 24, 2012 Introduction

More information

AN EXPERIMENTAL INVESTIGATION OF SPILLING BREAKERS

AN EXPERIMENTAL INVESTIGATION OF SPILLING BREAKERS AN EXPERIMENTAL INVESTIGATION OF SPILLING BREAKERS Prof. James H. Duncan Department of Mechanical Engineering University of Maryland College Park, Maryland 20742-3035 phone: (301) 405-5260, fax: (301)

More information

Global Ocean Internal Wave Database

Global Ocean Internal Wave Database Global Ocean Internal Wave Database Victor Klemas Graduate College of Marine Studies University of Delaware Newark, DE 19716 phone: (302) 831-8256 fax: (302) 831-6838 email: klemas@udel.edu Quanan Zheng

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Lecture 22 Nearshore Circulation Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay within the

More information

Determination of Nearshore Wave Conditions and Bathymetry from X-Band Radar Systems

Determination of Nearshore Wave Conditions and Bathymetry from X-Band Radar Systems Determination of Nearshore Wave Conditions and Bathymetry from X-Band Radar Systems Okey G. Nwogu Dept. of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI 48109 Phone: (734)

More information

Unit Activity Answer Sheet

Unit Activity Answer Sheet Geoetry Unit Activity Answer Sheet Unit: Extending to Three Diensions This Unit Activity will help you eet these educational goals: Matheatical Practices You will use atheatics to odel real-world situations.

More information

MODELLING THE EFFECTS OF PEDESTRIANS ON INTERSECTION CAPACITY AND DELAY WITH ACTUATED SIGNAL CONTROL

MODELLING THE EFFECTS OF PEDESTRIANS ON INTERSECTION CAPACITY AND DELAY WITH ACTUATED SIGNAL CONTROL MODELLING THE EFFECTS OF PEDESTRIANS ON INTERSECTION CAPACITY AND DELAY WITH ACTUATED SIGNAL CONTROL ABSTRACT Zong Tian, Ph.D., P.E. Feng Xu, Graduate Assistant Departent of Civil and Environental Engineering

More information

Analysis of Packery Channel Public Access Boat Ramp Shoreline Failure

Analysis of Packery Channel Public Access Boat Ramp Shoreline Failure Journal of Coastal Research SI 59 150-155 West Palm Beach, Florida 2011 Analysis of Packery Channel Public Access Boat Ramp Shoreline Failure Christopher W. Reed and Lihwa Lin URS Corporation 1625 Summit

More information

Projectile Motion Lab (2019)

Projectile Motion Lab (2019) Nae: Date: Partner(s): Period: Projectile Motion Lab (2019) Object: Measure the velocity of a ball using two Photogates and coputer software for tiing. Apply concepts fro two-diensional kineatics to predict

More information

Determination Of Nearshore Wave Conditions And Bathymetry From X-Band Radar Systems

Determination Of Nearshore Wave Conditions And Bathymetry From X-Band Radar Systems Determination Of Nearshore Wave Conditions And Bathymetry From X-Band Radar Systems Okey G. Nwogu Dept. of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI 489 phone: (734)

More information

Rogue Wave Statistics and Dynamics Using Large-Scale Direct Simulations

Rogue Wave Statistics and Dynamics Using Large-Scale Direct Simulations Rogue Wave Statistics and Dynamics Using Large-Scale Direct Simulations Dick K.P. Yue Center for Ocean Engineering Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge,

More information

Waves, Bubbles, Noise, and Underwater Communications

Waves, Bubbles, Noise, and Underwater Communications Waves, Bubbles, Noise, and Underwater Communications Grant B. Deane Marine Physical Laboratory, Scripps Institution of Oceanography UCSD, La Jolla, CA 92093-0238 phone: (858) 534-0536 fax: (858) 534-7641

More information

Internal Waves and Mixing in the Aegean Sea

Internal Waves and Mixing in the Aegean Sea Internal Waves and Mixing in the Aegean Sea Michael C. Gregg Applied Physics Laboratory, University of Washington 1013 NE 40 th St. Seattle, WA 98105-6698 phone: (206) 543-1353 fax: (206) 543-6785 email:

More information

CHAPTER 163 PREDICTION OF BEACH PROFILE CHANGE AT MESOSCALE UNDER RANDOM WAVES. Magnus Larson 1

CHAPTER 163 PREDICTION OF BEACH PROFILE CHANGE AT MESOSCALE UNDER RANDOM WAVES. Magnus Larson 1 CHAPTER 163 PREDICTION OF BEACH PROFILE CHANGE AT MESOSCALE UNDER RANDOM WAVES Magnus Larson 1 ABSTRACT: A mesoscale model is presented to calculate the average net crossshore transport rate and beach

More information

Wave behaviour in the inner surf zone

Wave behaviour in the inner surf zone Wave behaviour in the inner surf zone Hannah POWER 1 and Michael HUGHES 2 Abstract: The inner surf zone is a critical component of models that are used to predict nearshore wave behaviour and beach morphodynamics.

More information

Waves, Turbulence and Boundary Layers

Waves, Turbulence and Boundary Layers Waves, Turbulence and Boundary Layers George L. Mellor Program in Atmospheric and Oceanic Sciences Princeton University Princeton NJ 8544-71 phone: (69) 258-657 fax: (69) 258-285 email: glm@splash.princeton.edu

More information

STUDIES OF FINITE AMPLITUDE SHEAR WAVE INSTABILITIES. James T. Kirby. Center for Applied Coastal Research. University of Delaware.

STUDIES OF FINITE AMPLITUDE SHEAR WAVE INSTABILITIES. James T. Kirby. Center for Applied Coastal Research. University of Delaware. STUDIES OF FINITE AMPLITUDE SHEAR WAVE INSTABILITIES James T. Kirby Center for Applied Coastal Research University of Delaware Newark, DE 19716 phone: (32) 831-2438, fax: (32) 831-1228, email: kirby@coastal.udel.edu

More information

Nearshore Wave-Topography Interactions

Nearshore Wave-Topography Interactions LONG-TERM GOAL Nearshore Wave-Topography Interactions Rob Holman College of Oceanic and Atmospheric Sciences Oregon State University 104 Ocean Admin Bldg Corvallis, OR 97331-5503 phone: (541) 737-2914

More information

Wave Breaking, Infragravity Waves, And Sediment Transport In The Nearshore

Wave Breaking, Infragravity Waves, And Sediment Transport In The Nearshore Wave Breaking, Infragravity Waves, And Sediment Transport In The Nearshore Dr. Thomas C. Lippmann Center for Coastal Studies Scripps Institution of Oceanography University of California, San Diego La Jolla,

More information

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Andrew Kennedy Dept of Civil and Coastal Engineering 365 Weil Hall University of Florida Gainesville, FL 32611 phone:

More information

Examples of Carter Corrected DBDB-V Applied to Acoustic Propagation Modeling

Examples of Carter Corrected DBDB-V Applied to Acoustic Propagation Modeling Naval Research Laboratory Stennis Space Center, MS 39529-5004 NRL/MR/7182--08-9100 Examples of Carter Corrected DBDB-V Applied to Acoustic Propagation Modeling J. Paquin Fabre Acoustic Simulation, Measurements,

More information

EVALUATION OF THE CERC FORMULA USING LARGE-SCALE MODEL DATA

EVALUATION OF THE CERC FORMULA USING LARGE-SCALE MODEL DATA EVALUATION OF THE CERC FORMULA USING LARGE-SCALE MODEL DATA Ernest R. Smith 1, Ping Wang 2, Jun Zhang 3 Abstract: Longshore transport experiments were conducted in a large-scale physical model to evaluate

More information

CROSS-SHORE SEDIMENT PROCESSES

CROSS-SHORE SEDIMENT PROCESSES The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

Cross-shore sediment transports on a cut profile for large scale land reclamations

Cross-shore sediment transports on a cut profile for large scale land reclamations Cross-shore sediment transports on a cut profile for large scale land reclamations Martijn Onderwater 1 Dano Roelvink Jan van de Graaff 3 Abstract When building a large scale land reclamation, the safest

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Nearshore Circulation Undertow and Rip Cells Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay

More information

Beach Wizard: Development of an Operational Nowcast, Short-Term Forecast System for Nearshore Hydrodynamics and Bathymetric Evolution

Beach Wizard: Development of an Operational Nowcast, Short-Term Forecast System for Nearshore Hydrodynamics and Bathymetric Evolution Beach Wizard: Development of an Operational Nowcast, Short-Term Forecast System for Nearshore Hydrodynamics and Bathymetric Evolution Ad Reniers Civil Engineering and Geosciences, Delft University of Technology

More information

High Frequency Acoustical Propagation and Scattering in Coastal Waters

High Frequency Acoustical Propagation and Scattering in Coastal Waters High Frequency Acoustical Propagation and Scattering in Coastal Waters David M. Farmer Graduate School of Oceanography (educational) University of Rhode Island Narragansett, RI 02882 Phone: (401) 874-6222

More information

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Lecturer at Hydraulic Engineering, Vietnam Maritime university Address, Haiphong, Vietnam 2

Lecturer at Hydraulic Engineering, Vietnam Maritime university Address, Haiphong, Vietnam 2 OVERTOPPING FOR RUBBLE MOUND BREAKWATER ARMOURED WITH THE NEW BLOCK RAKUNAIV Le Thi Huong Giang 1, Thieu Quang Tuan 2, Pha Van Trung 3 1,3 Lecturer at Hydraulic Engineering, Vietna Maritie university Address,

More information

AFT'LICATION OF M3vABLE-RED F'HYSICAL MODHIS To FBED1crslWM-INDUCED ERmIoN

AFT'LICATION OF M3vABLE-RED F'HYSICAL MODHIS To FBED1crslWM-INDUCED ERmIoN CETN-II-18 6189 AFT'LICATION OF M3vABLE-RED F'HYSICAL MODHIS To FBED1crslWM-INDUCED ERmIoN PURKSE: This note provides guidance and nomograms for determining if twodimensional, movable-bed physical models

More information

High-Frequency Scattering from the Sea Surface and Multiple Scattering from Bubbles

High-Frequency Scattering from the Sea Surface and Multiple Scattering from Bubbles High-Frequency Scattering from the Sea Surface and Multiple Scattering from Bubbles Peter H. Dahl Applied Physics Laboratory College of Ocean and Fisheries Sciences University of Washington Seattle, Washington

More information

Appendix E Cat Island Borrow Area Analysis

Appendix E Cat Island Borrow Area Analysis Appendix E Cat Island Borrow Area Analysis ERDC/CHL Letter Report 1 Cat Island Borrow Area Analysis Multiple borrow area configurations were considered for Cat Island restoration. Borrow area CI1 is located

More information

LABORATORY EXPERIMENTS FOR WAVE RUN-UP ON THE TETRAPOD ARMOURED RUBBLE MOUND STRUCTURE WITH A STEEP FRONT SLOPE

LABORATORY EXPERIMENTS FOR WAVE RUN-UP ON THE TETRAPOD ARMOURED RUBBLE MOUND STRUCTURE WITH A STEEP FRONT SLOPE Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

A Numerical Prediction of Wash Wave and Wave Resistance of High Speed Displacement Ships in Deep and Shallow Water

A Numerical Prediction of Wash Wave and Wave Resistance of High Speed Displacement Ships in Deep and Shallow Water การประช มว ชาการเคร อข ายว ศวกรรมเคร องกลแห งประเทศไทยคร งท 18 18- ต ลาคม 547 จ งหว ดขอนแก น A Nuerical Prediction of Wash Wave and Wave Resistance of High Speed Displaceent Ships in Deep and Shallow Water

More information

Recommendations on Two Acceleration Measurements with Low Strain Integrity Test

Recommendations on Two Acceleration Measurements with Low Strain Integrity Test Recoendations on Two Acceleration Measureents with Low Strain Integrity Test Liqun Liang, PhD., P.E., 1 Scott Webster, P.E., 2 and Marty Bixler, P.E. 3 1 Pile Dynaics Inc., 3725 Aurora Rd, Cleveland, Ohio

More information

SEAWALL AND BEACH PROFILE INTERACTION IN RUN-UP REGION

SEAWALL AND BEACH PROFILE INTERACTION IN RUN-UP REGION SEAWALL AND BEACH PROFILE INTERACTION IN RUN-UP REGION Yalcin Yuksel 1, Z. Tuğçe Yuksel 1, Esin Çevik 1, Berna Ayat Aydoğan 1, Burak Aydoğan 1, H.Anıl Arı Güner 1, Yeşim Çelikoğlu 1 and Fulya İşlek 1 Seawalls

More information

Race car damping 2. Fig-1 quarter car model.

Race car damping 2. Fig-1 quarter car model. Race car daping A nuber of issues ago I wrote an article on exploring approaches to specify a race car daper. This article is the second in that series and we shall be following on fro where we left off.

More information

COMPARISON OF ROCK SEAWALL AND DUNE FOR STORM DAMAGE REDUCTION

COMPARISON OF ROCK SEAWALL AND DUNE FOR STORM DAMAGE REDUCTION COMPARISON OF ROCK SEAWALL AND DUNE FOR STORM DAMAGE REDUCTION Hyun Dong Kim 1, Nobuhisa Kobayashi 2, and Xavier Chávez Cárdenas 3 Four test series consisting of 14 tests and 140 runs (each run lasted

More information

SIMPLE MODELS FOR EQUILIBRIUM PROFILES UNDER BREAKING AND NON-BREAKING WAVES

SIMPLE MODELS FOR EQUILIBRIUM PROFILES UNDER BREAKING AND NON-BREAKING WAVES SIMPLE MODELS FOR EQUILIBRIUM PROFILES UNDER BREAKING AND NON-BREAKING WAVES Magnus Larson 1 and Randall A. Wise ABSTRACT: Simple theoretical models are presented to calculate the equilibrium profile shape

More information

Nearshore Placed Mound Physical Model Experiment

Nearshore Placed Mound Physical Model Experiment Nearshore Placed Mound Physical Model Experiment PURPOSE: This technical note describes the migration and dispersion of a nearshore mound subjected to waves in a physical model. The summary includes recommendations

More information

A PRACTICAL APPROACH TO MAPPING EXTREME WAVE INUNDATION: CONSEQUENCES OF SEA-LEVEL RISE AND COASTAL EROSION.

A PRACTICAL APPROACH TO MAPPING EXTREME WAVE INUNDATION: CONSEQUENCES OF SEA-LEVEL RISE AND COASTAL EROSION. A PRACTICAL APPROACH TO MAPPING EXTREME WAVE INUNDATION: CONSEQUENCES OF SEA-LEVEL RISE AND COASTAL EROSION. Sean Vitousek 1, Charles H. Fletcher 1, Matthew M. Barbee 1 1. Department of Geology and Geophysics,

More information

IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE. Yoshimitsu Tajima 1

IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE. Yoshimitsu Tajima 1 IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE Yoshimitsu Tajima 1 This study develops an image-based monitoring techniques for observations of surf zone hydrodynamics especially

More information

An improvement in calculation method for apparel assembly line balancing

An improvement in calculation method for apparel assembly line balancing Indian Journal of Fibre & Textile Research Vol.38, Septeber 2013, pp 259-264 An iproveent in calculation ethod for apparel assebly line balancing F Khosravi 1, a, A H Sadeghi 1 & F Jolai 2 1 Textile Departent,

More information

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS Asian and Pacific Coasts 23 LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS Takayuki Suzuki 1, Masashi Tanaka 2 and Akio Okayasu 3 Wave overtopping on gentle slope

More information

RIP CURRENTS. Award # N

RIP CURRENTS. Award # N RIP CURRENTS Graham Symonds School of Geography and Oceanography University College, University of New South Wales, Australian Defence Force Academy, Canberra, 2600 AUSTRALIA Phone: 61-6-2688289 Fax: 61-6-2688313

More information

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET Takumi Okabe, Shin-ichi Aoki and Shigeru Kato Department of Civil Engineering Toyohashi University of Technology Toyohashi, Aichi,

More information

Technical Note AN EMPIRICAL. METHOD FOR DESIGN OF BREAKWATERS AS SHORE PROTECTION STRUCTURES

Technical Note AN EMPIRICAL. METHOD FOR DESIGN OF BREAKWATERS AS SHORE PROTECTION STRUCTURES CETN III-23 (Rev 3/95) Coastal Engineering Technical Note AN EMPIRICAL. METHOD FOR DESIGN OF BREAKWATERS AS SHORE PROTECTION STRUCTURES PURPOSE: To present an empirical method that can be used for preliminary

More information

NUMERICAL STUDY OF WAVE-CURRENT INTERACTION USING HIGH RESOLUTION COUPLED MODEL IN THE KUROSHIO REGION

NUMERICAL STUDY OF WAVE-CURRENT INTERACTION USING HIGH RESOLUTION COUPLED MODEL IN THE KUROSHIO REGION NUMERICAL STUDY OF WAVE-CURRENT INTERACTION USING HIGH RESOLUTION COUPLED MODEL IN THE KUROSHIO REGION Hitoshi TAMURA Frontier Research Center for Global Change/JAMSTEC 373- Showaachi, Kanazawa-ku, Yokohaa,

More information

TRANSPORT OF NEARSHORE DREDGE MATERIAL BERMS

TRANSPORT OF NEARSHORE DREDGE MATERIAL BERMS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Rip Currents Onshore Submarine Canyons: NCEX Analysis

Rip Currents Onshore Submarine Canyons: NCEX Analysis Rip Currents Onshore Submarine Canyons: NCEX Analysis Dr. Thomas C. Lippmann Civil and Environmental Engineering & Geodetic Science, Byrd Polar Research Center, 1090 Carmack Rd., Ohio State University,

More information

Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER

Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER Neil S. Oakey Bedford Institute of Oceanography Dartmouth, Nova Scotia Canada B2Y 4A2 phone: (902) 426-3147 fax: (902) 426-7827 e-mail:

More information

Surface Wave Processes on the Continental Shelf and Beach

Surface Wave Processes on the Continental Shelf and Beach Surface Wave Processes on the Continental Shelf and Beach Thomas H. C. Herbers Department of Oceanography, Code OC/He Naval Postgraduate School Monterey, California 93943-5122 phone: (831) 656-2917 fax:

More information

Proceedings, 2001National Conference on Beach Preservation Technology, pp COASTAL INLET BANK EROSION. William C.

Proceedings, 2001National Conference on Beach Preservation Technology, pp COASTAL INLET BANK EROSION. William C. Proceedings, 2001National Conference on Beach Preservation Technology, pp. 274-283 COASTAL INLET BANK EROSION William C. Seabergh 1 Abstract: Much focus is placed on beach erosion on the open coast. However,

More information

Internal Waves in Straits Experiment Progress Report

Internal Waves in Straits Experiment Progress Report DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Internal Waves in Straits Experiment Progress Report Jody Klymak School of Earth and Ocean Sciences University of Victoria

More information

Prediction of Nearshore Waves and Currents: Model Sensitivity, Confidence and Assimilation

Prediction of Nearshore Waves and Currents: Model Sensitivity, Confidence and Assimilation Prediction of Nearshore Waves and Currents: Model Sensitivity, Confidence and Assimilation H. Tuba Özkan-Haller College of Oceanic and Atmospheric Sciences Oregon State University, 104 Ocean Admin Bldg

More information

Beach Profiles. Topics. Module 9b Beach Profiles and Crossshore Sediment Transport 3/23/2016. CE A676 Coastal Engineering

Beach Profiles. Topics. Module 9b Beach Profiles and Crossshore Sediment Transport 3/23/2016. CE A676 Coastal Engineering Beach Profiles AND CROSS-SHORE TRANSPORT Orson P. Smith, PE, Ph.D., Professor Emeritus Topics Features of beach and nearshore profiles Equilibrium profiles Cross-shore transport References Text (Sorensen)

More information

WAVE RUNUP ON COMPOSITE-SLOPE AND CONCAVE BEACHES ABSTRACT

WAVE RUNUP ON COMPOSITE-SLOPE AND CONCAVE BEACHES ABSTRACT CHAPTER 168 WAVE RUNUP ON COMPOSITE-SLOPE AND CONCAVE BEACHES R. H. Mayer 1 and D. L. Kriebel 1 ABSTRACT Laboratory experiments were carried out for regular and irregular wave runup over non-uniform beach

More information

Sandy Beach Morphodynamics. Relationship between sediment size and beach slope

Sandy Beach Morphodynamics. Relationship between sediment size and beach slope Sandy Beach Morphodynamics Relationship between sediment size and beach slope 1 Longshore Sorting - Willard Bascom Beach Slope, Grain Size, and Wave Energy Beach at Sandwich Bay, Kent, UK near the Straights

More information

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709 F-4 Fourth International Conference on Scour and Erosion 2008 LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709 Yoshimitsu TAJIMA 1 and Shinji SATO 2 1 Member of JSCE, Associate

More information

PILE FENCE TO ENHANCE DUNE RESILIENCY

PILE FENCE TO ENHANCE DUNE RESILIENCY PILE FENCE TO ENHANCE DUNE RESILIENCY Rebecca Quan 1, Nobuhisa Kobayashi 2 and Berna Ayat 3 A beach with a berm and dune provides storm protection but wave overtopping and overwash of the dune may lead

More information

Performance of Upham Beach T-Groin Project and Its Impact to the Downdrift Beach

Performance of Upham Beach T-Groin Project and Its Impact to the Downdrift Beach Performance of Upham Beach T-Groin Project and Its Impact to the Downdrift Beach Progress Report for the Period of October 2008 to April 2009 Submitted by Ping Wang, Ph.D., and Tiffany M. Roberts Department

More information

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX D SBEACH MODELING

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX D SBEACH MODELING HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX D SBEACH MODELING Rev. 18 Feb 2015 1 SBEACH Modeling 1.0 Introduction Following the methodology

More information

Marine Mammal Acoustic Tracking from Adapting HARP Technologies

Marine Mammal Acoustic Tracking from Adapting HARP Technologies DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Marine Mammal Acoustic Tracking from Adapting HARP Technologies Sean M. Wiggins and John A. Hildebrand Marine Physical

More information

Development of Low Volume Shape Memory Alloy Variable Ballast System for AUV Use

Development of Low Volume Shape Memory Alloy Variable Ballast System for AUV Use Development of Low Volume Shape Memory Alloy Variable Ballast System for AUV Use Dr. Graeme J Rae Ocean Engineering Program Division of Marine and Environmental Systems Florida Institute of Technology

More information

Ripple Tank: Instruction Manual

Ripple Tank: Instruction Manual Ripple Tank: Instruction Manual The Ripple Tank coprises the following individual parts: Assebly of the ripple tank: Water Tank.......1pcs Detachable legs....3pcs Angular holders.......2pcs Plate fitting...1pcs

More information

Nearshore Morphodynamics. Bars and Nearshore Bathymetry. Sediment packages parallel to shore, that store beach sediment

Nearshore Morphodynamics. Bars and Nearshore Bathymetry. Sediment packages parallel to shore, that store beach sediment Nearshore Morphodynamics http://coastal.er.usgs.gov/bier/images/chandeleur-xbeach-lg.jpg Bars and Nearshore Bathymetry Sediment packages parallel to shore, that store beach sediment Can be up to 50 km

More information

WAVE REFLECTION AND WAVE RUN-UP AT RUBBLE MOUND BREAKWATERS

WAVE REFLECTION AND WAVE RUN-UP AT RUBBLE MOUND BREAKWATERS WAVE REFLECTION AND WAVE RUN-UP AT RUBBLE MOUND BREAKWATERS Markus Muttray, ocine Oumeraci, Erik ten Oever Wave reflection and wave run-up at rubble mound breakwaters with steep front slope were investigated

More information

LONG WAVES IN FLUME EXPERIMENTS

LONG WAVES IN FLUME EXPERIMENTS LONG WVES IN FLUME EPERIMENTS J. William Kamphuis, M.SCE 1 bstract This paper addresses the influence of long waves on the design wave height of structures in shallow water. Wave heights, wave periods,

More information

HARBOUR SEDIMENTATION - COMPARISON WITH MODEL

HARBOUR SEDIMENTATION - COMPARISON WITH MODEL HARBOUR SEDIMENTATION - COMPARISON WITH MODEL ABSTRACT A mobile-bed model study of Pointe Sapin Harbour, in the Gulf of St. Lawrence, resulted in construction of a detached breakwater and sand trap to

More information

Brian P. Casaday and J. C. Vanderhoff Brigham Young University, Provo, Utah

Brian P. Casaday and J. C. Vanderhoff Brigham Young University, Provo, Utah P. SIMLATIOS OF ITERAL WAVES APPROACHIG A CRITICAL LEVEL Brian P. Casaday and J. C. Vanderhoff Brigha Young niversity, Provo, tah. BACKGROD Internal gravity waves exist abundantly in our world in stably-stratified

More information

WAVE BREAKING AND DISSIPATION IN THE NEARSHORE

WAVE BREAKING AND DISSIPATION IN THE NEARSHORE WAVE BREAKING AND DISSIPATION IN THE NEARSHORE LONG-TERM GOALS Dr. Thomas C. Lippmann Center for Coastal Studies Scripps Institution of Oceanography University of California, San Diego 9500 Gilman Dr.

More information

Temporal and spatial variations of surf-zone currents and suspended sediment concentration

Temporal and spatial variations of surf-zone currents and suspended sediment concentration Coastal Engineering 46 (2002) 175 211 www.elsevier.com/locate/coastaleng Temporal and spatial variations of surf-zone currents and suspended sediment concentration Ping Wang a, *, Bruce A. Ebersole b,

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

PREDICTION OF FUTURE SHORELINE CHANGE WITH SEA-LEVEL RISE AND WAVE CLIMATE CHANGE AT HASAKI, JAPAN

PREDICTION OF FUTURE SHORELINE CHANGE WITH SEA-LEVEL RISE AND WAVE CLIMATE CHANGE AT HASAKI, JAPAN PREDICTION OF FUTURE SHORELINE CHANGE WITH SEA-LEVEL RISE AND WAVE CLIMATE CHANGE AT HASAKI, JAPAN Masayuki Banno 1 and Yoshiaki Kuriyama 1 We developed a shoreline change model considering the effects

More information

Inlet Management Study for Pass-A-Grille and Bunces Pass, Pinellas County, Florida

Inlet Management Study for Pass-A-Grille and Bunces Pass, Pinellas County, Florida Inlet Management Study for Pass-A-Grille and Bunces Pass, Pinellas County, Florida Final Report Submitted By Ping Wang, Ph.D., Jun Cheng Ph.D., Zachary Westfall, and Mathieu Vallee Coastal Research Laboratory

More information

NUMERICAL SIMULATION OF SEDIMENT PATHWAYS AT AN IDEALIZED INLET AND EBB SHOAL

NUMERICAL SIMULATION OF SEDIMENT PATHWAYS AT AN IDEALIZED INLET AND EBB SHOAL In: Proceedings Coastal Sediments 03. 2003. CD-ROM Published by World Scientific Publishing Corp. and East Meets West Productions, Corpus Christi, Texas, USA. ISBN 981-238-422-7. NUMERICAL SIMULATION OF

More information

CHAPTER 38 WAVE GROUPINESS AS A SOURCE OF NEARSHORE LONG WAVES. Jeffrey H. List. Virginia Institute of Marine Science Gloucester Point, Virginia 23062

CHAPTER 38 WAVE GROUPINESS AS A SOURCE OF NEARSHORE LONG WAVES. Jeffrey H. List. Virginia Institute of Marine Science Gloucester Point, Virginia 23062 CHAPTER 38 WAVE GROUPINESS AS A SOURCE OF NEARSHORE LONG WAVES Jeffrey H. List Virginia Institute of Marine Science Gloucester Point, Virginia 23062 Abstract Data from a low energy swell-dominated surf

More information

Pathways Interns: Annika O Dea, Ian Conery, Andrea Albright

Pathways Interns: Annika O Dea, Ian Conery, Andrea Albright 1 REMOTE SENSING OF COASTAL MORPHODYNAMICS 237 237 237 217 217 217 2 2 2 8 119 27 252 174.59 255 255 255 163 163 163 131 132 122 239 65 53 11 135 12 112 92 56 62 12 13 12 56 48 13 12 111 Kate Brodie Brittany

More information

Integration of Lean Approaches to Manage a Manual Assembly System

Integration of Lean Approaches to Manage a Manual Assembly System Open Journal of Social Sciences, 204, 2, 226-23 Published Online Septeber 204 in SciRes. http://www.scirp.org/journal/jss http://dx.doi.org/0.4236/jss.204.29038 Integration of Lean Approaches to Manage

More information

HYDRODYNAMICS AND MORPHODYNAMICS IN THE SURF ZONE OF A DISSIPATIVE BEACH

HYDRODYNAMICS AND MORPHODYNAMICS IN THE SURF ZONE OF A DISSIPATIVE BEACH HYDRODYNAMICS AND MORPHODYNAMICS IN THE SURF ZONE OF A DISSIPATIVE BEACH Leo C. van Rijn, Dirk Jan R. Walstra, Bart T. Grasmeijer and Kees Kleinhout Abstract: Two profile models have been compared with

More information

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Minggui Zhou 1, Dano Roelvink 2,4, Henk Verheij 3,4 and Han Ligteringen 2,3 1 School of Naval Architecture, Ocean and Civil Engineering,

More information

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR

More information

A parametric study of an offshore concrete pile under combined loading conditions using finite element method

A parametric study of an offshore concrete pile under combined loading conditions using finite element method 32 A paraetric stud of an offshore concrete pile under cobined loading conditions using finite eleent ethod J.A. Eicher, H. Guan 1 and D. S. Jeng School of Engineering, Griffith Universit Gold Coast Capus,

More information

INTERACTION BETWEEN HYDRODYNAMICS AND SALT MARSH DYNAMICS: AN EXAMPLE FROM JIANGSU COAST

INTERACTION BETWEEN HYDRODYNAMICS AND SALT MARSH DYNAMICS: AN EXAMPLE FROM JIANGSU COAST Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 211) Deceber 14 16, 211, Hong Kong, China INTERACTION BETWEEN HYDRODYNAMICS AND SALT MARSH DYNAMICS: AN EXAMPLE FROM

More information