# Mechanical Waves. Chapter 15. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Save this PDF as:

Size: px
Start display at page:

Download "Mechanical Waves. Chapter 15. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman"

## Transcription

1 Chapter 15 Mechanical Waves PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson

2 Goals for Chapter 15 To study the properties and varieties of mechanical waves To relate the speed, frequency, and wavelength of periodic waves To interpret periodic waves mathematically To calculate the speed of a wave on a string To calculate the energy of mechanical waves To understand the interference of mechanical waves To analyze standing waves on a string To investigate the sound produced by stringed instruments

3 Introduction Earthquake waves carry enormous power as they travel through the earth. Other types of mechanical waves, such as sound waves or the vibration of the strings of a piano, carry far less energy. Overlapping waves interfere, which helps us understand musical instruments.

4 Types of mechanical waves A mechanical wave is a disturbance traveling through a medium. Figure 15.1 below illustrates transverse waves and longitudinal waves.

5 Periodic waves For a periodic wave, each particle of the medium undergoes periodic motion. The wavelength of a periodic wave is the length of one complete wave pattern. The speed of any periodic wave of frequency f is v = f.

6 Q15.1 If you double the wavelength of a wave on a string, what happens to the wave speed v and the wave frequency f? A. v is doubled and f is doubled. B. v is doubled and f is unchanged. C. v is unchanged and f is halved. D. v is unchanged and f is doubled. E. v is halved and f is unchanged.

7 A15.1 If you double the wavelength of a wave on a string, what happens to the wave speed v and the wave frequency f? A. v is doubled and f is doubled. B. v is doubled and f is unchanged. C. v is unchanged and f is halved. D. v is unchanged and f is doubled. E. v is halved and f is unchanged.

8 Periodic transverse waves For the transverse waves shown here in Figures 15.3 and 15.4, the particles move up and down, but the wave moves to the right.

9 Periodic longitudinal waves For the longitudinal waves shown here in Figures 15.6 and 15.7, the particles oscillate back and forth along the same direction that the wave moves. Follow Example 15.1.

10 Mathematical description of a wave The wave function, y(x,t), gives a mathematical description of a wave. In this function, y is the displacement of a particle at time t and position x. The wave function for a sinusoidal wave moving in the +x-direction is y(x,t) = Acos(kx t), where k = 2π/ is called the wave number. Figure 15.8 at the right illustrates a sinusoidal wave.

11 Q15.2 Which of the following wave functions describe a wave that moves in the x-direction? A. y(x,t) = A sin ( kx t) B. y(x,t) = A sin (kx + t) C. y(x,t) = A cos (kx + t) D. both B. and C. E. all of A., B., and C.

12 A15.2 Which of the following wave functions describe a wave that moves in the x-direction? A. y(x,t) = A sin ( kx t) B. y(x,t) = A sin (kx + t) C. y(x,t) = A cos (kx + t) D. both B. and C. E. all of A., B., and C.

13 Graphing the wave function The graphs in Figure 15.9 to the right look similar, but they are not identical. Graph (a) shows the shape of the string at t = 0, but graph (b) shows the displacement y as a function of time at t = 0. Refer to Problem-Solving Strategy Follow Example 15.2.

14 Particle velocity and acceleration in a sinusoidal wave The graphs in Figure below show the velocity and acceleration of particles of a string carrying a transverse wave.

15 Q15.3 A wave on a string is moving to the right. This graph of y(x, t) versus coordinate x for a specific time t shows the shape of part of the string at that time. 0 y a x At this time, what is the velocity of a particle of the string at x = a? A. The velocity is upward. B. The velocity is downward. C. The velocity is zero. D. not enough information given to decide

16 A15.3 A wave on a string is moving to the right. This graph of y(x, t) versus coordinate x for a specific time t shows the shape of part of the string at that time. 0 y a x At this time, what is the velocity of a particle of the string at x = a? A. The velocity is upward. B. The velocity is downward. C. The velocity is zero. D. not enough information given to decide

17 Q15.4 A wave on a string is moving to the right. This graph of y(x, t) versus coordinate x for a specific time t shows the shape of part of the string at that time. 0 y a x At this time, what is the acceleration of a particle of the string at x = a? A. The acceleration is upward. B. The acceleration is downward. C. The acceleration is zero. D. not enough information given to decide

18 A15.4 A wave on a string is moving to the right. This graph of y(x, t) versus coordinate x for a specific time t shows the shape of part of the string at that time. 0 y a x At this time, what is the acceleration of a particle of the string at x = a? A. The acceleration is upward. B. The acceleration is downward. C. The acceleration is zero. D. not enough information given to decide

19 Q15.5 A wave on a string is moving to the right. This graph of y(x, t) versus coordinate x for a specific time t shows the shape of part of the string at that time. 0 y b x At this time, what is the velocity of a particle of the string at x = b? A. The velocity is upward. B. The velocity is downward. C. The velocity is zero. D. not enough information given to decide

20 A15.5 A wave on a string is moving to the right. This graph of y(x, t) versus coordinate x for a specific time t shows the shape of part of the string at that time. 0 y b x At this time, what is the velocity of a particle of the string at x = b? A. The velocity is upward. B. The velocity is downward. C. The velocity is zero. D. not enough information given to decide

21 Q15.6 A wave on a string is moving to the right. This graph of y(x, t) versus coordinate x for a specific time t shows the shape of part of the string at that time. At this time, the velocity of a particle on the string is upward at A. only one of points 1, 2, 3, 4, 5, and 6. B. point 1 and point 4 only. C. point 2 and point 6 only. D. point 3 and point 5 only. E. three or more of points 1, 2, 3, 4, 5, and 6.

22 A15.6 A wave on a string is moving to the right. This graph of y(x, t) versus coordinate x for a specific time t shows the shape of part of the string at that time. At this time, the velocity of a particle on the string is upward at A. only one of points 1, 2, 3, 4, 5, and 6. B. point 1 and point 4 only. C. point 2 and point 6 only. D. point 3 and point 5 only. E. three or more of points 1, 2, 3, 4, 5, and 6.

23 The speed of a wave on a string Follow the first method using Figure above. Follow the second method using Figure at the right. F The result is v.

24 Q15.7 Two identical strings are each under the same tension. Each string has a sinusoidal wave with the same average power P av. If the wave on string #2 has twice the amplitude of the wave on string #1, the wavelength of the wave on string #2 must be A. 4 times the wavelength of the wave on string #1. B. twice the wavelength of the wave on string #1. C. the same as the wavelength of the wave on string #1. D. 1/2 of the wavelength of the wave on string #1. E. 1/4 of the wavelength of the wave on string #1.

25 A15.7 Two identical strings are each under the same tension. Each string has a sinusoidal wave with the same average power P av. If the wave on string #2 has twice the amplitude of the wave on string #1, the wavelength of the wave on string #2 must be A. 4 times the wavelength of the wave on string #1. B. twice the wavelength of the wave on string #1. C. the same as the wavelength of the wave on string #1. D. 1/2 of the wavelength of the wave on string #1. E. 1/4 of the wavelength of the wave on string #1.

26 Calculating wave speed Follow Example 15.3 and refer to Figure below.

27 Q15.8 The four strings of a musical instrument are all made of the same material and are under the same tension, but have different thicknesses. Waves travel A. fastest on the thickest string. B. fastest on the thinnest string. C. at the same speed on all strings. D. not enough information given to decide

28 A15.8 The four strings of a musical instrument are all made of the same material and are under the same tension, but have different thicknesses. Waves travel A. fastest on the thickest string. B. fastest on the thinnest string. C. at the same speed on all strings. D. not enough information given to decide

29 Power in a wave A wave transfers power along a string because it transfers energy. The average power is proportional to the square of the amplitude and to the square of the frequency. This result is true for all waves. Follow Example 15.4.

30 Wave intensity The intensity of a wave is the average power it carries per unit area. If the waves spread out uniformly in all directions and no energy is absorbed, the intensity I at any distance r from a wave source is inversely proportional to r 2 : I 1/r 2. (See Figure at the right.) Follow Example 15.5.

31 Boundary conditions When a wave reflects from a fixed end, the pulse inverts as it reflects. See Figure 15.19(a) at the right. When a wave reflects from a free end, the pulse reflects without inverting. See Figure 15.19(b) at the right.

32 Wave interference and superposition Interference is the result of overlapping waves. Principle of superposition: When two or more waves overlap, the total displacement is the sum of the displacements of the individual waves. Study Figures and at the right.

33 Standing waves on a string Waves traveling in opposite directions on a taut string interfere with each other. The result is a standing wave pattern that does not move on the string. Destructive interference occurs where the wave displacements cancel, and constructive interference occurs where the displacements add. At the nodes no motion occurs, and at the antinodes the amplitude of the motion is greatest. Figure on the next slide shows photographs of several standing wave patterns.

34 Photos of standing waves on a string Some time exposures of standing waves on a stretched string.

35 The formation of a standing wave In Figure 15.24, a wave to the left combines with a wave to the right to form a standing wave. Refer to Problem- Solving Strategy 15.2 and follow Example 15.6.

36 Normal modes of a string For a taut string fixed at both ends, the possible wavelengths are n = 2L/n and the possible frequencies are f n = n v/2l = nf 1, where n = 1, 2, 3, f 1 is the fundamental frequency, f 2 is the second harmonic (first overtone), f 3 is the third harmonic (second overtone), etc. Figure illustrates the first four harmonics.

37 Standing waves and musical instruments A stringed instrument is tuned to the correct frequency (pitch) by varying the tension. Longer strings produce bass notes and shorter strings produce treble notes. (See Figure below.) Follow Examples 15.7 and 15.8.

38 Q15.9 While a guitar string is vibrating, you gently touch the midpoint of the string to ensure that the string does not vibrate at that point. The lowest-frequency standing wave that could be present on the string A. vibrates at the fundamental frequency. B. vibrates at twice the fundamental frequency. C. vibrates at 3 times the fundamental frequency. D. vibrates at 4 times the fundamental frequency. E. not enough information given to decide

39 A15.9 While a guitar string is vibrating, you gently touch the midpoint of the string to ensure that the string does not vibrate at that point. The lowest-frequency standing wave that could be present on the string A. vibrates at the fundamental frequency. B. vibrates at twice the fundamental frequency. C. vibrates at 3 times the fundamental frequency. D. vibrates at 4 times the fundamental frequency. E. not enough information given to decide

### Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down.

Slide 1 / 28 Waves Slide 2 / 28 Wave Motion A wave travels along its medium, but the individual particles just move up and down. Slide 3 / 28 Wave Motion All types of traveling waves transport energy.

### Waves Multiple Choice

Waves Multiple Choice PSI Physics Name: 1. The distance traveled by a wave in one period is called? A. Frequency B. Period C. Speed of wave D. Wavelength E. Amplitude 2. Which of the following is the speed

### LECTURE OUTLINE CHAPTER 14

1 LECTURE OUTLINE CHAPTER 14 Waves and Sound 14-1 Types of Waves 2 A wave: Is a disturbance that propagates from one place to another. 1- Transverse Wave: The displacement of the medium is perpendicular

### Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 14 Physics, 4 th Edition James S. Walker Chapter 14 Waves and Sound Units of Chapter 14 Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Sound Intensity The

### SPH3U Sec.9.2.notebook. November 30, Free End Reflections. Section 9.2 Waves at Media Boundaries

Section 9.2 Waves at Media Boundaries Wave speed depends on some of the properties of the medium through which the wave is travelling. For example, the speed of sound in air depends on air temperature,

### Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Energy can be transported by particles or waves: Chapter 11 Waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is

### Harmonics and Sound Exam Review

Name: Class: _ Date: _ Harmonics and Sound Exam Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following is not an example

### PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili

PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili 1. (TERM 001) A sinusoidal wave traveling in the negative x direction has amplitude of 20.0 cm, a wavelength of 35.0 cm, and a frequency

### Chapter 12: Mechanical Waves and Sound

Chapter 12 Lecture Chapter 12: Mechanical Waves and Sound Goals for Chapter 12 To describe mechanical waves. To study superposition, standing waves and sound. To present sound as a standing longitudinal

### Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound Clear Creek High School Simple Harmonic Motion Simple Harmonic Motion Constant periodic motion of an object. An object oscillates back and forth along

### Main Ideas in Class Today

Main Ideas in Class Today After today s class, you should be able to: Identify different types of waves Calculate wave velocity, period and frequency. Calculate tension or velocity for a wave on a string.

### Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

### Similarly to elastic waves, sound and other propagated waves are graphically shown by the graph:

Phys 300/301 Physics: Algebra/Trig Eugene Hecht, 3e. Prepared 01/24/06 11.0 Waves & Sounds There are two fundamental waves of transporting energy and momentum: particles and waves. While they seem opposites,

### Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond).

Waves Introduction A vibration must be the source of a wave. Waves in turn also cause vibrations. They are intrinsically connected. Waves transmit energy. There are different ways in which waves can be

### PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String Objective Write a mathematical function to describe the wave. Describe a transverse wave and a longitudinal wave. Describe frequency,

### The physicist's greatest tool is his wastebasket Albert Einstein

Chapter 20: Waves The physicist's greatest tool is his wastebasket Albert Einstein 2 20.1 Waves Describe transverse and longitudinal waves. Learn the properties of waves. Calculate the speed of a wave.

### Ch13. Vibrations and Waves HW# 1, 5, 9, 13, 19, 29, 35, 37, 39, 41, 43, 47, 51, 53, 61

Ch13. Vibrations and Waves HW# 1, 5, 9, 13, 19, 29, 35, 37, 39, 41, 43, 47, 51, 53, 61 If you displace a system that obeys Hooke s Law, It will follow simple harmonic motion. The system will oscillate.

### MECHANICAL WAVES AND SOUND

MECHANICAL WAVES AND SOUND Waves Substances have a stable equilibrium state Uniform pressure everywhere throughout the substance Atomic springs are at their equilibrium length Can make a wave by disturbing

### Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages )

Exercises 25.1 Vibration of a Pendulum (page 491) 1. The time it takes for one back-and-forth motion of a pendulum is called the. 2. List the two things that determine the period of a pendulum. 3. Circle

### Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Section 1 Types of Waves Objectives Recognize that waves transfer energy. Distinguish between mechanical waves and electromagnetic waves. Explain the relationship between particle vibration and wave motion.

### DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-6 STANDING WAVES Essential Idea: When travelling waves meet they can superpose to form standing waves in which energy may not be transferred.

### Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

Waves Physics 20.1 Waves What is a wave and what does it carry? Types of Waves 1. Transverse A transverse wave has its oscillations/vibrations to the direction the wave moves. 2. Longitudinal A longitudinal

### Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Waves: Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move. Three Classifications of waves: 1. Mechanical waves: These are waves that

### Chapter 14. Vibrations and Waves

Chapter 14 Vibrations and Waves Chapter 14 Vibrations and Waves In this chapter you will: Examine vibrational motion and learn how it relates to waves. Determine how waves transfer energy. Describe wave

### CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

CH 17 - MECHANICAL WAVES & SOUND Sec. 17.2 - Mechanical Waves Mechanical Wave - disturbance in matter that carries energy from one place to another. Mechanical waves require matter called a MEDIUM to travel

### Waves Chapter Problems

Waves Chapter Problems Wave speed, frequency and wavelength 1. A fisherman noticed that a float makes 30 oscillations in 15 seconds. The distance between two consecutive crests is 2 m. What is the period

### Practice Questions: Waves (AP Physics 1) Multiple Choice Questions:

Practice Questions: Waves (AP Physics 1) Multiple Choice Questions: 28. A transverse wave is traveling on a string. The graph above shows position as a function of time for a point on the string. If the

### Waves. Chapter 9. [ pictures will be here, and they include "p" which is a location in the water ]

Chapter 9 Waves Chapter 9 is finished, but is not in camera-ready format. Specifically, all of the diagrams are missing. But here are some excerpts from the text, with omissions indicated by... This chapter

### Chapter 19: Vibrations And Waves

Lecture Outline Chapter 19: Vibrations And Waves This lecture will help you understand: Vibrations of a Pendulum Wave Description Wave Speed Transverse Waves Longitudinal Waves Wave Interference Standing

### CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

CH 17 - MECHANICAL WAVES & SOUND Sec. 17.2 - Mechanical Waves Mechanical Wave - disturbance in matter that carries energy from one place to another. Mechanical waves require matter called a MEDIUM to travel

### Not all waves require a medium to travel. Light from the sun travels through empty space.

What are waves? Wave Definition: A disturbance that transfers energy from place to place. What carries waves? A medium, a medium is the material through which a wave travels. A medium can be a gas, liquid,

### 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes I. DIFFERENT TYPES OF WAVES A. TRANSVERSE AND LONGITUDINAL WAVES B. WAVE PULSES AND TRAVELLING WAVES C. SOUND AND WATER WAVES II. DEFINING TERMS

### What are waves? Wave

What are waves? Wave Definition: A disturbance that transfers energy from place to place. What carries waves? A medium, a medium is the material through which a wave travels. A medium can be a gas, liquid,

### is shown in Fig. 5.1.

1 The variation with time t of the displacement x of a point in a transverse wave T 1 is shown in Fig. 5.1. 1 x A T 1 1 2 3 4 5 6 t/s -A Fig. 5.1 (a) By reference to displacement and direction of travel

### Section 1 Types of Waves

CHAPTER OUTLINE Section 1 Types of Waves Key Idea questions > What does a wave carry? > How are waves generated? > What is the difference between a transverse wave and a longitudinal wave? > How do the

### Lecture 8. Sound Waves Superposition and Standing Waves

Lecture 8 Sound Waves Superposition and Standing Waves Sound Waves Speed of Sound Waves Intensity of Periodic Sound Waves The Doppler Effect Sound Waves are the most common example of longitudinal waves.

### Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. x ray 2. A single vibratory disturbance moving through a medium is called 1. a node 2. an antinode

### WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train).

1 WAVES Types of Waves Pulses Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train). Progressive Waves A progressive wave

### Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p. 362-401 Section 1 p. 364 371 Section 2 p. 372-377 Simple Harmonic Motion There exist many different situations in which objects oscillate in regular, repeating

### Types of Waves. Section Section 11.1

Types of Waves Section Section 11.1 Waves A A disturbance that transmits energy through matter or space Waves Most waves move through matter called a medium. Ex. Waves traveling through water. Types of

### Characteristics of Waves

Chapter 15 Characteristics of Waves Waves disturbances that carry energy through matter or space Waves transfer energy. The energy being transferred may spread out as waves travel. Characteristics of Waves

### CHAPTER 10 WAVES. Section 10.1 Types of Waves

CHAPTER 10 WAVES Section 10.1 Types of Waves What does a wave carry? How are waves generated? What is the difference between a transverse wave and a longitudinal waves? How do the particles in ocean waves

### Chapter 19: Vibrations and Waves

Chapter 19: Vibrations and Waves SIMPLE HARMONIC MOTION ic or Oscillatory motion is called SHM. Start off with the story of Galileo being in the church. PENDULUM Make the following points with a pendulum

### Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

17.2 - Waves Waves Mechanical Waves A disturbance in matter that carries energy from one place to another. Medium The material through which a wave travels. Medium can be any three states of matter: solid,

### INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation

Lab 1 Standing Waves on a String Learning Goals: To distinguish between traveling and standing waves To recognize how the wavelength of a standing wave is measured To recognize the necessary conditions

### Waves Wave Characteristics

Name: Date: Waves 4.4 Wave Characteristics. A transverse travelling wave has amplitude A 0 and wavelength λ. The distance between a crest and its neighbouring trough, measured in the direction of energy

### Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

Section 20.1 - Waves Chapter 20 - Waves A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another. Waves can change motion, we know that

### Lab 12 Standing Waves

b Lab 12 Standing Waves What You Need To Know: Types of Waves The study of waves is a major part of physics. There are quite a few types of waves that can be studied. Depending on who you have for lecture

### 17.1: Mechanical Waves

New Standard SPS9: Students will investigate the properties of waves. a. Recognize that all waves transfer energy. b. Relate frequency and wavelength to the energy of different types of electromagnetic

### Topic 4.4 Wave Characteristics (2 hours)

Topic 4.4 Wave Characteristics (2 hours) You must live in the present, launch yourself on every wave, find your eternity in each moment. Henry David Thoreau 1 What s a wave? A wave is a disturbance that

### WAVES. Unit 3. Sources: Ck12.org

WAVES Unit 3 Sources: Ck12.org BELLRINGER DAY 01 1. How do you think energy travels? 2. Are all waves the same? Explain. LONGITUDINAL WAVES Amplitude, Rarefaction, and Compression WHAT ARE WAVES? Waves

### WAVES. Mr. Banks 8 th Grade Science

WAVES Mr. Banks 8 th Grade Science WAVES A wave is a disturbance that transfers, or carries energy from one place to another. Classified by what they move through For mechanical Waves energy is transferred

### 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH SLINKIES Several basic properties of wave behavior can be demonstrated with long

### Mechanical Waves and Sound

Mechanical Waves and Sound Mechanical Wave Medium Crest Trough Transverse wave Compression Rarefaction Longitudinal wave Surface wave Some Vocab to Know What are Mechanical Waves? Mechanical wave: disturbance

### DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 11-7: WAVE MOTION LSN 11-8: TYPES OF WAVES; LONGITUDINAL AND TRANSVERSE LSN 11-9: ENERGY TRANSPORTED BY WAVES Physics of Waves Questions From Reading

### Section 4.2. Travelling Waves

Section 4.2 Travelling Waves Wave Motion A wave is the motion of a disturbance Mechanical waves require Some source of disturbance A medium that can be disturbed Some physical connection between or mechanism

### Name Class Date. How do waves behave when they interact with objects? What happens when two waves meet? How do standing waves form?

CHAPTER 15 3 Wave Interactions SECTION Waves KEY IDEAS As you read this section, keep these questions in mind: How do waves behave when they interact with objects? What happens when two waves meet? How

### Physics 1520, Spring 2014 Quiz 1A, Form: A

Physics 1520, Spring 2014 Quiz 1A, Form: A Name: Date: Section 1. Multiple Choice 1. The image below shows two different types of sinusoidal waves produced on a slinky. Which wave is the same type of wave

### Physics 1520, Spring 2014 Quiz 1B, Form: A

Physics 1520, Spring 2014 Quiz 1B, Form: A Name: Date: Section 1. Multiple Choice Questions 1 2: The equations for two traveling waves traveling on the same string are: Wave 1: y(x, t) = (5.0 cm) cos((2.09

### LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH A STRING Several basic properties of wave behavior can be demonstrated with

### Mechanical Waves. Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal.

Mechanical Waves Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal. When an object vibrates, its vibrations form mechanical waves that

### Physics Waves & Sound

Read Page 298 (Wave Characteristics) TQ1. How is a pulse different from a wave? Physics Waves & Sound Day 1 TQ2. What actually moves down a slinky when in the form of a wave? TQ3. What two things happen

### a disturbance that transfers energy Carries energy from one place to another Classified by what they move through

WAVES WAVES a disturbance that transfers energy Carries energy from one place to another Classified by what they move through 1. Mechanical Waves the energy is transferred by vibrations of medium (medium

### Physics Wave Problems. Science and Mathematics Education Research Group

F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Wave Problems Science and Mathematics Education Research Group Supported by UBC Teaching and Learning

### Waves and Sound. (Chapter 25-26)

Waves and Sound (Chapter 25-26) I can de(ine and use the terms period, wavelength, frequency, amplitude, Hertz, crest, trough, transverse, longitudinal, and standing waves. Waves and Sound (Chapter 25-26)

### SECTION 3. Objectives. Distinguish local particle vibrations from overall wave motion. Differentiate between pulse waves and periodic waves.

SECTION 3 Plan and Prepare Preview Vocabulary Scientific Meanings Ask students if they ve ever heard someone use the phrase on different wavelengths to describe two people with communication problems.

### Date Lab Time Name. Wave Motion

Objective Wave Motion This laboratory examines the principle on which most musical instruments operate and allows the student to observe standing waves, hear resonance and calculate the velocity of the

### SOUND. Pitch: Frequency High Frequency = High Pitch Low Frequency = Low Pitch Loudness: Amplitude. Read Sections 12-1 and 12-4

Read Sections 12-1 and 12-4 SOUND Sound: The speed of sound in air at 25 o C is 343 m/s (often rounded to 340 m/s). The speed of sound changes with temperature since the density and elasticity of air change

### Directed Reading A. Section: The Nature of Waves WAVE ENERGY. surface of the water does not. Skills Worksheet. 1. What is a wave?

Skills Worksheet Directed Reading A Section: The Nature of Waves 1. What is a wave? WAVE ENERGY 2. A substance through which a wave can travel is a(n). 3. Explain how energy is transmitted through a medium.

### Chapter 16 Waves and Sound

Chapter 16 WAVES AND SOUND PREVIEW A wave is a disturbance which causes a transfer of energy. Mechanical waves need a medium in which to travel, but electromagnetic waves do not. Waves can be transverse

### Chapter 20 Study Questions Name: Class:

Chapter 20 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. As the wavelength increases, the frequency a. decreases.

### LAB 10 Waves and Resonance

Cabrillo College Physics l0l Name LAB 10 Waves and Resonance Read Hewitt Chapter 19 What to learn and explore Almost all of the information that we receive from our environment comes to us in the form

### How do waves interact with objects? How do waves behave when they move between two media? How do waves interact with other waves?

CHAPTER 20 3 Wave Interactions SECTION The Energy of Waves BEFORE YOU READ After you read this section, you should be able to answer these questions: How do waves interact with objects? How do waves behave

### (some) Types of Waves:

Waves hapter 25 (some) Types of Waves: Ocean waves Earth Quakes (ground vibrations) Sound Waves Light Waves Radio Waves Sonic Boom Microwave X Ray Infra Red waves RADAR SONAR Ultraviolet Waves Gamma Rays

### 9.2 Waves. Why learn about waves? -----,

-----, CHAPTER 9: WAVES AND SOUND 9.2 Waves A wave is an oscillation that travels from one place to another. A musician's instrument creates waves that carry sound to your ears. When you throw a stone

### Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials.

Unit 3 Lesson 1 Waves Florida Benchmarks SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials. Copyright Houghton Mifflin Harcourt Publishing

### Physics 1C. Lecture 12C. "Fluctuat nec mergitur. = She is swayed by the waves but does not sink." --Motto of the city of Paris

Physics 1C Lecture 12C "Fluctuat nec mergitur. = She is swayed by the waves but does not sink." --Motto of the city of Paris Outline Homework is intended for practice and preparation It is the basis for

### HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things:

Waves A wave is a that propagates p in a certain direction with a certain speed. 1D 2D 3D Physical medium Waves in water Waves in elastic bodies Sound Empty space (a vacuum) Electromagnetic waves HITES,

### waves? Properties Interactions

Chapter Introduction Lesson 1 Lesson 2 Lesson 3 What are waves? Wave Properties Chapter Wrap-Up Wave Interactions How do waves travel through matter? What do you think? Before you begin, decide if you

### Properties of waves. Definition:

Properties of waves A wave motion is the ability of transferring energy from one point (the source) to another point without there being any transfer of matter between the two points. Waves are either

### Gr. 11 Physics Waves and Sound

Gr. 11 Physics Waves and Sound This chart contains a complete list of the lessons and homework for Gr. 11 Physics. Please complete all the worksheets and problems listed under Homework before the next

### 19 Waves and Vibrations

19 Waves and Vibrations Answers and Solutions for Chapter 19 Reading Check Questions 1. A wiggle in time is a vibration; a wiggle in space and time is a wave. 2. The source of all waves is a vibration.

### Introduction to Waves and Sound

Introduction to Waves and Sound Principal Authors: Martin Mason, Mt. San Antonio College and Christine Carmichael, Woodbury University Based on the work of John Terrell and Roger Edmonds, Middlesex Community

### Waves, Sounds, and Light

Waves, Sounds, and Light A wave is a disturbance that transmits energy. The particles of a medium do not travel with the wave. Mechanical waves require a medium, but electromagnetic waves do not Particles

### A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

WAVES UNIT REVIEW EN: CALIFORNIA STATE QUESTIONS: 1. A sound wave is produced in a metal cylinder by striking one end. Which of the following occurs as the wave travels along the cylinder? A Its amplitude

### 2 Characteristics of Waves

CHAPTER 15 2 Characteristics of Waves SECTION Waves KEY IDEAS As you read this section, keep these questions in mind: What are some ways to measure and compare waves? How can you calculate the speed of

### Chapter 10: Waves The Test. Types of Waves: Surface Waves. Wave concepts. Types of Waves: Compression Waves. Types of Waves: Compression Waves

Chapter 10: Waves The Test Average score: 25/30 http://ps100.byu.edu/syllabus.aspx 40 Multiple Choice Scores 35 30 25 20 Frequency 15 10 Did you read chapter 10 before coming to class? A. Yes B. No 5 0

### Sinusoidal Waves A sinusoidal wave moving in the positive direction of an x axis has the mathematical form

436 CHAPTER 16 WAVES I Transverse and Longitudinal Waves Mechanical waves can eist onl in material media and are governed b Newton s laws. Transverse mechanical waves, like those on a stretched string,

### Physics Workbook WALCH PUBLISHING

Physics Workbook WALCH PUBLISHING Table of Contents To the Student.............................. vii Unit 1: Forces Activity 1 Distance and Displacement................ 1 Activity 2 Vector and Scalar Quantities...............

### Outline Chapter 7 Waves

Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

### Review packet Physical Science Unit Waves - 1

Review packet Physical Science Unit Waves - 1 1. A stretched spring attached to two fixed points is compressed on one end and released, as shown below. 4. When the density of a substance is measured, which

### Diffraction of Water Waves. Pg

Diffraction of Water Waves Pg. 459-461 Diffraction Diffraction is the bending of a wave as the wave passes through an opening or by an obstacle The amount of diffraction depends on the wavelength of the

### Waves and Sound Final Review

Name You will need to be able to: Waves and Sound Final Review 1) Describe parts of waves, use wave equation, and determine frequency and period. 2) Distinguish between transverse and longitudinal waves,

### LECTURE 5 TRAVELING WAVES. Instructor: Kazumi Tolich

LECTURE 5 TRAVELING WAVES Instructor: Kazumi Tolich Lecture 5 2 15.1 The wave model Mechanical waves Electromagnetic and matter waves The transverse and longitudinal waves Traveling waves Waves on a string

### Introduction to Waves

chapter 9 Introduction to Waves section 3 The Behavior of Waves Before You Read Think about a time when you walked down an empty hallway and heard the echo of your footsteps. Write what you think caused

### EXPERIMENT 6 THE SPEED OF SOUND USING THE RESONANCE OF LONGITUDINAL WAVES

EXPERIMENT 6 THE SPEED OF SOUND USING THE RESONANCE OF LONGITUDINAL WAVES Sound waves produced by a tuning fork are sent down a tube filled with a gas. The waves reflect back up the tube from a water surface

### Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy.

WAVES Concept of Wave A wave is a disturbance that is propagated through a system. Waves transfer energy. Crest: the highest point on a wave. Trough: the lowest point on a wave. Amplitude: the maximum

### Chapter 1. Energy

1.26. Wave Amplitude www.ck12.org 1.26 Wave Amplitude Define wave amplitude. State how to measure the amplitude of transverse and longitudinal waves. Explain what determines the amplitude of a wave. On