Wind and Wave Power. By: Jon Riddle, Phillip Timmons, Joe Hanson, Chris Lee-Foss and Xavier Schauls

Size: px
Start display at page:

Download "Wind and Wave Power. By: Jon Riddle, Phillip Timmons, Joe Hanson, Chris Lee-Foss and Xavier Schauls"

Transcription

1 Wind and Wave Power By: Jon Riddle, Phillip Timmons, Joe Hanson, Chris Lee-Foss and Xavier Schauls

2 Equation for power of a wave The equation for the power of a wave is equal to the density of the liquid multiplied by the acceleration due to gravity squared multiplied by the amplitude squared multiplied by the period, over 8 pi. =

3 Power per unit length of a wavefront The power per unit length of a wavefront is equal to (Density of water)(acceleration due to gravity squared) (Amplitude squared)/(4 times the wave frequency)

4 Sample Problem Let's find the power of a 100 meter wave with amplitude 2 meters and a frequency of 2 Hz. (1 Kg/m³)*(9.8 m/s²)²*(2 m)² / (4*2Hz)= Watt per Meter (48.02 W/m)*(100 m)= 4802 W Therefore this 100 meter wave front contains 4802 W of power. Any energy converting device will lose a portion of this through inefficiency.

5 Types of wave energy collectors: Oscillating Water Column Hinged Contour Device Buoyant Moored Device

6 The Oscillating Water Column The Oscillating water column is a device which captures the waves, and forces them into a chamber. This compresses the air in the chamber in order to power a turbine. Note that the chamber is not contained, only on the top part is it whole, which allows the motion of the wave to move in and out. While it is impossible to fully capture the energy of a wave, the efficiency of the column can vary immensely, with a theoretical maximum of 70%. The power available in the OWC chamber is equivalent to (Pressure at turbine duct+air density*air speed squared/2) *Air speed*duct area

7 Buoyant Moored Device This device floats on water, and is held to the seabed by mooring lines. This enables it to resist the waves, and thereby draw power.

8 Hinged Contour Device The hinged contour device is composed of several sections on top of the waves. It is moored to the seabed, but slackly. The motion of the waves causes different parts of the device to move, a motion which is resisted by hydraulic pumps.

9 Wind turbines Wind turbines are the typical method of harvesting wind power. The power output of a generator is proportional to the area which is covered by the rotor, referred to as swept area, and the cube of the wind speed. In addition, one must consider kinetic energy, 0.5 of mass times velocity squared. In order to find the mass of the air, one requires air density multiplied by swept area multiplied by velocity. Thus, the power is equal to 0.5*air density*swept area*velocity cubed. Of course, due to various limiting factors, the result is always much less.

10 Sample Problem P=½ρAV³ Let's find the power for wind travelling at 7m/s into a wind turbine with a 1.5m² swept area. ( kg/m3)*(1.5m²)*(7 m/s)³ / 2 = W Therefore this wind contains 630 Watts of power. With inefficiencies only 40-50% of this could be converted to usable electrical power.

11 The Betz Limit The Betz Limit is a law which states that it is impossible for a wind turbine to convert more than 16/27 of the KE of the wind into mechanical energy. This is a result of the design of the wind turbine, which by it's very nature allows much of the wind to escape. In order to have a conversion ratio of 1, a turbine would need to be a round disk stopping all of the wind. However, if this were the case, it would be unable to move. The Betz Limit is the absolute limit to the mechanical design of the turbine. However, this being reality, the limit of what engineers can actually achieve is much lower, as a result of various difficulties in maintaining a large and complex wind turbine to harness wind power in various directions.

12 Sankey Diagrams Sankey diagrams are flow diagrams used to show proportionally the amount of flow between certain processes. They are mainly used to visualize energy and efficiency for chemical engineering and environmental engineering. They were created by Matthew Henry Phineas Riall Sankey to show the efficiency of a steamship.

13 Wind Energy Sankey Diagram Energy is lost because of Betz Law, Generator losses, Sub-system losses, and availability factor losses. This leaves only 40-50% output in electrical energy.

Exercise 3. Power Versus Wind Speed EXERCISE OBJECTIVE DISCUSSION OUTLINE. Air density DISCUSSION

Exercise 3. Power Versus Wind Speed EXERCISE OBJECTIVE DISCUSSION OUTLINE. Air density DISCUSSION Exercise 3 Power Versus Wind Speed EXERCISE OBJECTIVE When you have completed this exercise, you will know how to calculate the power contained in the wind, and how wind power varies with wind speed. You

More information

Designing Wave Energy Converting Device. Jaimie Minseo Lee. The Academy of Science and Technology The Woodlands College Park High School, Texas

Designing Wave Energy Converting Device. Jaimie Minseo Lee. The Academy of Science and Technology The Woodlands College Park High School, Texas Designing Wave Energy Converting Device Jaimie Minseo Lee The Academy of Science and Technology The Woodlands College Park High School, Texas Table of Contents Abstract... i 1.0 Introduction... 1 2.0 Test

More information

Wind Energy Resource and Technologies

Wind Energy Resource and Technologies Wind Energy Resource and Technologies Dr. Ram Chandra DBT s Energy Bioscience Overseas Fellow Centre for Rural Development and Technology Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016

More information

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves Vibrations and Waves Section 1 Preview Section 1 Simple Harmonic Motion Section 2 Measuring Simple Harmonic Motion Section 3 Properties of Waves Section 4 Wave Interactions Vibrations and Waves Section

More information

Fontes Renováveis Não-Convencionais. Parte II

Fontes Renováveis Não-Convencionais. Parte II Fontes Renováveis Não-Convencionais Parte II Prof. Antonio Simões Costa Prof. Tom Overbye, U. of Illinois Power in the Wind Consider the kinetic energy of a packet of air with mass m moving at velocity

More information

Chapter 9 Fluids and Buoyant Force

Chapter 9 Fluids and Buoyant Force Chapter 9 Fluids and Buoyant Force In Physics, liquids and gases are collectively called fluids. 3/0/018 8:56 AM 1 Fluids and Buoyant Force Formula for Mass Density density mass volume m V water 1000 kg

More information

Wind Project Siting and Permitting Blaine Loos

Wind Project Siting and Permitting Blaine Loos Wind Project Siting and Permitting Blaine Loos Energy Project Analyst Center for Wind Energy at James Madison University Wind Project Siting and Permitting The Energy in Wind Resource Assessment (Macro-siting)

More information

Wave Energy Converters (WECs)

Wave Energy Converters (WECs) Aquamarine Power Oyster* The Oyster is uniquely designed to harness wave energy in a near-shore environment. It is composed primarily of a simple mechanical hinged flap connected to the seabed at a depth

More information

Sustainable Energy Science and Engineering Center. Ocean Energy. Reference: Renewable Energy by Godfrey Boyle, Oxford University Press, 2004.

Sustainable Energy Science and Engineering Center. Ocean Energy. Reference: Renewable Energy by Godfrey Boyle, Oxford University Press, 2004. Ocean Energy Reference: Renewable Energy by Godfrey Boyle, Oxford University Press, 2004. Ocean Energy Oceans cover most of the (70%) of the earth s surface and they generate thermal energy from the sun

More information

Fluids always move from high pressure to low pressure. Air molecules pulled by gravity = atmospheric pressure

Fluids always move from high pressure to low pressure. Air molecules pulled by gravity = atmospheric pressure 9.1 Fluids Under Pressure Fluids always move from high pressure to low pressure w Fluids under pressure and compressed gases are used for a variety of everyday tasks Air molecules pulled by gravity = atmospheric

More information

Wave Energy. ME922/927 Wave energy

Wave Energy. ME922/927 Wave energy Wave Energy ME922/927 Wave energy 1 Global ocean wave energy resource 102 48 38 15 15 24 50 97 32 49 19 18 25 33 92 70 38 19 17 21 50 12 38 34 14 40 43 78 20 41 18 10 37 72 84 48 Annual average in kw/m

More information

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things:

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things: Waves A wave is a that propagates p in a certain direction with a certain speed. 1D 2D 3D Physical medium Waves in water Waves in elastic bodies Sound Empty space (a vacuum) Electromagnetic waves HITES,

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

Static Fluids. **All simulations and videos required for this package can be found on my website, here:

Static Fluids. **All simulations and videos required for this package can be found on my website, here: DP Physics HL Static Fluids **All simulations and videos required for this package can be found on my website, here: http://ismackinsey.weebly.com/fluids-hl.html Fluids are substances that can flow, so

More information

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. Waves-Wave Basics 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. x ray 2. A single vibratory disturbance moving through a medium is called

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

Farm Energy IQ. Farms Today Securing Our Energy Future. Wind Energy on Farms

Farm Energy IQ. Farms Today Securing Our Energy Future. Wind Energy on Farms Farm Energy IQ Farms Today Securing Our Energy Future Wind Energy on Farms Farm Energy IQ Wind Energy on Farms Ed Johnstonbaugh, Penn State Extension Objectives of this Module At the conclusion of this

More information

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School Pre AP Physics: Unit 7 Vibrations, Waves, and Sound Clear Creek High School Simple Harmonic Motion Simple Harmonic Motion Constant periodic motion of an object. An object oscillates back and forth along

More information

Renewable and Alternative Energies

Renewable and Alternative Energies Department of Electrical and Energy Engineering This work is published under a license: Creative Commons BY-NC-SA 4.0 Contents Topic 1. Wind energy. Topic 2. Solar energy.. Topic 4. Hydropower. Topic 5.

More information

Small Scale Wind Technologies Part 2. Centre for Renewable Energy at Dundalk IT CREDIT

Small Scale Wind Technologies Part 2. Centre for Renewable Energy at Dundalk IT CREDIT Small Scale Wind Technologies Part 2 Centre for Renewable Energy at Dundalk IT CREDIT 1 Part 2 Small and large scale wind turbine technologies 2 Overview of small scale grid connected system Wind Turbine

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 11-7: WAVE MOTION LSN 11-8: TYPES OF WAVES; LONGITUDINAL AND TRANSVERSE LSN 11-9: ENERGY TRANSPORTED BY WAVES Physics of Waves Questions From Reading

More information

KNOWN: Mass, pressure, temperature, and specific volume of water vapor.

KNOWN: Mass, pressure, temperature, and specific volume of water vapor. .0 The specific volume of 5 kg of water vapor at.5 MPa, 440 o C is 0.60 m /kg. Determine (a) the volume, in m, occupied by the water vapor, (b) the amount of water vapor present, in gram moles, and (c)

More information

AN ANALYSIS ON HIGH PRESSURE DYNAMIC CALIBRATORS USED IN THE DEFENSE AREAS

AN ANALYSIS ON HIGH PRESSURE DYNAMIC CALIBRATORS USED IN THE DEFENSE AREAS AN ANALYSIS ON HIGH PRESSURE DYNAMIC CALIBRATORS USED IN THE DEFENSE AREAS Sung Soo HongPresenter Agency for Defense Development, Taean, 357-942, South Korea sungsoo@add.re.kr Abstract Up to now, there

More information

Density and Specific Gravity

Density and Specific Gravity Fluids Phases of Matter Matter is anything that has mass and takes up space (volume). The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a

More information

MODEL EXPERIMENT AND FIELD TEST OF PW-OWC TYPE WAVE POWER EXTRACTING BREAKWATER

MODEL EXPERIMENT AND FIELD TEST OF PW-OWC TYPE WAVE POWER EXTRACTING BREAKWATER MODEL EXPERIMENT AND FIELD TEST OF PW-OWC TYPE WAVE POWER EXTRACTING BREAKWATER Kenichiro Shimosako 1, Taro Arikawa 2, Masahide Takeda 3, Kazuyoshi Kihara 4, Yasushi Hosokawa 5, Takayuki Fueki 6, Koichi

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

Physics 1C. Lecture 12C. "Fluctuat nec mergitur. = She is swayed by the waves but does not sink." --Motto of the city of Paris

Physics 1C. Lecture 12C. Fluctuat nec mergitur. = She is swayed by the waves but does not sink. --Motto of the city of Paris Physics 1C Lecture 12C "Fluctuat nec mergitur. = She is swayed by the waves but does not sink." --Motto of the city of Paris Outline Homework is intended for practice and preparation It is the basis for

More information

Chapter 12. Properties of Gases

Chapter 12. Properties of Gases Properties of Gases Each state of matter has its own properties. Gases have unique properties because the distance between the particles of a gas is much greater than the distance between the particles

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another. 17.2 - Waves Waves Mechanical Waves A disturbance in matter that carries energy from one place to another. Medium The material through which a wave travels. Medium can be any three states of matter: solid,

More information

Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management

Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management Energy Output for Wind Power Management Spring 215 Variability in wind Distribution plotting Mean power of the wind Betz' law Power density Power curves The power coefficient Calculator guide The power

More information

Tidal streams and tidal stream energy device design

Tidal streams and tidal stream energy device design Tidal streams and tidal stream energy device design This technical article introduces fundamental characteristics of tidal streams and links these to the power production of tidal stream energy devices.

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

CHAPTER 16. Waves and Sound

CHAPTER 16. Waves and Sound CHAPTER 16 Waves and Sound Objectives: After completion of this module, you should be able to: Demonstrate your understanding of transverse and longitudinal waves. Define, relate and apply the concepts

More information

Sound waves... light waves... water waves...

Sound waves... light waves... water waves... Sound waves... light waves... water waves... 1S-13 Slinky on Stand Creating longitudinal compression waves in a slinky What happens when you pull back and release one end of the slinky? 4/11/2011 Physics

More information

AN ISOLATED SMALL WIND TURBINE EMULATOR

AN ISOLATED SMALL WIND TURBINE EMULATOR AN ISOLATED SMALL WIND TURBINE EMULATOR Md. Arifujjaman Graduate Student Seminar: Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NL, Canada

More information

Whitney Hauslein Global War Wa ming

Whitney Hauslein Global War Wa ming Whitney Hauslein Global Warming The Ocean has only recently been used and tested as a new resource to be used as an alternative energy source. This seems awful late in forthcoming since the ocean covers

More information

Chapter 15 Fluid. Density

Chapter 15 Fluid. Density Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

Applying Hooke s Law to Multiple Bungee Cords. Introduction

Applying Hooke s Law to Multiple Bungee Cords. Introduction Applying Hooke s Law to Multiple Bungee Cords Introduction Hooke s Law declares that the force exerted on a spring is proportional to the amount of stretch or compression on the spring, is always directed

More information

Chapter 12: Mechanical Waves and Sound

Chapter 12: Mechanical Waves and Sound Chapter 12 Lecture Chapter 12: Mechanical Waves and Sound Goals for Chapter 12 To describe mechanical waves. To study superposition, standing waves and sound. To present sound as a standing longitudinal

More information

Pressure is defined as force per unit area. Any fluid can exert a force

Pressure is defined as force per unit area. Any fluid can exert a force Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary

More information

Fluid Mechanics - Hydrostatics. Sections 11 5 and 6

Fluid Mechanics - Hydrostatics. Sections 11 5 and 6 Fluid Mechanics - Hydrostatics Sections 11 5 and 6 A closed system If you take a liquid and place it in a system that is CLOSED like plumbing for example or a car s brake line, the PRESSURE is the same

More information

Chs. 16 and 17 Mechanical Waves

Chs. 16 and 17 Mechanical Waves Chs. 16 and 17 Mechanical Waves The nature of waves A wave is a traveling disturbance that carries energy from one place to another, and even though matter may be disturbed as a wave travels through a

More information

Section 1: Types of Waves

Section 1: Types of Waves Waves Section 1 Section 1: Types of Waves Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves Waves Section 1 Key Ideas What does a wave carry?

More information

EOY Force and Motion REVIEW

EOY Force and Motion REVIEW Name: ate: 1. The diagram shows two bowling balls of equal mass. all is resting near the edge of a shelf. all is resting on the ground below. 2. Two workers use a ramp to help lift a box onto a dock as

More information

Dec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned?

Dec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned? Over the last two periods we discussed/observed the concept of density. What have we learned? is a ratio of mass to volume describes how much matter is packed into a space is a property of both solids

More information

AP Physics B Summer Homework (Show work)

AP Physics B Summer Homework (Show work) #1 NAME: AP Physics B Summer Homework (Show work) #2 Fill in the radian conversion of each angle and the trigonometric value at each angle on the chart. Degree 0 o 30 o 45 o 60 o 90 o 180 o 270 o 360 o

More information

EDUCTOR. principle of operation

EDUCTOR. principle of operation EDUCTOR principle of operation condensate and mixing eductor s are designed to mix two liquids intimately in various proportions in operations where the pressure liquid is the greater proportion of the

More information

Operating Principle, Performance and Applications of the Wave Mill

Operating Principle, Performance and Applications of the Wave Mill Journal of Energy and Power Engineering 11 (2017) 311-316 doi: 10.17265/1934-8975/2017.05.004 D DAVID PUBLISHING Operating Principle, Performance and Applications of the Wave Mill Ivan Voropaev Wave Power

More information

3: PROPERTIES OF WAVES

3: PROPERTIES OF WAVES 8/2/2005 3: PROPERTIES OF WAVES Definition of Wave A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH SLINKIES Several basic properties of wave behavior can be demonstrated with

More information

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH SLINKIES Several basic properties of wave behavior can be demonstrated with long

More information

Ocean Energy. Haley, Shane, Alston

Ocean Energy. Haley, Shane, Alston Ocean Energy Haley, Shane, Alston What is Ocean Energy? The world s oceans cover nearly 70% of the world's surface The oceans are the world's largest collector of the sun s energy that is continually

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK FABRICATION AND TESTING OF CLOSE CASING VERTICAL AXIS WIND TURBINE WITH TUNNELLING

More information

From and

From  and From http://www.school-for-champions.com/science/fluidpressure.htm and http://www.school-forchampions.com/science/fluidfloating.htm by Ron Kurtus, School for Champions Pressure in Fluids by Ron Kurtus

More information

Lecture 8. Sound Waves Superposition and Standing Waves

Lecture 8. Sound Waves Superposition and Standing Waves Lecture 8 Sound Waves Superposition and Standing Waves Sound Waves Speed of Sound Waves Intensity of Periodic Sound Waves The Doppler Effect Sound Waves are the most common example of longitudinal waves.

More information

SLIDER CRANK MECHANISM FOR WAVE ENERGY CONVERSION (WEC): AN EXPERIMENTAL STUDY. Andrew Carlton Fowler

SLIDER CRANK MECHANISM FOR WAVE ENERGY CONVERSION (WEC): AN EXPERIMENTAL STUDY. Andrew Carlton Fowler SLIDER CRANK MECHANISM FOR WAVE ENERGY CONVERSION (WEC): AN EXPERIMENTAL STUDY A thesis presented to the faculty of the Graduate School of Western Carolina University in partial fulfillment of the requirements

More information

Experiment of a new style oscillating water column device of wave energy converter

Experiment of a new style oscillating water column device of wave energy converter http://www.aimspress.com/ AIMS Energy, 3(3): 421-427. DOI: 10.3934/energy.2015.3.421 Received date 16 April 2015, Accepted date 01 September 2015, Published date 08 September 2015 Research article Experiment

More information

PHYSICS - CLUTCH CH 16: WAVES & SOUND.

PHYSICS - CLUTCH CH 16: WAVES & SOUND. !! www.clutchprep.com CONCEPT: WHAT IS A WAVE? A WAVE is a moving disturbance (oscillation) that carries energy. - A common example is a wave on a string, where the moving string carries energy We re only

More information

3. How many kilograms of air is in the room?

3. How many kilograms of air is in the room? 1. Astronomers use density as a clue to the composition of distant objects. Judging by the orbits of its moons the mass of Saturn is found to be 5.68 10 26 kg. (a) Use its mean radius 58 230 km to determine

More information

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π Agenda Today: HW quiz, More simple harmonic motion and waves Thursday: More waves Midterm scores will be posted by Thursday. Chapter 13 Problem 28 Calculate the buoyant force due to the surrounding air

More information

Quiz name: Chapter 13 Test Review - Fluids

Quiz name: Chapter 13 Test Review - Fluids Name: Quiz name: Chapter 13 Test Review - Fluids Date: 1. All fluids are A gases B liquids C gasses or liquids D non-metallic E transparent 2. 1 Pa is A 1 N/m B 1 m/n C 1 kg/(m s) D 1 kg/(m s 2 ) E 1 N/m

More information

Wind turbine Varying blade length with wind speed

Wind turbine Varying blade length with wind speed IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 01-05 www.iosrjournals.org Wind turbine Varying blade length with wind speed Mohammed Ashique

More information

Chemistry Chapter 10 Test

Chemistry Chapter 10 Test Chemistry Chapter 10 Test True/False Indicate whether the sentence or statement is true or false. 1. KMT stands for Kinetic Mole Theory. 2. One of the assumptions in the KMT is that the particles are spread

More information

EXPERIMENT 6 THE SPEED OF SOUND USING THE RESONANCE OF LONGITUDINAL WAVES

EXPERIMENT 6 THE SPEED OF SOUND USING THE RESONANCE OF LONGITUDINAL WAVES EXPERIMENT 6 THE SPEED OF SOUND USING THE RESONANCE OF LONGITUDINAL WAVES Sound waves produced by a tuning fork are sent down a tube filled with a gas. The waves reflect back up the tube from a water surface

More information

Waves Chapter Problems

Waves Chapter Problems Waves Chapter Problems Wave speed, frequency and wavelength 1. A fisherman noticed that a float makes 30 oscillations in 15 seconds. The distance between two consecutive crests is 2 m. What is the period

More information

VERTICALLY AND HORIZONTALLY MOUNTED WIND MILLS. Wind Energy Production in Tampere University of Applied Sciences

VERTICALLY AND HORIZONTALLY MOUNTED WIND MILLS. Wind Energy Production in Tampere University of Applied Sciences VERTICALLY AND HORIZONTALLY MOUNTED WIND MILLS Wind Energy Production in Tampere University of Applied Sciences Ekaterina Evdokimova Bachelor s thesis May 2013 Degree Programme in Environmental Engineering

More information

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource

Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio. Spark 101 Educator Resource Can Wind Energy Be Captured in New York City? Case Study on Urban Wind based on a Feasibility Study by Orange Line Studio Spark 101 Educator Resource Copyright 2013 Defining Key Concepts What is wind power?

More information

Compressors. Basic Classification and design overview

Compressors. Basic Classification and design overview Compressors Basic Classification and design overview What are compressors? Compressors are mechanical devices that compresses gases. It is widely used in industries and has various applications How they

More information

Define transverse waves and longitudinal waves. Draw a simple diagram of each

Define transverse waves and longitudinal waves. Draw a simple diagram of each AP Physics Study Guide Chapters 11, 12, 24 Waves, Sound, Light & Interference Name Write the equation that defines each quantity, include units for all quantities. wave speed-wavelength equation natural

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. Fluids 1a. [1 mark] The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. State the difference in terms of the velocity of the

More information

Standing Waves in a String

Standing Waves in a String Standing Waves in a String OBJECTIVE To understand the circumstances necessary to produce a standing wave. To observe and define the quantities associated with a standing wave. To determine the wavelength

More information

Old-Exam.Questions-Ch-14 T072 T071

Old-Exam.Questions-Ch-14 T072 T071 Old-Exam.Questions-Ch-14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density

More information

Waves Practice Problems AP Physics In a wave, the distance traveled by a wave during one period is called:

Waves Practice Problems AP Physics In a wave, the distance traveled by a wave during one period is called: Waves Practice Problems AP Physics 1 Name 1. In a wave, the distance traveled by a wave during one period is called: (A) Amplitude (B) Frequency (C) Wavelength (D) Displacement 2. A stretched wire resonates

More information

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the

More information

AP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43

AP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43 Slide 1 / 43 Slide 2 / 43 P Fluids Practice Problems Multiple hoice Slide 3 / 43 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 kg/m 3 are selected for an experiment.

More information

Topic 4.4 Wave Characteristics (2 hours)

Topic 4.4 Wave Characteristics (2 hours) Topic 4.4 Wave Characteristics (2 hours) You must live in the present, launch yourself on every wave, find your eternity in each moment. Henry David Thoreau 1 What s a wave? A wave is a disturbance that

More information

Chapter 10: Gases. Characteristics of Gases

Chapter 10: Gases. Characteristics of Gases Chapter 10: Gases Learning Outcomes: Calculate pressure and convert between pressure units with an emphasis on torr and atmospheres. Calculate P, V, n, or T using the ideal-gas equation. Explain how the

More information

Third measurement MEASUREMENT OF PRESSURE

Third measurement MEASUREMENT OF PRESSURE 1. Pressure gauges using liquids Third measurement MEASUREMENT OF PRESSURE U tube manometers are the simplest instruments to measure pressure with. In Fig.22 there can be seen three kinds of U tube manometers

More information

The Language of Physics

The Language of Physics Solution The rate of flow of blood is found from equation 13H.4, where q, the viscosity of blood, is 4.00 X 10~3 Ns/m2. Let us assume that the total pressure differential is obtained by the effects of

More information

Theoretical Solution 1, 9 th Asian Physics Olympiad (Mongolia)

Theoretical Solution 1, 9 th Asian Physics Olympiad (Mongolia) Solutions: S1. The condition of the survival and growth for AB appeared in the water volume at height h < H is the competiveness of the pressures acting inside and outside (atmospheric, hydrostatic and

More information

The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through the Muffler Combined With Valve Motion

The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through the Muffler Combined With Valve Motion Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering The Estimation Of Compressor Performance Using A Theoretical Analysis Of The Gas Flow Through

More information

Enter your parameter set number (1-27)

Enter your parameter set number (1-27) 1- Helium balloons fly and balloons with air sink. Assume that we want to get a balloon that is just floating in the air, neither rising nor falling, when a small weight is placed hanging in the balloon.

More information

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids 13-7 Buoyancy and Archimedes Principle This is an object submerged in a fluid. There is a net force on the object because the pressures at the top and bottom of it are different. The

More information

(Refer Slide Time: 2:16)

(Refer Slide Time: 2:16) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-23. Diffuser and Cavitation. Good morning and welcome you all to this

More information

Quantitative Properties of Gases. 1. Amount (mass or moles) 2. Volume 3. Pressure 4. Temperature

Quantitative Properties of Gases. 1. Amount (mass or moles) 2. Volume 3. Pressure 4. Temperature Chapter 2 Gases Quantitative Properties of Gases 1. Amount (mass or moles) 2. Volume 3. Pressure 4. Temperature Kinetic Molecular Theory: (Video) Smallest particles (atoms, ions or molecules) of a substance

More information

Acoustical approach to analysis of energy conversions in an oscillating bubble

Acoustical approach to analysis of energy conversions in an oscillating bubble 6. 8. října 2009 Acoustical approach to analysis of energy conversions in an oscillating bubble Karel Vokurka a, Silvano Buogo b a Physics Department, Technical University of Liberec, Studentská 2, 461

More information

LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH A STRING Several basic properties of wave behavior can be demonstrated with

More information

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7.

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7. Phys101 Lectures 21-22 Fluids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 10-1,2,3,4,5,6,7. Page 1 10-1 Phases of Matter The three common phases of matter are solid,

More information

Name: Section: Date: Wave Review

Name: Section: Date: Wave Review Name: Section: Date: Types of waves: 1. Transverse waves: Wave Review To do: take a slinky and shake the end up and down Examples: stretched strings of musical instruments and light waves Choose one of

More information

Job Sheet 1 Blade Aerodynamics

Job Sheet 1 Blade Aerodynamics Job Sheet 1 Blade Aerodynamics The rotor is the most important part of a wind turbine. It is through the rotor that the energy of the wind is converted into mechanical energy, which turns the main shaft

More information

Centrifugal Pump Intro

Centrifugal Pump Intro Pump ED 101 Joe Evans, Ph.D http://www.pumped101.com Centrifugal Pump Intro Part 1 - Elementary Mechanics & Hydraulics What is a Centrifugal Pump? It is a machine that imparts energy to a fluid causing

More information

PHYSICS - GIANCOLI CALC 4E CH 15: WAVE MOTION.

PHYSICS - GIANCOLI CALC 4E CH 15: WAVE MOTION. !! www.clutchprep.com CONCEPT: WHAT IS A WAVE? A WAVE is a moving disturbance (oscillation) that carries energy. - A common example is a wave on a string, where the moving string carries energy We re only

More information

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid?

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid? CHAPTER 3 SECTION 3 States of Matter Fluids KEY IDEAS As you read this section, keep these questions in mind: How do fluids exert pressure? What causes objects to float? What happens when pressure in a

More information

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser

More information

Date Lab Time Name. Wave Motion

Date Lab Time Name. Wave Motion Objective Wave Motion This laboratory examines the principle on which most musical instruments operate and allows the student to observe standing waves, hear resonance and calculate the velocity of the

More information

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude Slide 1 / 20 1 The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength mplitude Slide 2 / 20 2 Which of the following is the speed of a wave traveling with a

More information