Numerical modeling of refraction and diffraction

Size: px
Start display at page:

Download "Numerical modeling of refraction and diffraction"

Transcription

1 Numerical modeling of refraction and diffraction L. Balas, A. inan Civil Engineering Department, Gazi University, Turkey Abstract A numerical model which simulates the propagation of waves over a complex bathymetry where the bottom contours are not straight and parallel, has been developed. In the model, the combined effects of refraction and diffraction can be considered. It is assumed that waves are linear, harmonic, and irrotational, and the effects of currents and reflection on the wave propagation are negligible. Mild slope equation is modified, assuming that there is no energy propagation along the wave crests, however, the wave phase function changes to handle any horizontal variation in the wave height. In this manner, the disadvantage of the parabolic approximation that one grid coordinate should follow the dominant wave direction, which causes problems in complex bathymetries, has been overcome. The finite difference method has been selected as the solution method. Applied methodology allows the check for breaking. Model results are compared with those from laboratory experiments published in the literature, and model is applied to Marmara Sea. 1 Introduction The wave ray method and linear gravity wave theory were used in the early works of wave transformation. Berkoffll] solved transformations of linear waves considering the effect of both refraction and diffraction with an elliptic equation. This elliptic equation is known in the literature as mild slope equation. Radder[lO] simplified the mild slope equation with a parabolic approximation. The advantages of his model, are the validity for a non-homogenous media and the applicability to short waves in large coastal areas with complex bottom

2 186 Coastal Engineering V: Computer Modellit~g of Seas and Coastal Regions topography. Booij[3] solved the mild slope as a fimction of bottom slope. Since the waves are periodic, steady state solution was used. Model was proved to be applicable till a bottom slope of 113. Kirby&Darlymple[S] solved the parabolic equation for the Stokes waves by the multi-scale perturbation method. Copeland[5] solved the first order mild slope equation, including reflected waves. Chamberlain&Porter[4] used modified mild slope equations in the wave transformation. If sea bed is formed by ripples, modified mild slope equation is used, because normal mild slope equation does not give good results under these conditions. Tang&Quellet[l l] adapted nonlinear mild slope equation to the multi-frequent waves. As linear part of the equations includes mild slope equations, nonlinear part of them contains Boussinesq equation. The parabolic approximation has the main disadvantage that it requires one grid coordinate to follow the dominant wave direction (Ebersole[7]). When the bottom contours are not straight and parallel as in the case of complex bathymetries, this requirement causes problems. The model proposed by Ebersole[7] is an alternative approach to solve the open coast wave propagation problem in a more general way. It was based on the assumption that no energy was propagated along wave crests, however the wave phase hnction changed to accommodate any horizontal variation in wave height. 2 Theory The complex velocity potential has been chosen as (Ebersole[7]) ; + = aei' (1 in which, a(x,y): wave amplitude, s(x,y): phase function of the wave. If Eqn (1) is inserted to the equation that describes the propagation of harmonic linear waves in two horizontal dimensions, the following equation can be derived; in which V: horizontal gradient operator. To account the effect of diffraction, the wave phase fimction changes to consider any horizontal variation in the wave height. By the use of irrotationality of the gradient of the wave phase, function following equations can be derived; d in which i and j are the unit vectors in the X and y directions, respectively. The local wave angle, B(x,y) can be found from the following expression;

3 Coastal Engineering V: Computer Modelling of Seas and Coastal Region5 187 The following energy equation is used to determine wave amplitude; Eqn (6) together with Eqn (2) and Eqn (7) result in the set of three equations that will be solved in terms of three wave parameters, H, 8 and / Vs / (Ebersole[7]). Eqns (6),(8) and (9) describe the refraction and diffraction phenomena. The basic assumptions are that the waves are linear, harmonic, irrotational, reflection is neglected and bottom slopes are small. 3 Numerical solution Solution method is a finite difference method that uses the mesh system shown in Figure (1). The fmite difference approximations can handle the variations in the horizontal mesh sizes. The horizontal mesh size Ax in the x-coordinate is orthogonal to the horizontal mesh size Ay in the y-coordinate. The horizontal mesh sizes Ax and Ay can be different from each other. Also, Ax can vary along the X coordinate and Ay can vary along the y coordinate. Figure 1. Finite difference mesh system

4 188 Coastal Engineering V: Computer Modelling of Seas and Coastal Regions Input model parameters are the deep water wave parameters, wave height (Ho), wave approach angle (80) and the wave period (T). Partial derivatives in the X-direction are expressed by forward finite differences of order O(Ax), and the partial derivatives in the y-direction are expressed by central finite differences of order 0(ay2) in equation (6) and in Equation (9), whereas partial derivatives in the X-direction are approximated with backward finite differences of order O(Ax), and partial derivatives in the y-direction are expressed by central finite differences of order 0(ay2) in Equation (8). Wave breaking is controlled during the computations. 4 Model applications Model predictions are compared with the results of a laboratory experiment (Whalin[l3]). The wave tank used in the experiments is shown in Figure 2. Deep water wave parameters are T=1.0 sec and H=0.019 m. Along the lateral boundaries, the gradient of wave height perpendicular to side walls is assumed to be zero, and wave approach angles are assumed to be in the X direction. Topography is symmetric about y=3.048m. Water depth changes from m to rn. Two different mesh sizes are used in the X-direction. For X values larger than x=15 m, the mesh size is Ax=0.762m, and it is equal to Ax=0.305m for X values smaller than x=15 m. The mesh size used in the y-direction is Ay=0.762m. Lineer waves were produced at the water depth of m. On the slope, there are semicircular steps that result in strong wave convergence. In this region, diffractive effects play an important role, and model differs from pure refraction models considerably. Comparisons of model predictions and measured data are shown in Figure 3. Results of study performed by Tsay&Liu[l2]) are presented in Figure 3 for comparison. Model simulation reflects well the effect of diffraction phenomenon and model predictions are in good agreement with the experimental results. Figure 2. The bathymetry of wave tank (water depths are in m) (Whalin, 1972)

5 Coastal Engineering V: Computer Modelling of Seas and Coastal Regions l89 - model -----Tsay and Liu, non Ihnear -Tsay and Liu, linear / *.Wholin / / / Figure 3. Comparison of model predictions where * experimental data (Whalin[l3]), solid line: model predictions, numerical solution (nonlinear) of Tsay&Liu[l2], numerical solution (linear) of Tsay&Liu[l2] (T= l S, a=0.0195m and 8=0 ). In the second application, model predictions are compared with the results of wave tank experiment done by Berkoff et a1.[2]. The wave period of incoming waves is T=ls, and the wave height is H= m. Wave approach angle is 18.5". Water depths in the tank decreases from 0.45m with a bottom slope of The bathymetry of the wave tank is given in Figure (4). In the numerical model grid sizes are selected as Ax=0.5m and Ay=O.Sm. Numerical model predictions along the cross section of x=l1 m and x=13 m are compared with the experimental data of Berkhoff et a1.[2], and presented in Figure (5) and in Figure (6), respectively. For comparison, numerical predictions of Kirby&Dalrymple[9] are depicted in the figures as well. Model predictions are in good agreement with the measurements. Model well reflects the experimental results near the shoal area.

6 190 Coastal Engineering V: Computer Modelling of Seas and Coastal Regions Figure 4. Wave tank bathymetry (water depths are in m) (Berkoff, 1982). - model Kirby,non-linear.*.I.. Berkoff et al. Figure 5. Variation of relative wave height at x=l lm.

7 Coastal Engineering 1': Computer Modelling of Seas and Coastal Regions model e Kirby,non-lineor... Berkoff et al. Figure 6. Variation of relative wave height at x=13m. 5 Application to Marmara Sea In the Sea of Marmara, Marmara New Port Breakwater will be constructed between the city of Tekirdag and Marmara Ereglisi (DLH[6]). For the area shown in Figure 7, the numerical model has been applied to simulate the wave transformations. Here, wave transformation from the dominant wave direction which is the SSW direction, is presented. The deep water wave parameters are used to specify the offshore boundary conditions and zero gradient boundary conditions are applied for wave heights and wave angles along the lateral boundaries. Deep water parameters are wave period T=6 S., wave height H=3 m. and approach angle 8=20. Model predictions are presented in Figure 8. Model provides reasonable estimations for the area. Waves converge on the shoal, conveyance of energy onto shoal results in the decrease of wave heights. Model can be used successfully for the areas having complicated bathymetries.

8 192 Coastal Engineering V: Computer Modelling of Sea5 and Coastal Regions X (m) Figure 7. Batymetry of the computational area. Figure 8. Wave heights(m) in the computational area.

9 Coastal Engineering V: Computer Modelling of Seas and Coastal Regions Conclusions A numerical model has been developed to simulate the wave transformation of monochromatic linear waves as they propagate over irregular bathymetries. Model predictions are in good agreement with the experimental results. Model successfull application to a real coastal water body has been demonstrated. Model can simulate the effect of pure refraction or effects of refraction together with diffraction which is important over complex bathymetries. There is no assumption regarding the curvature of the wave height in any direction in the model. Only one computational domain is enough to simulate the transformation of waves from different directions with different approach angles. Developed model is a reliable tool for simulating the transformation of linear waves over complicated bathymetries. References 1. Berkhoff, J. C. W., Computation of combined refraction-diffractionl Proceedings of 13th International Conference on Coastal Engineering, ASCE, I, pp , Berkhoff, J.C.W., Booy, N. & Radder, A.C., Verification of numerical wave propagation models for simple harmonic linear water waves, Coastal Engineering, 6, pp , Booij, N.: A note on the accuracy of the mild slope equation', Coastal Engineering, 7, pp :, Chamberlain, P.G. & Porter, D., The Modified Mild-Slope Equation, Journal offluid Mechanics, 291, pp , Copeland, G.J.M., A practical alternative to the mild-slope wave equation, Coastal Engineering, 9, pp , DLH, Results of Marmara Xew Port Breakwater Stability Experiments, Ministry of Transportation, General Directorate of Construction of Railways, Ports and Airports, Technical Report No:4 (In Turkish), Ebersole, B. A., Refraction-Diffraction Model For Linear Water Waves, Journal of Waterway, Port, Coastal and Ocean Engineering, 11 1, pp , Kirby, J.T. & Dalrymple,R.A., A parabolic equation for the combined refraction- diffraction of Stokes waves by mildly varying topography, Journal of Fluid Mechanics, 136, pp , 1983.

10 194 Coastal Engineering V: Computer Modelling of Seas and Coastal Regions 9. Kirby, J.T. & Dalrymple, R.A. Verification of a parabolic equation for propagation of weakly- nonlinear waves, Coastal Engineering, 8, pp , Radder, A.C., On the parabolic equation method for water-wave propagation, Journal offluid Mechanics, 95, pp , Tang, Y. & Ouellet Y., A new kind of nonlinear mild-slope equation for combined refraction- diffraction of multifrequency waves, Coastal Engineering, 31, pp.3-36, Tsay, T.K. & Liu, P.L.F., Refraction- diffraction model for weakly nonlinear water waves, Jouranal of Fluid Mechanics, 141, pp: , Whalin,.R. W., Wave refraction theory in a convergence zone, Proc. of the 13th Coastal Engineering Conference, Vol.1, pp: , 1972.

STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT

STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT STUDIES ON THE TRANQUILITY INSIDE THE GOPALPUR PORT INTRODUCTION Sundar. V 1, Sannasiraj. S. A 2 and John Ashlin. S 3 Gopalpur port is an artificial harbor located in Odisha state. The geographical location

More information

AN EXPERIMENTAL STUDY OF REGULAR LONG CRESTED WAVES OVER A CRESCENT TYPE SHOAL

AN EXPERIMENTAL STUDY OF REGULAR LONG CRESTED WAVES OVER A CRESCENT TYPE SHOAL Journal of Marine Science and Technology, Vol., No., pp. - () DOI:./JMST--- AN EXPERIMENTAL STUDY OF REGULAR LONG CRESTED WAVES OVER A CRESCENT TYPE SHOAL Wen-Kai Weng, Jaw-Guei Lin, and Chun-Sien Hsiao

More information

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS Tsanis, I.K., Saied, U.M., Valavanis V. Department of Environmental Engineering, Technical University of Crete, Chania,

More information

Determination Of Nearshore Wave Conditions And Bathymetry From X-Band Radar Systems

Determination Of Nearshore Wave Conditions And Bathymetry From X-Band Radar Systems Determination Of Nearshore Wave Conditions And Bathymetry From X-Band Radar Systems Okey G. Nwogu Dept. of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI 489 phone: (734)

More information

Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena. Minho Ha and *Cheolung Cheong 1)

Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena. Minho Ha and *Cheolung Cheong 1) Control of surge and pitch motions of a rectangular floating body using internal sloshing phenomena Minho Ha and *Cheolung Cheong 1) School of Mechanical Engineering, PNU, Busan 609-735, Korea 1) ccheong@pusan.ac.kr

More information

Testing TELEMAC-2D suitability for tsunami propagation from source to near shore

Testing TELEMAC-2D suitability for tsunami propagation from source to near shore Testing TELEMAC-2D suitability for tsunami propagation from source to near shore Alan Cooper, Giovanni Cuomo, Sébastien Bourban, Michael Turnbull, David Roscoe HR Wallingford Ltd, Howbery Park, Wallingford,

More information

Numerical Simulation of Long-Shore Currents Induced by Regular Breaking Wave

Numerical Simulation of Long-Shore Currents Induced by Regular Breaking Wave Journal of Coastal Research Special Issue 5 15- Florida, USA ISSN 79- Numerical Simulation of Long-Shore Currents Induced by Regular Breaking Wave Yong-Ming Shen, Jun Tang, and Wenrui Huang State Key Laboratory

More information

An experimental study of internal wave generation through evanescent regions

An experimental study of internal wave generation through evanescent regions An experimental study of internal wave generation through evanescent regions Allison Lee, Julie Crockett Department of Mechanical Engineering Brigham Young University Abstract Internal waves are a complex

More information

Determination of Nearshore Wave Conditions and Bathymetry from X-Band Radar Systems

Determination of Nearshore Wave Conditions and Bathymetry from X-Band Radar Systems Determination of Nearshore Wave Conditions and Bathymetry from X-Band Radar Systems Okey G. Nwogu Dept. of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI 48109 Phone: (734)

More information

STUDY ON TSUNAMI PROPAGATION INTO RIVERS

STUDY ON TSUNAMI PROPAGATION INTO RIVERS ABSTRACT STUDY ON TSUNAMI PROPAGATION INTO RIVERS Min Roh 1, Xuan Tinh Nguyen 2, Hitoshi Tanaka 3 When tsunami wave propagation from the narrow river mouth, water surface is raised and fluctuated by long

More information

Effect of channel slope on flow characteristics of undular hydraulic jumps

Effect of channel slope on flow characteristics of undular hydraulic jumps River Basin Management III 33 Effect of channel slope on flow characteristics of undular hydraulic jumps H. Gotoh, Y. Yasuda & I. Ohtsu Department of Civil Engineering, College of Science and Technology,

More information

A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira

A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira OUTLINE Oscillating Water Column - What OWC is? - Numerical modelling of OWC SPH functionalities - Wave generation (1 st order

More information

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL Weijie Liu 1 and Yoshimitsu Tajima 1 This study aims to study the breaking and broken wave characteristics in front

More information

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR

More information

Available online at ScienceDirect. Procedia Engineering 116 (2015 )

Available online at  ScienceDirect. Procedia Engineering 116 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 116 (2015 ) 320 325 8th International Conference on Asian and Pacific Coasts (APAC 2015) Department of Ocean Engineering, IIT

More information

A PHASE-AMPLITUDE ITERATION SCHEME FOR THE OPTIMIZATION OF DETERMINISTIC WAVE SEQUENCES

A PHASE-AMPLITUDE ITERATION SCHEME FOR THE OPTIMIZATION OF DETERMINISTIC WAVE SEQUENCES Proceedings of the ASME 29 28th International Conference on Ocean, Offshore and Arctic Engineering OMAE29 May 31 - June, 29, Honolulu, Hawaii, USA Proceedings of the ASME 28th International Conference

More information

INCORPORATION OF RANDOM WAVE EFFECTS INTO A QUASI-3D NEARSHORE CIRCULATION MODEL. James M. Kaihatu, Fengyan Shi, James T. Kirby and Ib A.

INCORPORATION OF RANDOM WAVE EFFECTS INTO A QUASI-3D NEARSHORE CIRCULATION MODEL. James M. Kaihatu, Fengyan Shi, James T. Kirby and Ib A. INCORPORATION OF RANDOM WAVE EFFECTS INTO A QUASI-3D NEARSHORE CIRCULATION MODEL James M. Kaihatu, Fengyan Shi, James T. Kirby and Ib A. Svendsen Abstract A coupled wave-hydrodynamic modeling system, comprised

More information

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Minggui Zhou 1, Dano Roelvink 2,4, Henk Verheij 3,4 and Han Ligteringen 2,3 1 School of Naval Architecture, Ocean and Civil Engineering,

More information

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Monika Warmowska, Jan Jankowski, Polski Rejestr Statków S.A., al. gen. Józefa Hallera 126, Poland, Gdańsk, 80-416 MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Summary Green water moving on deck of small

More information

WAVE MECHANICS FOR OCEAN ENGINEERING

WAVE MECHANICS FOR OCEAN ENGINEERING Elsevier Oceanography Series, 64 WAVE MECHANICS FOR OCEAN ENGINEERING P. Boccotti Faculty of Engineering University of Reggio-Calabria Feo di Vito 1-89060 Reggio-Calabria Italy 2000 ELSEVIER Amsterdam

More information

CHAPTER 133. Wave Trapping by Breakwaters

CHAPTER 133. Wave Trapping by Breakwaters CHAPTER 133 Wave Trapping by Breakwaters by Robert A. Dalrymple 1, M. ASCE, James T. Kirby 2, A.M. ASCE and Daniel J. Seli^ ABSTRACT: The refraction of water waves around the heads of breakwaters can lead

More information

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Andrew Kennedy Dept of Civil and Coastal Engineering 365 Weil Hall University of Florida Gainesville, FL 32611 phone:

More information

Image-based Study of Breaking and Broken Wave Characteristics under Partial Standing Wave Field and Validation of the Surface Roller Model

Image-based Study of Breaking and Broken Wave Characteristics under Partial Standing Wave Field and Validation of the Surface Roller Model Image-based Study of Breaking and Broken Wave Characteristics under Partial Standing Wave Field and Validation of the Surface Roller Model Weijie Liu* Ocean College, Zhejiang University, Zhoushan, China

More information

MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY. Hiroaki Kashima 1 and Katsuya Hirayama 1

MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY. Hiroaki Kashima 1 and Katsuya Hirayama 1 MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY Hiroaki Kashima 1 and Katsuya Hirayama 1 Recently, coastal disasters due to long-period swells induced by heavy

More information

Coastal & Marine Environment. Chapter. Wave Transformation. Mazen Abualtayef Assistant Prof., IUG, Palestine

Coastal & Marine Environment. Chapter. Wave Transformation. Mazen Abualtayef Assistant Prof., IUG, Palestine Coastal & Marine Wave Transformation Mazen Abualtayef Assistant Prof., IUG, Palestine Wave Transformation Wave transformation describes what happens to waves as they travel from deep into shallow water

More information

SPECTRAL MODELING OF WAVE PROPAGATION IN COASTAL AREAS WITH A HARBOR NAVIGATION CHANNEL

SPECTRAL MODELING OF WAVE PROPAGATION IN COASTAL AREAS WITH A HARBOR NAVIGATION CHANNEL SPECTRAL MODELING OF WAVE PROPAGATION IN COASTAL AREAS WITH A HARBOR NAVIGATION CHANNEL by B.J.O. Eikema 1, Y. Attema 1, H. Talstra 1, A.J. Bliek 1,2, L. de Wit 1 and D.W. Dusseljee 3 ABSTRACT This study

More information

A New Strategy for Harbor Planning and Design

A New Strategy for Harbor Planning and Design A New Strategy for Harbor Planning and Design Xiuying Xing, Ph.D Research Associate Sonny Astani Department of Civil and Environmental Engineering University of Southern California Los Angeles, CA 90089-2531

More information

The construction of Deepwater Navigation Channel (DNC) in the Bystry arm of the Danube Delta has started in The whole project provides the

The construction of Deepwater Navigation Channel (DNC) in the Bystry arm of the Danube Delta has started in The whole project provides the Annex 45 Numerical Studies of Waves, Currents and Sediment Transport at the Marine Part of Deepwater Navigation Channel through the Bystry Arm of the Danube Delta and Model Verification based on Laboratory

More information

CHAPTER 2 WAVE-CURRENT INTERACTION IN HARBOURS. Jan K. Kostense, Maarten W. Dingemans and Peter Van den Bosch

CHAPTER 2 WAVE-CURRENT INTERACTION IN HARBOURS. Jan K. Kostense, Maarten W. Dingemans and Peter Van den Bosch CHAPTER 2 WAVE-CURRENT INTERACTION IN HARBOURS Jan K. Kostense, Maarten W. Dingemans and Peter Van den Bosch ABSTRACT A finite element model has been developed to study the effect of currents on the wave

More information

Airy Wave Theory 1: Wave Length and Celerity

Airy Wave Theory 1: Wave Length and Celerity Airy Wave Theory 1: Wave Length and Celerity Wave Theories Mathematical relationships to describe: (1) the wave form, (2) the water motion (throughout the fluid column) and pressure in waves, and (3) how

More information

Airy Wave Theory 2: Wave Orbitals and Energy. Compilation of Airy Equations

Airy Wave Theory 2: Wave Orbitals and Energy. Compilation of Airy Equations Airy Wave Theory 2: Wave Orbitals and Energy Compilation of Airy Equations 1 Orbital Motion of Water Particles Airy Wave Theory also predicts water particle orbital path trajectories. Orbital path divided

More information

Sensitivity of storm waves in Montevideo (Uruguay) to a hypothetical climate change

Sensitivity of storm waves in Montevideo (Uruguay) to a hypothetical climate change Vol. 9: 81-85,1997 1 CLIMATE RESEARCH Clim Res I Published December 29 Sensitivity of storm waves in Montevideo (Uruguay) to a hypothetical climate change Eugenio Lorenzo*, Luis Teixeira Instituto de Mecanica

More information

Artificial headlands for coastal restoration

Artificial headlands for coastal restoration Artificial headlands for coastal restoration J. S. Mani Professor, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 636, India Abstract Construction of a satellite harbour

More information

BILLY BISHOP TORONTO CITY AIRPORT PRELIMINARY RUNWAY DESIGN COASTAL ENGINEERING STUDY

BILLY BISHOP TORONTO CITY AIRPORT PRELIMINARY RUNWAY DESIGN COASTAL ENGINEERING STUDY Bâtiment Infrastructures municipales Transport Industriel Énergie Environnement BILLY BISHOP TORONTO CITY AIRPORT PRELIMINARY RUNWAY DESIGN COASTAL ENGINEERING STUDY N. Guillemette 1, C. Glodowski 1, P.

More information

Appendix E Cat Island Borrow Area Analysis

Appendix E Cat Island Borrow Area Analysis Appendix E Cat Island Borrow Area Analysis ERDC/CHL Letter Report 1 Cat Island Borrow Area Analysis Multiple borrow area configurations were considered for Cat Island restoration. Borrow area CI1 is located

More information

A Refraction-Diffraction Model for Irregular Waves

A Refraction-Diffraction Model for Irregular Waves A Refraction-Diffraction Model for Irregular Waves Abstract Q. Gao 1, A.C. Radder 2 A numerical model for wave refraction and diffraction has been used to compute irregular waves. The model is based on

More information

HARBOR RESONANCE: A COMPARISON OF FIELD MEASUREMENTS TO NUMERICAL RESULTS

HARBOR RESONANCE: A COMPARISON OF FIELD MEASUREMENTS TO NUMERICAL RESULTS HARBOR RESONANCE: A COMPARISON OF FIELD MEASUREMENTS TO NUMERICAL RESULTS Xiuying Xing 1, Jiin-Jen Lee 2, Fredric Raichlen 3 Wave induced oscillation at Bay of Fundy has been studied using a numerical

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

MONITORING SEDIMENT TRANSPORT PROCESSES AT MANAVGAT RIVER MOUTH, ANTALYA TURKEY

MONITORING SEDIMENT TRANSPORT PROCESSES AT MANAVGAT RIVER MOUTH, ANTALYA TURKEY COPEDEC VI, 2003 in Colombo, Sri Lanka MONITORING SEDIMENT TRANSPORT PROCESSES AT MANAVGAT RIVER MOUTH, ANTALYA TURKEY Isikhan GULER 1, Aysen ERGIN 2, Ahmet Cevdet YALCINER 3 ABSTRACT Manavgat River, where

More information

PhD student, January 2010-December 2013

PhD student, January 2010-December 2013 Numerical modeling of wave current interactions ata a local scaleand and studyof turbulence closuremodel effects MARIA JOÃO TELES PhD student, January 2010-December 2013 Supervisor: António Pires-Silva,

More information

INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT

INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT Advanced Series on Ocean Engineering Volume 16 INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT J. William Kamphuis Queen's University, Canada World Scientific Singapore New Jersey London Hong Kong Contents

More information

IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE. Yoshimitsu Tajima 1

IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE. Yoshimitsu Tajima 1 IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE Yoshimitsu Tajima 1 This study develops an image-based monitoring techniques for observations of surf zone hydrodynamics especially

More information

Dynamic Stability of Ships in Waves

Dynamic Stability of Ships in Waves Gourlay, T.P. & Lilienthal, T. 2002 Dynamic stability of ships in waves. Proc. Pacific 2002 International Maritime Conference, Sydney, Jan 2002. ABSTRACT Dynamic Stability of Ships in Waves Tim Gourlay

More information

Potential Impacts of Sand Mining Offshore of Maryland and Delaware: Part 1 Impacts on Physical Oceanographic Processes

Potential Impacts of Sand Mining Offshore of Maryland and Delaware: Part 1 Impacts on Physical Oceanographic Processes Journal of Coastal Research 2 1 44 6 West Palm Beach, Florida Winter 24 Potential Impacts of Sand Mining Offshore of Maryland and Delaware: Part 1Impacts on Physical Oceanographic Processes Jerome P.-Y.

More information

Wave Forces on a Moored Vessel from Numerical Wave Model Results

Wave Forces on a Moored Vessel from Numerical Wave Model Results Wave Forces on a Moored Vessel from Numerical Wave Model Results ABSTRACT P W O BRIEN OMC International Pty Ltd, Melbourne, Australia O WEILER WL Delft Hydraulics, Delft, The Netherlands M BORSBOOM WL

More information

NUMERICAL MODELING OF WAVE PENETRATION IN OSTEND HARBOUR

NUMERICAL MODELING OF WAVE PENETRATION IN OSTEND HARBOUR NUMERICAL MODELING OF WAVE PENETRATION IN OSTEND HARBOUR Vasiliki Stratigaki 1, Dieter Vanneste 1, Peter Troch 1, Stefaan Gysens 2 and Marc Willems 3 The initial Ostend harbour entrance at the North Sea

More information

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN Bridget M. Wadzuk 1 (Member, ASCE) and Ben R. Hodges 2 (Member, ASCE) ABSTRACT Modeling of dynamic pressure appears necessary to achieve a more robust

More information

Experimental and numerical investigation on wave interaction with submerged breakwater

Experimental and numerical investigation on wave interaction with submerged breakwater Journal of Water Resources and Ocean Science 2013; 2(6): 155-164 Published online November 10, 2013 (http://www.sciencepublishinggroup.com/j/wros) doi: 10.11648/j.wros.20130206.11 Experimental and numerical

More information

Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters. Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi

Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters. Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi Department of Civil Engineering, Faculty of Engineering, University

More information

Transactions on Ecology and the Environment vol 12, 1996 WIT Press, ISSN

Transactions on Ecology and the Environment vol 12, 1996 WIT Press,   ISSN Open boundary condition for unsteady open-channel flow K. Mizumura Civil Engineering Department, Kanazawa Institute of Technology, 7-1 Ogigaoka, Nonoichimachi, Ishikawa Pref. 921, Japan Abstract Initial

More information

EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT

EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT Ayumi Saruwatari 1, Yoshihiro Yoneko 2 and Yu Tajima 3 The Tsugaru Strait between

More information

Training program on Modelling: A Case study Hydro-dynamic Model of Zanzibar channel

Training program on Modelling: A Case study Hydro-dynamic Model of Zanzibar channel Training program on Modelling: A Case study Hydro-dynamic Model of Zanzibar channel Mayorga-Adame,C.G., Sanga,I.P.L., Majuto, C., Makame, M.A., Garu,M. INTRODUCTION Hydrodynamic Modeling In understanding

More information

LABORATORY EXPERIMENTS ON EROSION CONTROL PERFORMANCE OF AN L- SHAPED PERMEABLE STRUCTURE. Abstract

LABORATORY EXPERIMENTS ON EROSION CONTROL PERFORMANCE OF AN L- SHAPED PERMEABLE STRUCTURE. Abstract LABORATORY EXPERIMENTS ON EROSION CONTROL PERFORMANCE OF AN L- SHAPED PERMEABLE STRUCTURE Yuuji Maeda 1, Masayuki Unno 2, Masafumi Sato 2, Takao Kurita 2, Takaaki Uda 3 and Shinji Sato 4 Abstract A new

More information

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 3D CDF ODELING OF SHIP S HEELING OENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Przemysaw Krata, Jacek Jachowski Gdynia aritime University,

More information

( max)o Wind Waves 10 Short Swell (large wave steepness) 25 Long Swell (small wave steepness) 75

( max)o Wind Waves 10 Short Swell (large wave steepness) 25 Long Swell (small wave steepness) 75 CEPi-I-18 REvKn, 3188 IRREGULAR WAVE DIFFRACTION BY GODA'S KETHOD PURPOSE : To provide a simplified method for determining random wave diffraction coefficients for a semi-infinite breakwater. GENERAL :

More information

PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA)

PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA) PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA) DALIBOR CAREVIĆ (1), GORAN LONČAR (1), VLADIMIR ANDROČEC (1) & MARIN PALADIN (1) 1.

More information

Shoaling and Breaking of Solitary Waves on Slopes

Shoaling and Breaking of Solitary Waves on Slopes Shoaling and Breaking of Solitary Waves on Slopes Rui You, Guanghua He, Yongzhou Cheng, and Xiaoqun Ju Abstract Physical experiments were designed and conducted in the water channel to investigate the

More information

CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS

CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS CALCULATIONS OF THE MOTIONS OF A SHIP MOORED WITH MOORMASTER UNITS By J. de Bont 1, W. van der Molen 2, J. van der Lem 3, H. Ligteringen 4, D. Mühlestein 5 and M. Howie 6 ABSTRACT Container ships should

More information

Salmon: Introduction to ocean waves

Salmon: Introduction to ocean waves 10 Breakers, bores and longshore currents There is lots more to say about linear, shallow-water waves, but now we want to say something about the more general, nonlinear case. To keep the math as simple

More information

Energy from seas and oceans

Energy from seas and oceans Energy from seas and oceans Marine energy can represent an important source of renewable energy in the near future. In Italy, activities performed in this sector are growing rapidly both in terms of assessment

More information

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS Asian and Pacific Coasts 23 LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS Takayuki Suzuki 1, Masashi Tanaka 2 and Akio Okayasu 3 Wave overtopping on gentle slope

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents Ahmet Cevdet Yalçıner, Andrey Zaytsev, Utku Kanoğlu Deniz Velioglu, Gozde Guney Dogan, Rozita Kian, Naeimeh Shaghrivand, Betul Aytore

More information

Coupling Numerical Models for Wave Propagation in the MOIA Package

Coupling Numerical Models for Wave Propagation in the MOIA Package Journal of Coastal Research SI 56 544-548 ICS2009 (Proceedings) Portugal ISSN 0749-0258 Coupling Numerical Models for Wave Propagation in the MOIA Package J. A. Santos, L. Guilherme, C. J. Fortes, L. Pinheiro

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 9, 2010 http://acousticalsociety.org/ 159th Meeting Acoustical Society of America/NOISE-CON 2010 Baltimore, Maryland 19-23 April 2010 Session 1pBB: Biomedical

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2010

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2010 Effect of geometric dimensions on the transmission coefficient of floating breakwaters Mohammad Hosein Tadayon, Khosro Bargi 2, Hesam Sharifian, S. Reza Hoseini - Ph.D student, Department of Civil Engineering,

More information

The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap.

The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap. Wave Hydrodynamics. Beach Terminology The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap. (From Nitrouer, C.A. and Wright, L.D., Rev. Geophys., 32, 85, 1994.

More information

Waves Part II. non-dispersive (C g =C)

Waves Part II. non-dispersive (C g =C) Waves Part II Previously we discussed Surface Gravity Waves Deep Water Waves Shallow Water Waves C g T 2 C g h dispersive (C g =C/2) Definitions: phase speed C= /T= /k non-dispersive (C g =C) group speed

More information

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection Waves Vocabulary mechanical wave pulse continuous periodic wave amplitude wavelength period frequency wave velocity phase transverse wave longitudinal wave intensity displacement wave number phase velocity

More information

IMPACT OF HARBOR NAVIGATION CHANNELS ON WAVES: A NUMERICAL MODELLING GUIDELINE

IMPACT OF HARBOR NAVIGATION CHANNELS ON WAVES: A NUMERICAL MODELLING GUIDELINE IMPACT OF HARBOR NAVIGATION CHANNELS ON WAVES: A NUMERICAL MODELLING GUIDELINE D.W. Dusseljee 1, G. Klopman 2, G. Ph. van Vledder 3 and H.J. Riezebos 4 This study presents an intercomparison of a SWAN

More information

Title. Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date Doc URL. Type. Note. File Information

Title. Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date Doc URL. Type. Note. File Information Title EVALUATING THE EFFECT OF MULTIPLE VERTICAL ORTHOGONA PHENOMENON IN RECTANGULAR TANKS SUBJECTED TO 3-DIMEN EXCITATIONS Author(s)HOSSEINI, M.; FARSHADMANESH, P. Issue Date 2013-09-11 Doc URL http://hdl.handle.net/2115/54196

More information

Relevant courses: Functional Analysis, Hydrodynamic Instability, Computational Aspects and Application of Spectral Methods.

Relevant courses: Functional Analysis, Hydrodynamic Instability, Computational Aspects and Application of Spectral Methods. Curriculum Vitae for Henrik Bredmose Name: Henrik Bredmose Date of Birth: December 23, 1974 Married to Malene Brandt Children: Freja Bredmose Brandt Nationality: Danish Member of DCAMM since 1999 Adress:

More information

Numerical Simulation of Internal Waves in the Littoral Ocean

Numerical Simulation of Internal Waves in the Littoral Ocean Numerical Simulation of Internal Waves in the Littoral Ocean Robert L. Street Department of Civil and Environmental Engineering Stanford University Stanford, CA 94305-4020 phone: (650) 723-4969 fax: (650)

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

CHAPTER 6 DISCUSSION ON WAVE PREDICTION METHODS

CHAPTER 6 DISCUSSION ON WAVE PREDICTION METHODS CHAPTER 6 DISCUSSION ON WAVE PREDICTION METHODS A critical evaluation of the three wave prediction methods examined in this thesis is presented in this Chapter. The significant wave parameters, Hand T,

More information

Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations

Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations International Journal on Marine Navigation and Safety of Sea Transportation Volume 4 Number 3 September 2010 Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations P.

More information

Fully Nonlinear Properties of Periodic Waves Shoaling over Slopes

Fully Nonlinear Properties of Periodic Waves Shoaling over Slopes CHAPTER 51 Fully Nonlinear Properties of Periodic Waves Shoaling over Slopes Stephan T. Grilli*, M. ASCE, and Juan Horrillo 2 ABSTRACT : Shoaling of finite amplitude periodic waves over a sloping bottom

More information

Characteristics of Decompression Tank Internally Pressurized With Water Using OpenFOAM Syamsuri 1, a

Characteristics of Decompression Tank Internally Pressurized With Water Using OpenFOAM Syamsuri 1, a Applied Mechanics and Materials Submitted: 2015-11-26 ISSN: 1662-7482, Vol. 836, pp 3-8 Accepted: 2016-01-27 doi:10.4028/www.scientific.net/amm.836.3 Online: 2016-06-01 2016 Trans Tech Publications, Switzerland

More information

Development and Implementation of a Relocatable Coastal and Nearshore Modeling System

Development and Implementation of a Relocatable Coastal and Nearshore Modeling System Development and Implementation of a Relocatable Coastal and Nearshore Modeling System James M. Kaihatu Zachry Department of Civil Engineering, Texas A&M University 3136 TAMU College Station, TX 77843-3136

More information

DETAILED INVESTIGATION OF SURFING AMENITY USING CFD

DETAILED INVESTIGATION OF SURFING AMENITY USING CFD DETAILED INVESTIGATION OF SURFING AMENITY USING CFD Simon Brandi Mortensen DHI Water & Environment Pty Ltd Southport Central, level 8, 56 Scarborough St QLD 4125, Australia e-mail: sbm@dhigroup.com ABSTRACT

More information

WAVE RUNUP ON COMPOSITE-SLOPE AND CONCAVE BEACHES ABSTRACT

WAVE RUNUP ON COMPOSITE-SLOPE AND CONCAVE BEACHES ABSTRACT CHAPTER 168 WAVE RUNUP ON COMPOSITE-SLOPE AND CONCAVE BEACHES R. H. Mayer 1 and D. L. Kriebel 1 ABSTRACT Laboratory experiments were carried out for regular and irregular wave runup over non-uniform beach

More information

EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER

EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER Liehong Ju 1, Peng Li,Ji hua Yang 3 Extensive researches have been done for the interaction

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

CHAPTER 185 SAND TRANSPORT UNDER GROUPING WAVES

CHAPTER 185 SAND TRANSPORT UNDER GROUPING WAVES CHAPTER 185 SAND TRANSPORT UNDER GROUPING WAVES Shinji Sato 1 Abstract Laboratory experiments as well as numerical modeling were conducted for sand transport under non-breaking grouping waves. Experiments

More information

DUXBURY WAVE MODELING STUDY

DUXBURY WAVE MODELING STUDY DUXBURY WAVE MODELING STUDY 2008 Status Report Duncan M. FitzGerald Peter S. Rosen Boston University Northeaster University Boston, MA 02215 Boston, MA 02115 Submitted to: DUXBURY BEACH RESERVATION November

More information

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Analysis of Pressure Rise During Internal Arc Faults in Switchgear

Analysis of Pressure Rise During Internal Arc Faults in Switchgear Analysis of Pressure Rise During Internal Arc Faults in Switchgear ASANUMA, Gaku ONCHI, Toshiyuki TOYAMA, Kentaro ABSTRACT Switchgear include devices that play an important role in operations such as electric

More information

SURFACE GRAVITY WAVE INTERACTIONS WITH DEEP-DRAFT NAVIGATION CHANNELS PHYSICAL AND NUMERICAL MODELING CASE STUDIES

SURFACE GRAVITY WAVE INTERACTIONS WITH DEEP-DRAFT NAVIGATION CHANNELS PHYSICAL AND NUMERICAL MODELING CASE STUDIES SURFACE GRAVITY WAVE INTERACTIONS WITH DEEP-DRAFT NAVIGATION CHANNELS PHYSICAL AND NUMERICAL MODELING CASE STUDIES Shubhra K. Misra 1, Andrew M. Driscoll 1, James T. Kirby 2, Andrew Cornett 3, Pedro Lomonaco

More information

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON STABILITY AND LOAD LINES AND ON FISHING VESSELS SAFETY 49th session Agenda item 5 SLF 49/5/5 19 May 2006 Original: ENGLISH REVISION OF THE INTACT

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Nearshore wave-flow modelling with SWASH

Nearshore wave-flow modelling with SWASH Nearshore wave-flow modelling with SWASH th Waves Workshop Marcel, Guus and Pieter November, /37 Delft University of Technology Motivation Goal: to develop a model that is capable of simulating wave motion

More information

Wave Breaking on a Sloping Beach: Comparison Between Experiments and Simulations

Wave Breaking on a Sloping Beach: Comparison Between Experiments and Simulations Wave Breaking on a Sloping Beach: Comparison Between Experiments and Simulations Alexei Goumilevksi, Jian-Yu Cheng, and Georges L. Chahine DYNAFLOW, Inc. 7 Pindell School Road, Fulton, MD 759 alexei@dynaflow-inc.com

More information

SUPERGEN Wind Wind Energy Technology Rogue Waves and their effects on Offshore Wind Foundations

SUPERGEN Wind Wind Energy Technology Rogue Waves and their effects on Offshore Wind Foundations SUPERGEN Wind Wind Energy Technology Rogue Waves and their effects on Offshore Wind Foundations Jamie Luxmoore PhD student, Lancaster University SUPERGEN Wind II - 7 th training seminar 3 rd - 4 th September

More information

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy 1 OUTLINE Overview of Oil Spill & its Impact Technical Challenges for Modeling Review

More information

Directional Wave Spectra from Video Images Data and SWAN Model. Keywords: Directional wave spectra; SWAN; video images; pixels

Directional Wave Spectra from Video Images Data and SWAN Model. Keywords: Directional wave spectra; SWAN; video images; pixels Jurnal Teknologi Full paper Directional Wave Spectra from Video Images Data and SWAN Model Muhammad Zikra a*, Noriaki Hashimoto b, Masaru Yamashiro b, Kojiro Suzuki c a Department of Ocean Engineering,

More information

4.3 Oblique Shocks and Expansions Fans: The Supercritical Marine Layer.

4.3 Oblique Shocks and Expansions Fans: The Supercritical Marine Layer. 4.3 Oblique Shocks and Expansions Fans: The Supercritical Marine Layer. The marine layer is a relatively dense and well-mixed layer of moist air that lies above the sea surface and is often capped by a

More information

Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train

Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train Wang Zhe and Ji Peng

More information

Windcube FCR measurements

Windcube FCR measurements Windcube FCR measurements Principles, performance and recommendations for use of the Flow Complexity Recognition (FCR) algorithm for the Windcube ground-based Lidar Summary: As with any remote sensor,

More information

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology -

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - 21 TOSHIMITSU SUZUKI *1 RIKUMA SHIJO *2 KAORU YOKOYAMA *3 SYUNICHI IKESUE *4 HIROFUMI

More information

The behaviour of tsunamis

The behaviour of tsunamis 195 The behaviour of tsunamis Maurice N. Brearley 1 Introduction The behaviour of tsunamis is not easily understood. Readers comments on a recently published paper [3] show that a mathematical analysis

More information