Waves waves Waves are defined by the following: Wave height H Wavelength L Period T Velocity V Breaking Waves

Size: px
Start display at page:

Download "Waves waves Waves are defined by the following: Wave height H Wavelength L Period T Velocity V Breaking Waves"

Transcription

1 Waves The winds not only drive surface currents, it also causes waves. Waves appear on the surface as a series of crests and troughs, moving in the direction of the wind. Waves are defined by the following: Wave height H is the vertical distance between the top of a wave, or crest, and the bottom of the preceding wave, or troughs. Wavelength L is the distance between successive crests or troughs. Period T is the time it takes for one wave to pass a given point. Velocity V is the speed at which a crest, or other specified point, travels. Velocity (V) = wavelength (L)/Period (T) Although waves look like they are moving along, this is only an illusion.(وهم) A floating object such as a boat or a bird does not move forward in a wave train but moves up and down with each passing wave. This is because, when under a wave crest, the water moves up and forward; while under the troughs, it moves down and back; thus, on the whole, water particles don't go anywhere at all as the wave passes, but move in circles or orbits. One could imagine wave action is like the snapping of a rope (The above right Figure). When you snap a rope, the rope itself does not move forward. The movement of your hand produces mechanical energy that is transferred in waves along the length of the rope. Similarly, a wave starts with the energy of the wind pushing on the water. Mechanical energy is transferred to each successive wave. When waves are symmetrical, water particles move in orbits. The diameters of these orbits decrease with increasing water depth and become insignificant at depths greater than ½ L. Breaking Waves What causes a wave to crash, or break, on the beach? As a wave approaches the shore, it enters shallow waters. As the bottom of the wave makes contact with the seafloor, the wave slows (due to friction), which decreases its wavelength, too. This occurs 60

2 when the water depth is about one-half the wave s wavelength. When the water depth is less than one-half the wavelength, the top of the wave which moves faster than its bottom is effectively pushed upward and the wave height increases. These effects are due to the insufficient space available for complete orbits to occur. As a result, the faster top pitches (ينحدر) forward and crash. This action produces a type of wave known as a breaker. Longshore currents and rip currents Longshore Current A current located in the surf zone and running parallel to the shore as a result of waves breaking at an angle on the shore. It also called littoral current. Longshore currents form because waves are continuous and, in most cases, approach the shore at an angle. When a wave enters shallow water it is slowed by the rising sandy or rocky bottom and eventually breaks. As one wave meets the shore and breaks, another wave is right behind it, preventing the broken wave from flowing backward. This causes a build-up of water at the shoreline. This build-up of water is then forced to form a current that flows parallel to the shore close to the water s edge. Longshore currents affect shorelines by redistributing sand and sediment along their path. This redistribution is known as littoral drift and responsible for extensive erosion and transport of beach sands along outer coast beaches. Rip currents Occasionally longshore currents suddenly run offshore in a dangerous, jet-like flow of water that typically extends from near the shoreline out past the line of breaking waves called rip currents. Clues for identifying a rip current Difference in water color (Suspended sediments may be transported back to sea in the rip current.) Line of foam, seaweed, or debris moving out to sea. An area of confusing waves Formation of rip current 1. The orientation of the coastline 2. The angle of incoming waves 3. The presence of man-made coastal structures 4. The flow through channels in sandbars 61

3 Shaping the coastline of Palestine The coastline of Palestine forms a small section of a larger concave system (a littoral cell ) that extend from Alexandria, Egypt to the Bay of Haifa, North of Palestine. This littoral cell forms the southern east corner of the Levantine ش رقي Basin (the next picture). The Nile River, especially its sediment yield originating from Africa s mountains, has shaped this entire coastline, including the coastline of Palestine, over the last 15,000 years. The Nile sand transported by northern east (NE) directed wave driven longshore currents along the entire concave coastline in an anti-clockwise direction. Since the building of the Aswan dams the sand supplied to Palestine's coastal system is derived mainly from erosion of the Nile Delta and from sands offshore Egypt. The sands are transported along the coasts of northern Sinai and Palestine. Their volume gradually declines northward with distance from their Nile source. The longshore transport terminates in Haifa Bay where some sand is trapped, and the rest escapes to deeper water by bottom currents and through submarine canyons. Mediterranean Akko Haifa Long-Shore currents and the local erosion problem: New structures along the coastline, like breakwaters, and commercial ports causes blocking the along shore sand transport and causes an erosive effect on the coast downstream (the northern coast). An example is the recently constructed Gaza fishing harbor (the right picture), that has locally disturbed the coastal erosion and sedimentation pattern, resulting in local coastal sand erosion problems. The planned Gaza Sea Port will even more increase this problem. 62

4 Tsunami Tsunami (seismic sea waves) is long, fast waves produced by earthquakes and other seismic disturbances of the sea floor. Tsunami is a Japanese word meaning means harbor ( 津, tsu) waves ( 波, nami). They were once called tidal waves, but they have nothing to do with the tides. They are produced instead by earthquakes and other seismic disturbances of the sea floor, so they are more properly called seismic sea waves. A tsunami watch is issued whenever there is an earthquake stronger than 6.75 on the Richter scale. When such a disturbance occurs, it can produce very long, fast-moving waves. Tsunamis may have wavelengths of 240 km and can travel at over 800 km/hr as fast as a jet airplane. In the open ocean, tsunamis are not very high, usually less than 1 m. Most of the time ships at sea don t even notice the passing of a tsunami. Tsunamis usually get higher when they approach shore and may reach as much as 20 to 30 meters high. A few tsunamis occur almost every year, but most are not very damaging. Occasionally, however, the waves grow huge and cause great death and destruction. Fig. Diagram illustrating how Tsunami s form Since tsunamis are unexpected, especially in developing countries, it can be so destructive. On Sunday, 26 December 2004, the greatest earthquake in 40 years about 150 kilometers off the west coast of northern Sumatra Island in Indonesia. The earthquake generated a disastrous tsunami that caused destruction in 11 countries. The resulting tsunami devastated the shores of Indonesia, Sri Lanka, South India, Thailand and other countries with waves up to 30 m (100 feet) high. It caused serious damage and deaths as far as the east coast of Africa, with the furthest recorded death due to the tsunami occuring at Port Elizabeth in South Africa, 8000 km (5000 miles) away from the epicentre. Anywhere from 228,000 to 310,000 people are thought to have died as a result of the tsunami. 63

5 Tides According to Newton s Law of Gravitation; the force of gravity acting between any two bodies is proportional to the product of the masses of the two bodies and inversely proportional to the square of the distance between them. Both the sun and the moon exert significant gravitational attraction on the ocean, but the moon exerts twice the gravitational attraction and tide-generating force as the sun because it is closer to the earth (384,400 km instead of 149,600,000 km). Tidal motion can be measured throughout the ocean, but it is especially noticeable at the shoreline in the form of tidal currents and vertical motion. The extent of the tide is largely determined by the difference in gravitational attraction on either side of the earth. On the side closer to the moon the gravitational attraction pulls water toward the moon. On the opposite side of the earth, a minimum of gravitational attraction combines with the earth's spin to produce a net excess of centrifugal force, creating a tidal bulge away from the earth. Corresponding depressions (low tide) will exist on parts of the earth between the bulges, where there is no net excess of gravitational pull relative to centrifugal force. Because the moon "passes over" any point on the earth's surface every 24 hours, 50 minutes, or once each tidal day, ideally there should be two low and two high tides per day. Because the moon's position relative to the earth's equator shifts from 28.5 N to 28.5 S, the relative heights of high and low water differ geographically owing to changing vectors of gravitational attraction. Types of Tides Spring tides الع الي الم د occur when Earth, Moon and Sun are aligned in a straight line, thus, the gravitational force exerted by the sun amplifies that of the moon, and maximal tidal range is achieved producing very high, high tides and very low, low tides. This occurs at the full and new moons. Neap tides المعت دل الم د Occur when sun, earth, and moon form a right angle, which happens when the moon at the first and third quarters, the gravitational effects tend to cancel each other out, and neap tide occurs, with the minimum vertical range. Two spring tides and two neap tides occur each lunar month (approximately 29.5 days). 64

6 Tides in the Real World Given the daily rotation of the earth, one might expect two equal high tides each day, separated by 12 hours. However, tides in the real world behave somewhat differently. The presence of irregularly shaped basins, the tilt of the earth's axis, and the Coriolis effect tend to cause significant deviations from this idealized expectation. We can recognize three major patterns to tidal cycles: Diurnal tides المد والجزر اليومي have one high tide and one low tide each lunar day. Semidiurnal tides ي ومى النص ف والج زر الم د have two high tides and two low tides each lunar day, and each tide is the same height as the previous one. Mixed tides المرآ ب والج زر الم د also have two high tides and two low tides each lunar day, but each tide is a different height than the previous one. In Gaza Strip, so far, no systematic records are available of tides. However, at Ashdod, some 40 km North of Gaza City, the following tidal levels are given as below: Mean high water springs (MHWS) 0.6 m Mean high water neaps (MHWN) 0.4 m Mean low water neaps (MLWN) 0.1 m Mean low water springs (MLWS) 0.0 m Effect of Tides on the Life Cycles of Marine Organisms The incoming tide signals the final chapter in the life cycle of many marine organisms as their remains are washed up on the shore. But the rising tide also heralds the beginning of life for other life-forms. For the grunion (Leuresthes tenuis), a small fish (15 cm), life begins at high tide. Grunion run Fertilization 65

7 During the spring and summer, thousands of these silvery fish swim up onto the sandy beaches, carried in by the high tide. This so-called grunion run occurs at night during the new moon and full moon when the tide is highest. The female grunions wiggle into the sand and lay thousands of eggs as the males deposit sperm around them. Afterward, the fish are swept back into the sea by the water. The spawning is timed so exactly that it occurs only on the second, third, and fourth days that follow a new or full moon. After the grunion eggs are fertilized, they incubate in the sand for two weeks until the next new or full moon occurs. At that time, the waters of the high spring tides will reach the eggs and wash them out of the sand. The eggs then begin hatching into tiny grunions as they are carried seaward by the outgoing tide. El Niño-Southern oscillation (ENSO). Condition in which warm surface water moves into the eastern pacific, collapsing upwelling and increasing surface water temperatures and precipitation along the west coast of North and South America. Normal Conditions Normally, strong trade winds push warm equatorial waters across the Pacific, resulting in storms and high rainfall on the west side of the Pacific, and cold upwelling on the east side. El Niño Conditions In an El Niño year, the trade winds diminish and reverse. This allows the warm equatorial water to flow back east, resulting in more storms and rain in the eastern Pacific, and reduced amounts of upwelling. 66

Chapter 22, Section 1 - Ocean Currents. Section Objectives

Chapter 22, Section 1 - Ocean Currents. Section Objectives Chapter 22, Section 1 - Ocean Currents Section Objectives Intro Surface Currents Factors Affecting Ocean Currents Global Wind Belts (you should draw and label a diagram of the global wind belts) The Coriolis

More information

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches Ocean Waves Capillary Wind generated Gravity Tides Tsunamis Seiches Capillary waves are driven by the surface tension produced by electrically polarized water molecule San Pedro Lighthouse Waves are alternate

More information

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS Skills Worksheet Directed Reading Section: Ocean Currents 1. A horizontal movement of water in a well-defined pattern is called a(n). 2. What are two ways that oceanographers identify ocean currents? 3.

More information

Chapter. The Dynamic Ocean

Chapter. The Dynamic Ocean Chapter The Dynamic Ocean An ocean current is the mass of ocean water that flows from one place to another. 16.1 The Composition of Seawater Surface Circulation Surface Currents Surface currents are movements

More information

Oceans in Motion: Waves and Tides

Oceans in Motion: Waves and Tides Oceans in Motion: Waves and Tides Waves Waves are among the most familiar features in the ocean. All waves work similarly, so although we are talking about ocean waves here, the same information would

More information

Chapter 10 Lecture Outline. The Restless Oceans

Chapter 10 Lecture Outline. The Restless Oceans Chapter 10 Lecture Outline The Restless Oceans Focus Question 10.1 How does the Coriolis effect influence ocean currents? The Ocean s Surface Circulation Ocean currents Masses of water that flow from one

More information

SURFACE CURRENTS AND TIDES

SURFACE CURRENTS AND TIDES NAME SURFACE CURRENTS AND TIDES I. Origin of surface currents Surface currents arise due to the interaction of the prevailing wis a the ocean surface. Hence the surface wi pattern (Figure 1) plays a key

More information

The Composition of Seawater

The Composition of Seawater The Composition of Seawater Salinity Salinity is the total amount of solid material dissolved in water. Most of the salt in seawater is sodium chloride, common table salt. Element Percent Element Percent

More information

page - Laboratory Exercise #5 Shoreline Processes

page - Laboratory Exercise #5 Shoreline Processes page - Laboratory Exercise #5 Shoreline Processes Section A Shoreline Processes: Overview of Waves The ocean s surface is influenced by three types of motion (waves, tides and surface currents). Shorelines

More information

OCN 201 Tides. Tsunamis, Tides and other long waves

OCN 201 Tides. Tsunamis, Tides and other long waves OCN 201 Tides Tsunamis, Tides and other long waves Storm surges Caused by winds and low atmospheric pressure associated with large storms Can raise sea surface by up to 25 ft, bottom contours magnify effect

More information

OCEANOGRAPHY STUDY GUIDE

OCEANOGRAPHY STUDY GUIDE OCEANOGRAPHY STUDY GUIDE Chapter 2 Section 1 1. Most abundant salt in ocean. Sodium chloride; NaCl 2. Amount of Earth covered by Water 71% 3. Four oceans: What are they? Atlantic, Pacific, Arctic, Indian

More information

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used. Assessment Chapter Test B The Movement of Ocean Water USING KEY TERMS Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

More information

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 15 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Ocean Motion Notes. Chapter 13 & 14

Ocean Motion Notes. Chapter 13 & 14 Ocean Motion Notes Chapter 13 & 14 What is a Wave? Wave: movement of energy through a body of water How are Waves Caused? Caused mostly by wind Wind blowing on the water transmits energy to the water Size

More information

The Movement of Ocean Water. Currents

The Movement of Ocean Water. Currents The Movement of Ocean Water Currents Ocean Current movement of ocean water that follows a regular pattern influenced by: weather Earth s rotation position of continents Surface current horizontal movement

More information

WIND SPEED LENGTH OF TIME WIND BLOWS (Duration) DISTANCE OVER WHICH IT BLOWS (Fetch)

WIND SPEED LENGTH OF TIME WIND BLOWS (Duration) DISTANCE OVER WHICH IT BLOWS (Fetch) WAVES Up and down movement of ocean surface Transportation of energy across the water over vast distances If not stopped by anything, waves can travel entire oceans Size and speed depend upon: WIND SPEED

More information

The movement of ocean water is a powerful thing. Waves created

The movement of ocean water is a powerful thing. Waves created 16. Waves and Tides Section 16. 1 FOCUS Key Concepts From where do ocean waves obtain their energy? What three factors affect the characteristics of a wave? How does energy move through a wave? What force

More information

OCEAN WAVES NAME. I. Introduction

OCEAN WAVES NAME. I. Introduction NAME OCEAN WAVES I. Introduction The physical definition of a wave is a disturbance that transmits energy from one place to another. In the open ocean waves are formed when wis blowing across the water

More information

Lesson: Ocean Circulation

Lesson: Ocean Circulation Lesson: Ocean Circulation By Keith Meldahl Corresponding to Chapter 9: Ocean Circulation As this figure shows, there is a connection between the prevailing easterly and westerly winds (discussed in Chapter

More information

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks.

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks. Chapter 11 Tides A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks. Tidal range can be very large Tide - rhythmic oscillation of the ocean surface

More information

Imagine that you can see a side view of a wave as it approaches a beach. Describe how the wave changes as the wave approaches the beach.

Imagine that you can see a side view of a wave as it approaches a beach. Describe how the wave changes as the wave approaches the beach. Geology 101 Name Reading Guide for Ch. 19: Shores and Coastal Processes (p. 612) Waves, Currents, and Tides (p. 614) Waves and Currents (p. 614) Imagine that you can see a side view of a wave as it approaches

More information

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College The Shoreline A Dynamic Interface The shoreline is a dynamic interface (common boundary) among air, land, and the ocean. The shoreline

More information

Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all. interconnected as part of a single large global ocean.

Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all. interconnected as part of a single large global ocean. Ocean Motion Met 101: Introduction to the World's Oceans Produced by The COMET Program Geography: Name Pd. Earth s oceans covers 71 % _ of the planet s surface. In reality, Earth s ocean waters are all

More information

Oceans and Coasts. Chapter 18

Oceans and Coasts. Chapter 18 Oceans and Coasts Chapter 18 Exploring the oceans The ocean floor Sediments thicken and the age of the seafloor increases from ridge to shore The continental shelf off the northeast United States Constituent

More information

Duckies have been found in Hawaii, Alaska, S. America, Scotland, Washington state and Australia as of 2012.

Duckies have been found in Hawaii, Alaska, S. America, Scotland, Washington state and Australia as of 2012. Duckies have been found in Hawaii, Alaska, S. America, Scotland, Washington state and Australia as of 2012. We learned that it takes 3 years to complete one circuit of the North Pacific Gyre flow in the

More information

Chapter - Oceans and Coasts

Chapter - Oceans and Coasts Chapter - Oceans and Coasts Discussion: What do oceans contribute to the environment of Earth? How do Earth s major systems relate to the oceans? Oceans and Coasts Oceans are important - Thermal regulation

More information

Introduction to Physical Oceanography STUDENT NOTES Date: 1. What do you know about solar radiation at different parts of the world?

Introduction to Physical Oceanography STUDENT NOTES Date: 1. What do you know about solar radiation at different parts of the world? Introduction to Physical Oceanography STUDENT NOTES Date: 1 Warm up What do you know about solar radiation at different parts of the world? What affect does the tilt of the Earth have on the northern and

More information

Equilibrium Model of Tides

Equilibrium Model of Tides Tides Outline Equilibrium Theory of Tides diurnal, semidiurnal and mixed semidiurnal tides spring and neap tides Dynamic Theory of Tides rotary tidal motion larger tidal ranges in coastal versus open-ocean

More information

OECS Regional Engineering Workshop September 29 October 3, 2014

OECS Regional Engineering Workshop September 29 October 3, 2014 B E A C H E S. M A R I N A S. D E S I G N. C O N S T R U C T I O N. OECS Regional Engineering Workshop September 29 October 3, 2014 Coastal Erosion and Sea Defense: Introduction to Coastal Dynamics David

More information

What is an ocean current? 1. wind action: the force of the wind blowing over the top of the water 2. spin of Earth 3. shape of the continents

What is an ocean current? 1. wind action: the force of the wind blowing over the top of the water 2. spin of Earth 3. shape of the continents Ocean Currents Textbook pages 414 427 Before You Read Section 11.2 Summary What forces do you think cause ocean water to move? Do you think ocean water moves the same way everywhere in the ocean? Write

More information

The ocean water is dynamic. Its physical

The ocean water is dynamic. Its physical CHAPTER MOVEMENTS OF OCEAN WATER The ocean water is dynamic. Its physical characteristics like temperature, salinity, density and the external forces like of the sun, moon and the winds influence the movement

More information

What are Waves? Earthquake. Waving flags. Vocal Cords Vibrate

What are Waves? Earthquake. Waving flags. Vocal Cords Vibrate Waves Ch. 10 What are Waves? All waves are movement of energy through a medium (air, rock, water) Series of vibrations or undulations in a medium Wave types: ocean, sound, light, seismic Vocal Cords Vibrate

More information

Ch19&21 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch19&21 Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Ch19&21 Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A large body of saline water that may be surrounded by land is a(n) a. submersible. c. global

More information

Oceanography 10. Tides Study Guide (7A)

Oceanography 10. Tides Study Guide (7A) Tides Study Guide (Topic 7A) page 1 Oceanography 10 Name: Tides Study Guide (7A) Note: Do not forget to include the units of your answers. 1. Use the tide chart below to determine the height and time of

More information

MAR 110 LECTURE #22 Standing Waves and Tides

MAR 110 LECTURE #22 Standing Waves and Tides 27 October 2007 MAR110_Lec22_standing Waves_tides_27oct07.doc 1 MAR 110 LECTURE #22 Standing Waves and Tides Coastal Zone Beach Profile Figure 22.1 Beach Profile Summer Onshore Sand Transport Breaking

More information

Chapter 20 Lecture. Earth: An Introduction to Physical Geology. Eleventh Edition. Shorelines. Tarbuck and Lutgens Pearson Education, Inc.

Chapter 20 Lecture. Earth: An Introduction to Physical Geology. Eleventh Edition. Shorelines. Tarbuck and Lutgens Pearson Education, Inc. Chapter 20 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Shorelines Tarbuck and Lutgens The Shoreline: A Dynamic Interface The Coastal Zone The shoreline is constantly modified by

More information

Prof. B.S. Thandaveswara. The periodic rise and fall of the planetary ocean level in response to the gravitational

Prof. B.S. Thandaveswara. The periodic rise and fall of the planetary ocean level in response to the gravitational 37.5 Tides The periodic rise and fall of the planetary ocean level in response to the gravitational interaction of the earth, moon, and sun. The periodic rise and fall of sea level that results from the

More information

Questions # 4 7 refer to Figure # 2 (page 321, Fig )

Questions # 4 7 refer to Figure # 2 (page 321, Fig ) Shoreline Community College OCEANOGRAPHY 101 Fall 2006 Sample Exam # 3 Instructor: Linda Khandro Questions # 1 3 refer to Figure # 1 (page 284, Fig 11.7) 1. At which position is the moon in its new moon

More information

Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff

Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff Tides & Beaches Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff Oceans Ocean Topography Physical Structure of the

More information

4/20/17. #30 - Coastlines - General Principles Coastlines - Overview

4/20/17. #30 - Coastlines - General Principles Coastlines - Overview Writing Assignment Due one week from today by 11:59 pm See main class web pages for detailed instructions Essays will be submitted in Illinois Compass (instructions later) Pick one: Earthquakes, tsunamis,

More information

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack Waves Recall: Waves = transmitted energy What causes waves? Wind gravity Earthquakes We will talk about all of these, but first Insert wind_wave.wmv Shark attack Types of Waves Body waves transmit energy

More information

Current: large mass of continuously moving ocean water

Current: large mass of continuously moving ocean water Ocean Currents Current: large mass of continuously moving ocean water Surface Currents--Wind Circulation These waters make up about 10% of all the water in the ocean. These waters are the upper 400 meters

More information

OCN 201, Chemistry & Physics Section

OCN 201, Chemistry & Physics Section , A 1-April-2015 Name: Answer the True/False and Multiple Choice questions on the scantron sheet. Answer the remaining questions on this exam handout. Turn in both the scantron and exam at the end of class.

More information

Oceans - Laboratory 12

Oceans - Laboratory 12 Oceans - Laboratory 12 (Name) How do ocean waves form? All waves are disturbances of a fluid medium through which energy is moved (Davis, 1997). Ocean waves travel on the interface between oceans and the

More information

Waves Part II. non-dispersive (C g =C)

Waves Part II. non-dispersive (C g =C) Waves Part II Previously we discussed Surface Gravity Waves Deep Water Waves Shallow Water Waves C g T 2 C g h dispersive (C g =C/2) Definitions: phase speed C= /T= /k non-dispersive (C g =C) group speed

More information

Chapter 12: Coasts (after a brief review of Tides)

Chapter 12: Coasts (after a brief review of Tides) Chapter 12: Coasts (after a brief review of Tides) 1 Questions from previous classes: What happens when a wave meets a current? wave = people walking current = bus If wave goes with the current, the wave

More information

MAR 110 LECTURE #16 Tides

MAR 110 LECTURE #16 Tides MAR 110: Lecture 16 Outline Tides 1 MAR 110 LECTURE #16 Tides Tides Are Waves Tidal wave energy is concentrated at periods of approximately 12 and 24 hours. (ItO) Equilibrium Tidal Forcing The theoretical

More information

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are.

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are. Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are. 1. A cool breeze is blowing toward the land from the ocean on a warm, cloudless summer day. This condition is

More information

BEACH PROCESSES AND COASTAL ENVIRONMENTS

BEACH PROCESSES AND COASTAL ENVIRONMENTS BEACH PROCESSES AND COASTAL ENVIRONMENTS COASTAL FEATURES Cross section Map view TOPICS: Terminology Waves Beach Morphology Barriers Coastal Migration Tides Tidal Flats and Marshes Sediment Budgets Human

More information

Earth Science Chapter 16 Section 3 Review

Earth Science Chapter 16 Section 3 Review Name: Class: Date: Earth Science Chapter 16 Section 3 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The movement of water that parallels the shore

More information

LAB: WHERE S THE BEACH

LAB: WHERE S THE BEACH Name: LAB: WHERE S THE BEACH Introduction When you build a sandcastle on the beach, you don't expect it to last forever. You spread out your towel to sunbathe, but you know you can't stay in the same spot

More information

Tides. Tides: longest waves. or seas. or ripples

Tides. Tides: longest waves. or seas. or ripples Tides or ripples or seas Tides: longest waves Tides Definition: The rise and fall of sea level due to the gravitational forces of the Moon and Sun and the rotation of the Earth. Why tides are important?

More information

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture!

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture! Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction Previous Lecture! Global Winds General Circulation of winds at the surface and aloft Polar Jet Stream Subtropical Jet Stream Monsoons 1 2 Radiation

More information

Theory and Application Introductory Oceanography Ray Rector: Instructor

Theory and Application Introductory Oceanography Ray Rector: Instructor OCEAN TIDES Theory and Application Introductory Oceanography Ray Rector: Instructor Tidal Concepts Tides are extremely swift, very long-wavelength, shallow-water waves Tides are periodic short-term changes

More information

TIDES. Theory and Application

TIDES. Theory and Application TIDES Theory and Application Tidal Concepts Tides are extremely swift, very long-wavelength, shallow-water waves Tides are periodic short-term changes in sea level at a particular place caused by the gravitational

More information

Earth Science. Mark Lilly. 8th Period. Snow Packet 5

Earth Science. Mark Lilly. 8th Period. Snow Packet 5 Earth Science Mark Lilly 8th Period Snow Packet 5 Instructions: 1. Read pages 421-427 2. Define all vocabulary on page 421 3. Answer three essential questions on top left of page 421 4. Answer questions

More information

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted Capillary Waves, Wind Waves, Chapter 10 Waves Anatomy of a Wave more like a real wave Tsunamis, Internal waves big waves huge waves rogue waves small waves more like a sine wave Wave direction Wave wave

More information

OCN201 Spring14 1. Name: Class: Date: True/False Indicate whether the statement is true or false.

OCN201 Spring14 1. Name: Class: Date: True/False Indicate whether the statement is true or false. Name: Class: _ Date: _ OCN201 Spring14 1 True/False Indicate whether the statement is true or false. 1. Short residence time elements are uniformly distributed in the oceans 2. Thermohaline circulation

More information

GEOGRAPHY - STD 8 [ ] Q1.

GEOGRAPHY - STD 8 [ ] Q1. GEOGRAPHY - STD 8 Movements of Oceans [2016-2017] Q1. Name the two types of regular movements in the oceans. Ans. The regular movements in the ocean are of two types: 1. Horizontal Ocean currents 2. Vertical

More information

Reading Material. Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall

Reading Material. Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall Reading Material Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall BEACH PROCESSES AND COASTAL ENVIRONMENTS COASTAL FEATURES Cross section Map view Terminology for Coastal

More information

Section 6. The Surface Circulation of the Ocean. What Do You See? Think About It. Investigate. Learning Outcomes

Section 6. The Surface Circulation of the Ocean. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 5 Winds, Oceans, Weather, and Climate Section 6 The Surface Circulation of the Ocean What Do You See? Learning Outcomes In this section, you will Understand the general paths of surface ocean currents.

More information

COASTAL ENVIRONMENTS. 454 lecture 12

COASTAL ENVIRONMENTS. 454 lecture 12 COASTAL ENVIRONMENTS Repeated movement of sediment & water constructs a beach profile reflecting the balance between average daily or seasonal wave forces and resistance of landmass to wave action Coasts

More information

R E M I N D E R S. v Two required essays are due by April 9, v Extra Credit: Think Geographically Essays from any five of the textbook s

R E M I N D E R S. v Two required essays are due by April 9, v Extra Credit: Think Geographically Essays from any five of the textbook s R E M I N D E R S v Two required essays are due by April 9, 2019. Ø A third may be used for extra credit in place of a Think Geographically essay. ESSAY TOPICS (choose any two): Contributions of a noted

More information

THE RESTLESS SEA. https://pao.cnmoc.navy.mil/pao/educate/oceantalk2/indexrestless.htm

THE RESTLESS SEA. https://pao.cnmoc.navy.mil/pao/educate/oceantalk2/indexrestless.htm THE RESTLESS SEA Energy from the sun is the engine that drives the major ocean basin circulation patterns. Rising warm air, sinking cold air, and uneven heating of the Earth's surface create wind, the

More information

OCN-201 Chemistry and Physics section

OCN-201 Chemistry and Physics section Name: Class: _ Date: _ OCN-201 Chemistry and Physics section True/False Indicate whether the statement is true or false. 1. Because of the dissolved salt in seawater its freezing point is lower than that

More information

3/9/2013. Build house on cliff for a view of the ocean - be one with said view Pearson Education, Inc. Shorelines: summary in haiku form

3/9/2013. Build house on cliff for a view of the ocean - be one with said view Pearson Education, Inc. Shorelines: summary in haiku form Introduction to Environmental Geology, 5e Edward A. Keller Shorelines: summary in haiku form Chapter 11 Coastal Processes Lecture Presentation prepared by X. Mara Chen, Salisbury University Build house

More information

/50. Physical Geology Shorelines

/50. Physical Geology Shorelines Physical Geology Shorelines Multiple Guess: (You know the drill 2 points each) 1. The path of movement of a water particle in a wave at sea is 1. circular 2. horizontal 3. vertical 4. elliptical 5. none

More information

What causes the tides in the ocean?

What causes the tides in the ocean? What causes the tides in the ocean? By NASA and NOAA, adapted by Newsela staff on 02.09.17 Word Count 769 Level 970L Flying gulls on Morro Strand State Beach, California, at low tide. Morro Rock is seen

More information

OCN 201 Surface Circulation

OCN 201 Surface Circulation OCN 201 Surface Circulation Excess heat in equatorial regions requires redistribution toward the poles 1 In the Northern hemisphere, Coriolis force deflects movement to the right In the Southern hemisphere,

More information

El Niño Southern Oscillation. Pressure systems over Darwin Australia and Tahiti Oscillate Typically occurs every 4-7 years

El Niño Southern Oscillation. Pressure systems over Darwin Australia and Tahiti Oscillate Typically occurs every 4-7 years El Niño Southern Oscillation Pressure systems over Darwin Australia and Tahiti Oscillate Typically occurs every 4-7 years 1 2 What is it? Normal Conditions... What is it? During El Niño. 3 Local Effects

More information

Garrett McNamara, Portugal, 30 Jan What is a wave?

Garrett McNamara, Portugal, 30 Jan What is a wave? Waves Garrett McNamara, Portugal, 30 Jan 2013 What is a wave? Waves transmit a disturbance / energy from one part of a material to another. The energy is transmitted without substantial movement of the

More information

THE OCEAN IS ALWAYS IN MOTION. WHY IS THIS IMPORTANT? First we need to know what kinds of movement there are in the ocean. Three Kinds of Water

THE OCEAN IS ALWAYS IN MOTION. WHY IS THIS IMPORTANT? First we need to know what kinds of movement there are in the ocean. Three Kinds of Water The meeting of two plates sometimes makes it possible for water to enter the area as happens with the Red Sea, which was formed when the Arabian peninsula was split from the Horn of Africa but the Red

More information

MAR 110 LECTURE #15 Wave Hazards

MAR 110 LECTURE #15 Wave Hazards 1 MAR 110 LECTURE #15 Wave Hazards Rogue Wave Hazard Rogue waves are very large open ocean waves of sometimes can range in height from 60 ft (20m) to120 feet (40m) and thus a significant hazard to large

More information

consulting engineers and scientists

consulting engineers and scientists consulting engineers and scientists Coastal Processes Presented by: January 9, 2015 Varoujan Hagopian, P.E. F.ASCE Senior Consultant, Waterfront Engineer Living Shoreline Workshop Lets Remember Why We

More information

OCEANS. Main Ideas. Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth.

OCEANS. Main Ideas. Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth. Oceans Chapter 10 OCEANS Main Ideas Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth. Lesson 3: The Ocean Shore The shore is shaped by the movement of water and sand. OCEANS SO

More information

Waters rise and fall in tides.

Waters rise and fall in tides. Page 1 of 5 KEY ONEPT Waters rise and fall in tides. BEFORE, you learned Wind provides the energy to form waves in the ocean Ocean waves change near shore The ocean is a global body of water NOW, you will

More information

Global Circulations. GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10

Global Circulations. GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10 Global Circulations GEOG/ENST 2331 Lecture 15 Ahrens: Chapter 10 Last lecture Microscale (turbulence) Mesoscale (land/sea breeze) Synoptic scale (monsoon) Global scale (3 cell circulation) Three Cell Model

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

Environmental Geology Chapter 11 COASTAL PROCESSES and RELATED HAZARDS

Environmental Geology Chapter 11 COASTAL PROCESSES and RELATED HAZARDS Environmental Geology Chapter 11 COASTAL PROCESSES and RELATED HAZARDS Introduction >50% of world population concentrated in the coastal zones ~75% of U.S. population living in coastal states Coastal hazard

More information

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company Unit 11 Lesson 2 How Does Ocean Water Move? Catch a Wave A wave is the up-and-down movement of surface water. Catch a Wave Catch a Wave (wave effects) Surface waves are caused by wind pushing against

More information

Deep-water orbital waves

Deep-water orbital waves What happens when waves approach shore? Deep-water orbital waves Fig. 9.16, p. 211 Wave motion is influenced by water depth and shape of the shoreline wave buildup zone surf zone beach Wave base deepwater

More information

What is a wave? Even here the wave more or less keeps it s shape and travelled at a constant speed. YouTube. mexicanwave.mov

What is a wave? Even here the wave more or less keeps it s shape and travelled at a constant speed. YouTube. mexicanwave.mov Waves What is a wave? Waves transmit a disturbance / energy from one part of a material to another. The energy is transmitted without substantial movement of the material. Waves occur in lots of places,

More information

Overview and preview. I. Tides as Waves (really really big) What are the Forces driving these waves? II: Into make-believe.

Overview and preview. I. Tides as Waves (really really big) What are the Forces driving these waves? II: Into make-believe. The Tides Overview and preview I. Tides as Waves (really really big) What are the Forces driving these waves? II: Into make-believe. Idealized world: no land, deep water, no friction.no problems. Effects

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

Marginal Marine Environments

Marginal Marine Environments Marginal Marine Environments Delta: discrete shoreline protuberances formed where rivers enter oceans, semi-enclosed seas, lakes or lagoons and supply sediment more rapidly than it can be redistributed

More information

3/22/11. General Circulation of the Atmosphere. General Circulation of the Atmosphere

3/22/11. General Circulation of the Atmosphere. General Circulation of the Atmosphere Chapter 10 General refers to the average air flow, actual winds will vary considerably. Average conditions help identify driving forces. The basic cause of the general circulation is unequal heating of

More information

CHAPTER 7 Ocean Circulation

CHAPTER 7 Ocean Circulation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CHAPTER 7 Ocean Circulation Words Ocean currents Moving seawater Surface ocean currents Transfer heat from warmer to cooler areas Similar to pattern of major wind belts

More information

1.5 How do ocean waves and currents change the face of coastal areas? (Chapter 3)

1.5 How do ocean waves and currents change the face of coastal areas? (Chapter 3) 1.5 How do ocean waves and currents change the face of coastal areas? (Chapter 3) 1. Hydraulic Action/Pressure - air being forced into crack in rocks. 2. Corrosion (Solution) Minerals such as calcium carbonate

More information

Zonal (East-West) Currents. Wind-Driven Ocean Currents. Zonal (East-West) Currents. Meridional (N-S) Currents

Zonal (East-West) Currents. Wind-Driven Ocean Currents. Zonal (East-West) Currents. Meridional (N-S) Currents Wind-Driven Ocean Currents Similarities between winds & surface currents Zonal (East-West) Currents Trade winds push currents westward north & south of the equator Equatorial currents. Up to 100 cm/sec.

More information

DELHI PUBLIC SCHOOL TAPI

DELHI PUBLIC SCHOOL TAPI DELHI PUBLIC SCHOOL TAPI CLASS VII Learning Partnership 5 (KEY) Water : LESSON 5: Water (KEY) Writing Task: W.B (pp-136) 1. What are the 3 main process involved in the water cycle. Evaporation, Condensation,

More information

The events associated with the Great Tsunami of 26 December 2004 Sea Level Variation and Impact on Coastal Region of India

The events associated with the Great Tsunami of 26 December 2004 Sea Level Variation and Impact on Coastal Region of India The events associated with the Great Tsunami of 26 December 2004 Sea Level Variation and Impact on Coastal Region of India Satish R. Shetye National Institute of Oceanography, Goa Tsunamis are shallow-water

More information

Ch 9: Waves. Wind waves. Formation of a wind wave

Ch 9: Waves. Wind waves. Formation of a wind wave Ch 9: Waves 1. Features of Waves 2. Deep-water, shallow water and transitional waves 3. Breaking Waves 4. Wind Waves 5. Tsunamis Cf. Fig. 9-2 Waves are created by a disturbance. * wind (wind waves, L=

More information

Introduction to Oceanography OCE 1001

Introduction to Oceanography OCE 1001 Introduction to Oceanography OCE 1001 Lecture Notes Chantale Bégin & Jessica Fry Version 2.1 10. Ocean Circulation (Trujillo, Chapter 7) Major ocean currents are stable and predictable; they have been

More information

El Niño Lecture Notes

El Niño Lecture Notes El Niño Lecture Notes There is a huge link between the atmosphere & ocean. The oceans influence the atmosphere to affect climate, but the atmosphere also influences the ocean, which can also affect climate.

More information

Tides Unit III: Real Tides (2 pts)

Tides Unit III: Real Tides (2 pts) T. James Noyes, El Camino College Tides Unit III: Real Tides (Topic 7A-3) page 1 Name: Section: Tides Unit III: Real Tides (2 pts) Real Tides Real tides can differ significantly from the predictions of

More information

10% water in the world is tied up in the surface ocean currents. (above the pycnocline) Primary source is wind: Westerlies, Trades, Polar Easterlies

10% water in the world is tied up in the surface ocean currents. (above the pycnocline) Primary source is wind: Westerlies, Trades, Polar Easterlies Oceanography Chapter 9 10% water in the world is tied up in the surface ocean currents. (above the pycnocline) Primary source is wind: Westerlies, Trades, Polar Easterlies Coriolis deflects winds (and

More information

General Coastal Notes + Landforms! 1

General Coastal Notes + Landforms! 1 General Coastal Notes + Landforms! 1 Types of Coastlines: Type Description Primary Coast which is essentially in the same condition when sea level stabilized Coastline after the last ice age, younger.

More information

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description.

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description. Ch 15 Earth s Oceans SECTION 15.1 An Overview of Oceans 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description. (5 points) 1. German research

More information

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular Fig. 11-11, p. 253 There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular differ by the amount of energy, which

More information

The oceans are vast not only in size, but also in their ability to store and release energy.

The oceans are vast not only in size, but also in their ability to store and release energy. WHAT ENERGIES ARE ASSOCIATED WITH EARTH S OCEANS? The oceans are vast not only in size, but also in their ability to store and release energy. Scientists recognize various forms of energy in nature. Many

More information