CS 4649/7649 Robot Intelligence: Planning

Size: px
Start display at page:

Download "CS 4649/7649 Robot Intelligence: Planning"

Transcription

1 CS 4649/7649 Robot Intelligence: Planning Differential Kinematics, Probabilistic Roadmaps Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo 1 *Slides based in part on Dr. Mike Stilman s lecture slides

2 Potential Fields S. Joo 2

3 Potential Fields *Simulation by Leng-Feng Univ. S. Joo 3

4 Summary: Navigation Algorithms S. Joo 4

5 Coordinates S. Joo 5

6 Homogeneous Transform 3D (1) Change the representation of a vector in frame B to frame A (2) Change a vector in a frame to another vector (rotated) in the (3) Unit vectors of frame B represented(expressed) in frame A S. Joo (sungmoon.joo@cc.gatech.edu) 6

7 Forward(Direct) Kinematics {0} y x S. Joo (sungmoon.joo@cc.gatech.edu) 7

8 Forward Kinematics S. Joo 8

9 Forward Kinematics Representation of frame2 in frame0 Representation of frame3 in frame0 S. Joo 9

10 Denavit-Hartenberg (DH) Parameters S. Joo 10

11 DH Parameters For a revolute joint link parameters joint variable *For a prismatic joint: d i is a joint variable S. Joo (sungmoon.joo@cc.gatech.edu) 11

12 DH Parameters S. Joo 12

13 DH Parameters *special links first, last *special cases eg. parallel links S. Joo 13

14 Kinematics S. Joo 14

15 Inverse Kinematics S. Joo 15

16 Configurations Space Work Space Configuration Space S. Joo 16

17 Configuration Space: IK Solution S. Joo 17

18 Configuration Space: IK Solution S. Joo 18

19 Configuration Space: IK Solution S. Joo 19

20 Analytical Methods S. Joo 20

21 Analytical Methods S. Joo 21

22 Analytical IK S. Joo 22

23 Infinitesimal Changes Forward Kinematics Differential (Forward) Kinematics S. Joo 23

24 Differential Kinematics S. Joo 24

25 Differential Kinematics S. Joo 25

26 How do we compute J? Method1 S. Joo 26

27 How do we compute J? Method1 S. Joo 27

28 How do we compute J? Method1 S. Joo 28

29 How do we compute J? Method2 Rigid body angular motion Rigid body linear + angular motion {B} {A} S. Joo (sungmoon.joo@cc.gatech.edu) 29

30 How do we compute J? Method2 Consider the propagation of velocities: linear velocity & angular velocity {i} {i-1} Linear velocity propagation Angular velocity propagation S. Joo 30

31 How do we compute J? Method2 Linear velocity propagation Prismatic Joint Angular velocity propagation Revolute Joint S. Joo 31

32 How do we compute J? Method2 S. Joo 32

33 How do we compute J? Method2 S. Joo 33

34 How do we compute J? Method2 S. Joo 34

35 How do we compute J? Method3 1. Simulate a small displacement Δθ i for each joint 2. Observe Δx and numerically compute J Less accurate, more time consuming Sometimes the only option S. Joo (sungmoon.joo@cc.gatech.edu) 35

36 Gradient IK - How do we use J? Workspace goal x 1x2 How do we get a joint space goal? q 1q2 x n q n Assuming 6 D.O.F and J is full rank: Δq = J 1 Δx Iterate until convergence Otherwise Still Possible (Pseudo-Inverse & Variants): J + = JT (JJ T ) 1 S. Joo (sungmoon.joo@cc.gatech.edu) 36

37 Gradient IK Generally applicable to n-dof kinematics Many existing implementations Slower and unstable around singularities S. Joo 37

38 Planning Goals for manipulators are really that complicated! Add what it takes to represent obstacles: But, does this remind you of anything? Δq = J 1 Δx S. Joo (sungmoon.joo@cc.gatech.edu) 38

39 Planning Manipulator + Potential Field S. Joo (sungmoon.joo@cc.gatech.edu) 39

40 Planning Manipulator + Potential Field First effective planning method for high-dof robot arms Very fast (potential fields) However: Local Minima Complex obstacle representation For Soundness must define obstacles with respect to each link S. Joo (sungmoon.joo@cc.gatech.edu) 40

41 Planning Manipulator + Potential Field Roadmap Methods: Combine Kinematics & Geometric Planning Visibility Graphs No polygons in C-space. How would you get polygons? Voronoi Diagrams Canny s Thesis: NP-hard Algorithms for Motion Planning Cell Decomposition: Exact Same troubles as Visibility Graphs. Approximate Ok for 2-3 dimensions Good luck in 4+ dimensions S. Joo (sungmoon.joo@cc.gatech.edu) 41

42 Kinematic Planning Algorithms Pre-1980 Mainly 2D, 3D planners In case of kinematics: Ignore robot geometry Robot is an ethereal entity that obeys kinematics 1980s Potential Fields! First feasible SOUND solution Locally optimal control strategy Not globally complete or optimal S. Joo 42

43 Can we solve these planning problems? Planning Algorithms, S. Lavalle S. Joo 43

44 Key Idea What did Visibility, Voronoi, Cells, Fields have in common? - Some form of explicit environment representation - Attempt at some form of optimality New concepts from 1990s: - Forget optimality altogether - Focus on Completeness - Think about Free Space S. Joo (sungmoon.joo@cc.gatech.edu) 44

45 A New Kind of Roadmap Previous roadmaps used features related to actual obstacle features. Lydia Kavraki 94, 96 Present Mark Overmars 92, 96 - Present Probabilistic Roadmaps (PRM) - Features: Sampled free points - Edges: Verified connections Probabilistic roadmaps for path planning in high-dimensional configuration spaces By Kavraki, Svestka, Latombe, and Overmars, 1996, IEEE Transactions on Robotics and Automation S. Joo (sungmoon.joo@cc.gatech.edu) 45

46 Probabilistic Roadmap: Step 1 Randomly sample a configuration: P Keep only if P is in Free Space S. Joo (sungmoon.joo@cc.gatech.edu) 46

47 Probabilistic Roadmap: Step 1 Randomly sample a configuration: P Keep only if P is in Free Space S. Joo (sungmoon.joo@cc.gatech.edu) 47

48 Probabilistic Roadmap: Step 2 For each node P find k nearest neighbors: Q 1 Q k S. Joo (sungmoon.joo@cc.gatech.edu) 48

49 Probabilistic Roadmap: Step 3 For each node P find k nearest neighbors: Q 1 Q k Use a local planner to test connectivity between P and Qi S. Joo (sungmoon.joo@cc.gatech.edu) 49

50 Probabilistic Roadmap: Step 3 For each node P find k nearest neighbors: Q 1 Q k Use a local planner to test connectivity between P and Qi What could be a local planner? What happens next? S. Joo (sungmoon.joo@cc.gatech.edu) 50

51 Probabilistic Roadmap: Step 4 For each node P find k nearest neighbors: Q 1 Q k Use a local planner to test connectivity between P and Qi Find a path: Uniform Cost, A*, S. Joo (sungmoon.joo@cc.gatech.edu) 51

52 We can solve these planning problem S. Joo 52

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Roadmap Approaches Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu) 1 *Slides

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Motion Planning: Introduction & Reactive Strategies Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu)

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Heuristics & Search Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu) 1 *Slides

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Partially Observable MDP Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu)

More information

Comparison of Control Methods: Learning Robotics Manipulation with Contact Dynamics

Comparison of Control Methods: Learning Robotics Manipulation with Contact Dynamics Comparison of Control Methods: Learning Robotics Manipulation with Contact Dynamics Keven Wang Computer Science Stanford University Email: kvw@stanford.edu Bruce Li Mashgin Email: yonglisc@gmail.com Abstract

More information

Motion Control of a Bipedal Walking Robot

Motion Control of a Bipedal Walking Robot Motion Control of a Bipedal Walking Robot Lai Wei Ying, Tang Howe Hing, Mohamed bin Hussein Faculty of Mechanical Engineering Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia. Wylai2@live.my

More information

Generation of Robot Motion Based on Measurement of Human Movement. Susumu Sakano 1, Satoru Shoji 1

Generation of Robot Motion Based on Measurement of Human Movement. Susumu Sakano 1, Satoru Shoji 1 Generation of Robot Motion Based on Measurement of Human Movement Susumu Sakano 1, Satoru Shoji 1 1College of Engineering, Nihon University 1 Nakagawara Tokusada Tamura-machi Koriyama 963-8642 Japan Tel;

More information

Kinematics & Dynamics

Kinematics & Dynamics Kinematics & Dynamics Thomas Funkhouser Princeton University C0S 46, Fall 000 Overview Kinematics Considers only motion Determined by positions, velocities, accelerations Dynamics Considers underlying

More information

Design and Modeling of a Mobile Robot

Design and Modeling of a Mobile Robot Design and Modeling of a Mobile Robot with an Optimal Obstacle-Climbing Mode The pen WHEEL Project Jean-Christophe FAUROUX Morgann FORLOROU Belhassen Chedli BOUZGARROU Frédéric CHAPELLE 1/33 LaMI / TIMS

More information

Walking Gait Generation with Foot Placement Control for the HOAP-3 Humanoid Robot

Walking Gait Generation with Foot Placement Control for the HOAP-3 Humanoid Robot Walking Gait Generation with Foot Placement Control for the HOAP-3 Humanoid Robot Yazhou Huang, Robert Backman and Marcelo Kallmann UCM School of Engineering Technical Report TR-2011-002 University of

More information

EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming

EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming Jinkyoo Park 1 Introduction In a wind farm, the wakes formed by upstream wind turbines decrease the power outputs of downstream

More information

Design of a double quadruped for the Tech United soccer robot

Design of a double quadruped for the Tech United soccer robot Design of a double quadruped for the Tech United soccer robot M.J. Naber (0571509) DCT report number: 2009.134 Master Open Space project Eindhoven, 21 December 2009 Supervisor dr.ir. P.C.J.N. Rosielle

More information

Designing a Traffic Circle By David Bosworth For MATH 714

Designing a Traffic Circle By David Bosworth For MATH 714 Designing a Traffic Circle By David Bosworth For MATH 714 Abstract We all have had the experience of sitting in a traffic jam, or we ve seen cars bunched up on a road for some no apparent reason. The use

More information

YAN GU. Assistant Professor, University of Massachusetts Lowell. Frederick N. Andrews Fellowship, Graduate School, Purdue University ( )

YAN GU. Assistant Professor, University of Massachusetts Lowell. Frederick N. Andrews Fellowship, Graduate School, Purdue University ( ) YAN GU Assistant Professor, University of Massachusetts Lowell CONTACT INFORMATION 31 University Avenue Cumnock 4E Lowell, MA 01854 yan_gu@uml.edu 765-421-5092 http://www.locomotionandcontrolslab.com RESEARCH

More information

knn & Naïve Bayes Hongning Wang

knn & Naïve Bayes Hongning Wang knn & Naïve Bayes Hongning Wang CS@UVa Today s lecture Instance-based classifiers k nearest neighbors Non-parametric learning algorithm Model-based classifiers Naïve Bayes classifier A generative model

More information

Analysis and realization of synchronized swimming in URWPGSim2D

Analysis and realization of synchronized swimming in URWPGSim2D International Conference on Manufacturing Science and Engineering (ICMSE 2015) Analysis and realization of synchronized swimming in URWPGSim2D Han Lu1, a *, Li Shu-qin2, b * 1 School of computer, Beijing

More information

Kochi University of Technology Aca Study on Dynamic Analysis and Wea Title stem for Golf Swing Author(s) LI, Zhiwei Citation 高知工科大学, 博士論文. Date of 2015-03 issue URL http://hdl.handle.net/10173/1281 Rights

More information

Traffic circles. February 9, 2009

Traffic circles. February 9, 2009 Traffic circles February 9, 2009 Abstract The use of a traffic circle is a relatively common means of controlling traffic in an intersection. Smaller Traffic circles can be especially effective in routing

More information

Multiple User Defined End-Effectors with Shared Memory Communication for Posture Prediction

Multiple User Defined End-Effectors with Shared Memory Communication for Posture Prediction 2008-01-1922 Multiple User Defined End-Effectors with Shared Memory Communication for Posture Prediction Brent Rochambeau, Timothy Marler, Anith Mathai, and Karim Abdel-Malek Virtual Soldier Research (VSR)

More information

Neural Nets Using Backpropagation. Chris Marriott Ryan Shirley CJ Baker Thomas Tannahill

Neural Nets Using Backpropagation. Chris Marriott Ryan Shirley CJ Baker Thomas Tannahill Neural Nets Using Backpropagation Chris Marriott Ryan Shirley CJ Baker Thomas Tannahill Agenda Review of Neural Nets and Backpropagation Backpropagation: The Math Advantages and Disadvantages of Gradient

More information

AutonoVi-Sim: Modular Autonomous Vehicle Simulation Platform Supporting Diverse Vehicle Models, Sensor Configuration, and Traffic Conditions

AutonoVi-Sim: Modular Autonomous Vehicle Simulation Platform Supporting Diverse Vehicle Models, Sensor Configuration, and Traffic Conditions AutonoVi-Sim: Modular Autonomous Vehicle Simulation Platform Supporting Diverse Vehicle Models, Sensor Configuration, and Traffic Conditions Andrew Best, Sahil Narang, Lucas Pasqualin, Daniel Barber, Dinesh

More information

Kenzo Nonami Ranjit Kumar Barai Addie Irawan Mohd Razali Daud. Hydraulically Actuated Hexapod Robots. Design, Implementation. and Control.

Kenzo Nonami Ranjit Kumar Barai Addie Irawan Mohd Razali Daud. Hydraulically Actuated Hexapod Robots. Design, Implementation. and Control. Kenzo Nonami Ranjit Kumar Barai Addie Irawan Mohd Razali Daud Hydraulically Actuated Hexapod Robots Design, Implementation and Control 4^ Springer 1 Introduction 1 1.1 Introduction 1 1.2 Walking "Machines"

More information

ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots

ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots Jong H. Park School of Mechanical Engineering Hanyang University Seoul, 33-79, Korea email:jong.park@ieee.org Yong K. Rhee School of

More information

Routing and course control of an autonomous sailboat

Routing and course control of an autonomous sailboat Routing and course control of an autonomous sailboat Hadi Saoud 1,2, Minh-Duc Hua 1,2, Frédéric Plumet 2,3 and Faiz Ben Amar 1,2 1 Sorbonne Universités, UPMC Univ Paris 6, UMR 7222, ISIR, F-755, Paris,

More information

Modeling Human Movement

Modeling Human Movement CS 4732: Computer Animation Modeling Human Movement Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu Modeling Human Movement: It s Hard!

More information

Uninformed search methods II.

Uninformed search methods II. CS 1571 Introduction to AI Lecture 5 Uninformed search methods II. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Uninformed methods Uninformed search methods use only information available in

More information

Basketball field goal percentage prediction model research and application based on BP neural network

Basketball field goal percentage prediction model research and application based on BP neural network ISSN : 0974-7435 Volume 10 Issue 4 BTAIJ, 10(4), 2014 [819-823] Basketball field goal percentage prediction model research and application based on BP neural network Jijun Guo Department of Physical Education,

More information

E.I. Kugushev, 7.6. Jaroshevskij Institute of Applied Mathematics, the USSR Academy of Sciences, Moscow, A-47, Miusskaya Sq», 4

E.I. Kugushev, 7.6. Jaroshevskij Institute of Applied Mathematics, the USSR Academy of Sciences, Moscow, A-47, Miusskaya Sq», 4 PROBLEMS OF SELECTING A GAIT FOR AN INTEGRATED LOCOMOTION ROBOT E.I. Kugushev, 7.6. Jaroshevskij Institute of Applied Mathematics, the USSR Academy of Sciences, Moscow, A-47, Miusskaya Sq», 4 Abstract.

More information

Where are you right now? How fast are you moving? To answer these questions precisely, you

Where are you right now? How fast are you moving? To answer these questions precisely, you 4.1 Position, Speed, and Velocity Where are you right now? How fast are you moving? To answer these questions precisely, you need to use the concepts of position, speed, and velocity. These ideas apply

More information

Algorithm for Line Follower Robots to Follow Critical Paths with Minimum Number of Sensors

Algorithm for Line Follower Robots to Follow Critical Paths with Minimum Number of Sensors International Journal of Computer (IJC) ISSN 2307-4523 (Print & Online) Global Society of Scientific Research and Researchers http://ijcjournal.org/ Algorithm for Line Follower Robots to Follow Critical

More information

Gait Sequence generation of a Hybrid Wheeled-Legged Robot for negotiating discontinuous terrain

Gait Sequence generation of a Hybrid Wheeled-Legged Robot for negotiating discontinuous terrain 1 Gait Sequence generation of a Hybrid Wheeled-Legged Robot for negotiating discontinuous terrain Sartaj Singh, K Madhava Krishna Abstract-- In this paper we develop an algorithm to generate gait sequences

More information

Path-Planning and Tracking in a 3D Complex Environment for an Anthropomorphic Biped Robot

Path-Planning and Tracking in a 3D Complex Environment for an Anthropomorphic Biped Robot Path-Planning and Tracking in a 3D Complex Environment for an Anthropomorphic Biped Robot Jean-Matthieu Bourgeot 1, Nathalie Cislo 2, Bernard Espiau 1 1 INRIA Rhône-Alpes, BIP Project, Montbonnot, France.

More information

Adaptor Core Technology:

Adaptor Core Technology: Adaptor Core Technology: The Inception and Adapting of Calculus Based Truths within Geometric Entities Written By: Nick Siefers (Nicks@900global.com) Director of Operations 900 Global would like to introduce

More information

CENG 466 Artificial Intelligence. Lecture 4 Solving Problems by Searching (II)

CENG 466 Artificial Intelligence. Lecture 4 Solving Problems by Searching (II) CENG 466 Artificial Intelligence Lecture 4 Solving Problems by Searching (II) Topics Search Categories Breadth First Search Uniform Cost Search Depth First Search Depth Limited Search Iterative Deepening

More information

Kungl Tekniska Högskolan

Kungl Tekniska Högskolan Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se March 22, 2006 Outline Wheel The overall system layout : those found in nature found in nature Difficult to imitate technically Technical

More information

Centre for Autonomous Systems

Centre for Autonomous Systems Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se March 22, 2006 Outline Wheel The overall system layout : those found in nature found in nature Difficult to imitate technically Technical

More information

Compliance for a cross four-bar knee joint

Compliance for a cross four-bar knee joint Compliance for a cross four-bar knee joint Arnaud Hamon, Yannick Aoustin To cite this version: Arnaud Hamon, Yannick Aoustin. Compliance for a cross four-bar knee joint. The 14th International Conference

More information

Geometric Task Decomposition in a Multi-Agent Environment

Geometric Task Decomposition in a Multi-Agent Environment Geometric Task Decomposition in a Multi-Agent Environment Kaivan Kamali 1, Dan Ventura 2, Amulya Garga 3, and Soundar R.T. Kumara 4 1 Department of Computer Science & Engineering 3 The Applied Research

More information

Autonomous blimp control with reinforcement learning

Autonomous blimp control with reinforcement learning University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2009 Autonomous blimp control with reinforcement learning Yiwei

More information

Simulation of the Hybtor Robot

Simulation of the Hybtor Robot Simulation of the Hybtor Robot Pekka Aarnio, Kari Koskinen and Sami Salmi Information and Computer Systems in Automation Helsinki University of Technology ABSTRACT A dynamic rigid body simulation model

More information

A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier

A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier A Research on the Airflow Efficiency Analysis according to the Variation of the Geometry Tolerance of the Sirocco Fan Cut-off for Air Purifier Jeon-gi Lee*, Choul-jun Choi*, Nam-su Kwak*, Su-sang Park*

More information

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department Princess Nora University Faculty of Computer & Information Systems 1 ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department (CHAPTER-3-PART2) PROBLEM SOLVING AND SEARCH (Course coordinator) Searching

More information

Shot-by-shot directional source deghosting and directional designature using near-gun measurements

Shot-by-shot directional source deghosting and directional designature using near-gun measurements H1-1-3 Shot-by-shot directional source deghosting and directional designature using near-gun measurements Neil Hargreaves, Rob Telling, Sergio Grion Dolphin Geophysical, London, UK Introduction In this

More information

Application of Dijkstra s Algorithm in the Evacuation System Utilizing Exit Signs

Application of Dijkstra s Algorithm in the Evacuation System Utilizing Exit Signs Application of Dijkstra s Algorithm in the Evacuation System Utilizing Exit Signs Jehyun Cho a, Ghang Lee a, Jongsung Won a and Eunseo Ryu a a Dept. of Architectural Engineering, University of Yonsei,

More information

Better Search Improved Uninformed Search CIS 32

Better Search Improved Uninformed Search CIS 32 Better Search Improved Uninformed Search CIS 32 Functionally PROJECT 1: Lunar Lander Game - Demo + Concept - Open-Ended: No One Solution - Menu of Point Options - Get Started NOW!!! - Demo After Spring

More information

In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007.

In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007. Acknowledgement In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007. There are many others without whom I could not have completed

More information

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

CFD Analysis of Giromill Type Vertical Axis Wind Turbine 242 CFD Analysis Giromill Type Vertical Axis Wind Turbine K. Sainath 1, T. Ravi 2, Suresh Akella 3, P. Madhu Sudhan 4 1 Associate Pressor, Department Mechanical Engineering, Sreyas Inst. Engg. & Tech.,

More information

Research Article Research on Path Planning Method of Coal Mine Robot to Avoid Obstacle in Gas Distribution Area

Research Article Research on Path Planning Method of Coal Mine Robot to Avoid Obstacle in Gas Distribution Area Robotics Volume 216, Article ID 421276, 6 pages http://dx.doi.org/1.11/216/421276 Research Article Research on Path Planning Method of Coal Mine Robot to Avoid Obstacle in Gas Distribution Area Ruiqing

More information

Future Trends Internet of Things, Automated Welding and Additive Manufacturing in India. Friction Stir Welding

Future Trends Internet of Things, Automated Welding and Additive Manufacturing in India. Friction Stir Welding Future Trends Internet of Things, Automated Welding and Additive Manufacturing in India Friction Stir Welding Friction Stir Welding in Action Take-up of FSW by Industry 300 280 260 240 220 200 180 160

More information

OPTIMAL TRAJECTORY GENERATION OF COMPASS-GAIT BIPED BASED ON PASSIVE DYNAMIC WALKING

OPTIMAL TRAJECTORY GENERATION OF COMPASS-GAIT BIPED BASED ON PASSIVE DYNAMIC WALKING OPTIMAL TRAJECTORY GENERATION OF COMPASS-GAIT BIPED BASED ON PASSIVE DYNAMIC WALKING Minseung Kim Dept. of Computer Science Illinois Institute of Technology 3201 S. State St. Box 2082 Chicago IL 60616

More information

Polynomial DC decompositions

Polynomial DC decompositions Polynomial DC decompositions Georgina Hall Princeton, ORFE Joint work with Amir Ali Ahmadi Princeton, ORFE 7/31/16 DIMACS Distance geometry workshop 1 Difference of convex (dc) programming Problems of

More information

Development of Fluid-Structure Interaction Program for the Mercury Target

Development of Fluid-Structure Interaction Program for the Mercury Target Chapter 4 Epoch Making Simulation Development of Fluid-Structure Interaction Program for the Mercury Target Project Representative Chuichi Arakawa Authors Chuichi Arakawa Takuma Kano Ryuta Imai Japan Atomic

More information

67. Sectional normalization and recognization on the PV-Diagram of reciprocating compressor

67. Sectional normalization and recognization on the PV-Diagram of reciprocating compressor 67. Sectional normalization and recognization on the PV-Diagram of reciprocating compressor Jin-dong Wang 1, Yi-qi Gao 2, Hai-yang Zhao 3, Rui Cong 4 School of Mechanical Science and Engineering, Northeast

More information

Author s Name Name of the Paper Session. Positioning Committee. Marine Technology Society. DYNAMIC POSITIONING CONFERENCE September 18-19, 2001

Author s Name Name of the Paper Session. Positioning Committee. Marine Technology Society. DYNAMIC POSITIONING CONFERENCE September 18-19, 2001 Author s Name Name of the Paper Session PDynamic Positioning Committee Marine Technology Society DYNAMIC POSITIONING CONFERENCE September 18-19, 2001 POWER PLANT SESSION A New Concept for Fuel Tight DP

More information

Torpedoes on Target: EAs on Track

Torpedoes on Target: EAs on Track 113 Torpedoes on Target: EAs on Track Nicole Patterson, Luigi Barone and Cara MacNish School of Computer Science & Software Engineering The University of Western Australia M002, 35 Stirling Highway, Crawley,

More information

CS 351 Design of Large Programs Zombie House

CS 351 Design of Large Programs Zombie House CS 351 Design of Large Programs Zombie House Instructor: Joel Castellanos e-mail: joel@unm.edu Web: http://cs.unm.edu/~joel/ Office: Electrical and Computer Engineering building (ECE). Room 233 2/23/2017

More information

Pedestrian Dynamics: Models of Pedestrian Behaviour

Pedestrian Dynamics: Models of Pedestrian Behaviour Pedestrian Dynamics: Models of Pedestrian Behaviour John Ward 19 th January 2006 Contents Macro-scale sketch plan model Micro-scale agent based model for pedestrian movement Development of JPed Results

More information

B.U.G. Newsletter. Full Steam Ahead! September Dr. Brown

B.U.G. Newsletter. Full Steam Ahead! September Dr. Brown B.U.G. Newsletter September 2014 THIS NEWSLETTER IS A SERVICE THAT WAS FUNDED BY "NO CHILD LEFT BEHIND" TITLE II PART A HIGHER EDUCATION IMPROVING TEACHER QUALITY HIGHER EDUCATION GRANT ADMINISTERED THROUGH

More information

Stability Control of Bipedal Walking Robot

Stability Control of Bipedal Walking Robot Stability Control of Bipedal Walking Robot V.Mastanaiah Assistant Professor, Department of Mechanical Engineering, KG Reddy College of Engineering and Technology, Moinabad, Telangana, India. ABSTRACT:

More information

Decentralized Autonomous Control of a Myriapod Locomotion Robot

Decentralized Autonomous Control of a Myriapod Locomotion Robot Decentralized utonomous Control of a Myriapod Locomotion Robot hmet Onat Sabanci University, Turkey onat@sabanciuniv.edu Kazuo Tsuchiya Kyoto University, Japan tsuchiya@kuaero.kyoto-u.ac.jp Katsuyoshi

More information

CAM Final Report John Scheele Advisor: Paul Ohmann I. Introduction

CAM Final Report John Scheele Advisor: Paul Ohmann I. Introduction CAM Final Report John Scheele Advisor: Paul Ohmann I. Introduction Herds are a classic complex system found in nature. From interactions amongst individual animals, group behavior emerges. Historically

More information

Introduction to Robotics for 3D Additive Construction

Introduction to Robotics for 3D Additive Construction Introduction to Robotics for 3D Additive Construction Brian Wilcox, Manager, Space Robotics Technology Jet Propulsion Laboratory, California Institute of Technology 24 Aug 20105 Robotics for 3D Additive

More information

PERCEPTIVE ROBOT MOVING IN 3D WORLD. D.E- Okhotsimsky, A.K. Platonov USSR

PERCEPTIVE ROBOT MOVING IN 3D WORLD. D.E- Okhotsimsky, A.K. Platonov USSR PERCEPTIVE ROBOT MOVING IN 3D WORLD D.E- Okhotsimsky, A.K. Platonov USSR Abstract. This paper reflects the state of development of multilevel control algorithms for a six-legged mobile robot. The robot

More information

Optimization and Search. Jim Tørresen Optimization and Search

Optimization and Search. Jim Tørresen Optimization and Search Optimization and Search INF3490 - Biologically inspired computing Lecture 1: Marsland chapter 9.1, 9.4-9.6 2017 Optimization and Search Jim Tørresen 2 Optimization and Search Methods (selection) Optimization

More information

Ranger Walking Initiation Stephanie Schneider 5/15/2012 Final Report for Cornell Ranger Research

Ranger Walking Initiation Stephanie Schneider 5/15/2012 Final Report for Cornell Ranger Research 1 Ranger Walking Initiation Stephanie Schneider sns74@cornell.edu 5/15/2012 Final Report for Cornell Ranger Research Abstract I joined the Biorobotics Lab this semester to gain experience with an application

More information

INSTANTANEOUS ON-LINE MODIFICATION OF BIPED WALK COMPOSED FROM RECONFIGURABLE ADAPTIVE MOTION PRIMITIVES

INSTANTANEOUS ON-LINE MODIFICATION OF BIPED WALK COMPOSED FROM RECONFIGURABLE ADAPTIVE MOTION PRIMITIVES THERMAL SCIENCE: Year 26, Vol. 2, Suppl. 2, pp. S53-S523 S53 INSTANTANEOUS ON-LINE MODIFICATION OF BIPED WALK COMPOSED FROM RECONFIGURABLE ADAPTIVE MOTION PRIMITIVES Introduction by Branislav A. BOROVAC

More information

Aryeh Rappaport Avinoam Meir. Schedule automation

Aryeh Rappaport Avinoam Meir. Schedule automation Aryeh Rappaport Avinoam Meir Schedule automation Introduction In this project we tried to automate scheduling. Which is to help a student to pick the time he takes the courses so they want collide with

More information

Geometric moments for gait description

Geometric moments for gait description Geometric moments for gait description C. Toxqui-Quitl, V. Morales-Batalla, A. Padilla-Vivanco, and C. Camacho-Bello. Universidad Politécnica de Tulancingo, Ingenierías 100, 43629 Hidalgo, México. ctoxqui@upt.edu.mx

More information

Robotics and Autonomous Systems

Robotics and Autonomous Systems Robotics and Autonomous Systems Lecture 4: Locomotion Richard Williams Department of Computer Science University of Liverpool 1 / 57 Today 2 / 57 Motion Two aspects: Locomotion Kinematics Locomotion: What

More information

Search I. Tuomas Sandholm Carnegie Mellon University Computer Science Department. [Read Russell & Norvig Chapter 3]

Search I. Tuomas Sandholm Carnegie Mellon University Computer Science Department. [Read Russell & Norvig Chapter 3] Search I Tuomas Sandholm Carnegie Mellon University Computer Science Department [Read Russell & Norvig Chapter 3] Search I Goal-based agent (problem solving agent) Goal formulation (from preferences).

More information

Robotics and Autonomous Systems

Robotics and Autonomous Systems Robotics and Autonomous Systems Lecture 4: Locomotion Simon Parsons Department of Computer Science University of Liverpool 1 / 57 Today 2 / 57 Motion Two aspects: Locomotion Kinematics Locomotion: What

More information

Dynamically stepping over large obstacle utilizing PSO optimization in the B4LC system

Dynamically stepping over large obstacle utilizing PSO optimization in the B4LC system 1 Dynamically stepping over large obstacle utilizing PSO optimization in the B4LC system QI LIU, JIE ZHAO, KARSTEN BERNS Robotics Research Lab, University of Kaiserslautern, Kaiserslautern, 67655, Germany

More information

Gait Analysis of a Little Biped Robot. Received May 2015; accepted July 2015

Gait Analysis of a Little Biped Robot. Received May 2015; accepted July 2015 ICIC Express Letters Part B: Applications ICIC International c216 ISSN 2185-2766 Volume 7, Number 5, May 216 pp. 1 6 Gait Analysis of a Little Biped Robot Chi-Sheng Tsai 1, Chen-Huei Hsieh 1, Wenning QIU

More information

/435 Artificial Intelligence Fall 2015

/435 Artificial Intelligence Fall 2015 Final Exam 600.335/435 Artificial Intelligence Fall 2015 Name: Section (335/435): Instructions Please be sure to write both your name and section in the space above! Some questions will be exclusive to

More information

Simulation-based design to reduce metabolic cost

Simulation-based design to reduce metabolic cost Simulation-based design to reduce metabolic cost Overview: Lecture + Hands On Exercise 1. Generating and evaluating a muscledriven simulation of walking 2. Metabolics 101 3. Designing and evaluating devices

More information

Autodesk Moldflow Communicator Process settings

Autodesk Moldflow Communicator Process settings Autodesk Moldflow Communicator 212 Process settings Revision 1, 3 March 211. Contents Chapter 1 Process settings....................................... 1 Profiles.................................................

More information

Emergency Stop Algorithm for Walking Humanoid Robots

Emergency Stop Algorithm for Walking Humanoid Robots Emergency Stop Algorithm for Walking Humanoid Robots Mitsuharu Morisawa, Shuuji Kajita, Kensuke Harada, Kiyoshi Fujiwara Fumio Kanehiro, Kenji Kaneko, Hirohisa Hirukawa National Institute of Advanced Industrial

More information

(xf - D, yimage) (xf,0) (0,0)

(xf - D, yimage) (xf,0) (0,0) Spatial Navigation Principles: Applications to Mobile Robotics Anthony Suluh Thomas Sugar Michael McBeath Mechanical and Aerospace Engineering, Psychology Arizona State University Tempe, AZ 8283 Abstract

More information

Planning and Acting in Partially Observable Stochastic Domains

Planning and Acting in Partially Observable Stochastic Domains Planning and Acting in Partially Observable Stochastic Domains Leslie Pack Kaelbling and Michael L. Littman and Anthony R. Cassandra (1998). Planning and Acting in Partially Observable Stochastic Domains,

More information

Lecture 5. Optimisation. Regularisation

Lecture 5. Optimisation. Regularisation Lecture 5. Optimisation. Regularisation COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Andrey Kan Copyright: University of Melbourne Iterative optimisation Loss functions Coordinate

More information

Uninformed search methods

Uninformed search methods Lecture 3 Uninformed search methods Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Announcements Homework 1 Access through the course web page http://www.cs.pitt.edu/~milos/courses/cs2710/ Two

More information

Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor

Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor Návrh vratného kanálu u dvoustupňového kompresoru Return channel design of the two stage compressor J. Hrabovský, J. Vacula, M. Komárek L. K. Engineering, s.r.o C. Drápela, M. Vacek, J. Klíma PBS Turbo

More information

Humanoid Robots and biped locomotion. Contact: Egidio Falotico

Humanoid Robots and biped locomotion. Contact: Egidio Falotico Humanoid Robots and biped locomotion Contact: Egidio Falotico e.falotico@sssup.it Outline What is a Humanoid? Why Develop Humanoids? Challenges in Humanoid robotics Active vs Passive Locomotion Active

More information

Windcube FCR measurements

Windcube FCR measurements Windcube FCR measurements Principles, performance and recommendations for use of the Flow Complexity Recognition (FCR) algorithm for the Windcube ground-based Lidar Summary: As with any remote sensor,

More information

Solving Problems by Searching chap3 1. Problem-Solving Agents

Solving Problems by Searching chap3 1. Problem-Solving Agents Chapter3 Solving Problems by Searching 20070315 chap3 1 Problem-Solving Agents Reflex agents cannot work well in those environments - state/action mapping too large - take too long to learn Problem-solving

More information

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection Waves Vocabulary mechanical wave pulse continuous periodic wave amplitude wavelength period frequency wave velocity phase transverse wave longitudinal wave intensity displacement wave number phase velocity

More information

Quadratic Encoding of Optimized Humanoid Walking

Quadratic Encoding of Optimized Humanoid Walking Quadratic Encoding of Optimized Humanoid Walking Junggon Kim, Nancy S. Pollard and Christopher G. Atkeson Abstract In this paper we show that optimal stepping trajectories and trajectory cost for a walking

More information

Bézier Curves and Splines

Bézier Curves and Splines CS-C3100 Computer Graphics Bézier Curves and Splines Majority of slides from Frédo Durand vectorportal.com CS-C3100 Fall 2016 Lehtinen Before We Begin Anything on your mind concerning Assignment 1? Linux

More information

Supplementary Figure 1 An insect model based on Drosophila melanogaster. (a)

Supplementary Figure 1 An insect model based on Drosophila melanogaster. (a) Supplementary Figure 1 An insect model based on Drosophila melanogaster. (a) Side and ventral images of adult female flies used to calculate the sizes of body and leg segments. Scale bar is 0.3 mm. Green,

More information

Novel Tripedal Mobile Robot and Considerations for Gait Planning Strategies Based on Kinematics

Novel Tripedal Mobile Robot and Considerations for Gait Planning Strategies Based on Kinematics Novel Tripedal Mobile Robot and Considerations for Gait lanning Strategies Based on Kinematics Ivette Morazzani, Dennis Hong, Derek Lahr, and ing Ren RoMeLa: Robotics and Mechanisms Laboratory, Virginia

More information

Guidance of Flocks of Vehicles Using Virtual Signposts

Guidance of Flocks of Vehicles Using Virtual Signposts Preprints of the 8th IFAC World Congress Milano (Italy) August 8 - September, Guidance of Flocks of Vehicles Using Virtual Signposts Y. Rochefort H. Piet-Lahanier S. Bertrand D. Beauvois D. Dumur ONERA

More information

Two-Dimensional Motion and Vectors

Two-Dimensional Motion and Vectors Science Objectives Students will measure and describe one- and two-dimensional position, displacement, speed, velocity, and acceleration over time. Students will graphically calculate the resultant of

More information

Weight Optimization Of A Lift-Tipping Mechanism For Small Solid Waste Collection Truck

Weight Optimization Of A Lift-Tipping Mechanism For Small Solid Waste Collection Truck INTERNATIONAL JOURNAL O SCIENTIIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 7, JULY 14 ISSN 77-8616 Weight Optimization Of A Lift-Tipping Mechanism or Small Solid Waste Collection Truck Vitus M. Tabie, Yesuenyeagbe

More information

Numerical Simulation for the Internal Flow Analysis of the Linear Compressor with Improved Muffler

Numerical Simulation for the Internal Flow Analysis of the Linear Compressor with Improved Muffler Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Numerical Simulation for the Internal Flow Analysis of the Linear Compressor with Improved

More information

Supplementary Information

Supplementary Information Supplementary Information Novel robotic interface to evaluate, enable, and train locomotion and balance after neuromotor disorders Nadia Dominici, Urs Keller, Heike Vallery, Lucia Friedli, Rubia van den

More information

Robot motion by simultaneously wheel and leg propulsion

Robot motion by simultaneously wheel and leg propulsion Robot motion by simultaneously wheel and leg propulsion Aarne Halme, Ilkka Leppänen, Miso Montonen, Sami Ylönen Automation Technology Laboratory Helsinki University of Technology PL 5400, 02015 HUT, Finland

More information

AFRL-RI-RS-TR

AFRL-RI-RS-TR AFRL-RI-RS-TR-2014-045 ROBUST ROBOT CONTROL USING MULTIPLE MODEL-BASED POLICY OPTIMIZATION AND FAST VALUE FUNCTION-BASED PLANNING CARNEGIE MELLON UNIVERSITY MARCH 2014 FINAL TECHNICAL REPORT APPROVED FOR

More information

Bayesian Optimized Random Forest for Movement Classification with Smartphones

Bayesian Optimized Random Forest for Movement Classification with Smartphones Bayesian Optimized Random Forest for Movement Classification with Smartphones 1 2 3 4 Anonymous Author(s) Affiliation Address email 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

Intelligent Decision Making Framework for Ship Collision Avoidance based on COLREGs

Intelligent Decision Making Framework for Ship Collision Avoidance based on COLREGs Intelligent Decision Making Framework for Ship Collision Avoidance based on COLREGs Seminar Trondheim June 15th 2017 Nordic Institute of Navigation Norwegian Forum for Autonomous Ships SINTEF Ocean, Trondheim

More information