Stable Upright Walking and Running using a simple Pendulum based Control Scheme
|
|
- Camron Wilson
- 1 years ago
- Views:
Transcription
1 1 Stable Upright Walking and Running using a simple Pendulum based Control Scheme H.-M. MAUS, J. RUMMEL and A. SEYFARTH Lauflabor Locomotion Laboratory, University of Jena, Germany CLAWAR 2008 Special Session Fast Biped Locomotion : One of the major issues in humanoid walking and running is to keep the trunk upright while the system is basically an unstable inverted pendulum. Here, we investigate trunk stability based on the bipedal spring-loaded inverted pendulum (SLIP) model. The proposed control strategy is to redirect the ground reaction force (GRF) to a point on the trunk located above the center of mass. For keeping the trunk upright, no external sensors are required. In a perturbed situation, the proposed strategy leads to pendulum-like pitching motions. The model predicts a hip torque similar in shape and magnitude to that observed in human walking. Keywords: SLIP; postural stability; trunk; hip torque; Virtual Pivot Point. 1. Introduction The natural gaits of human locomotion are walking and running. While the legs are very complex mechanical systems, their dynamics in locomotion are well described by spring-like functions. The simplest model describing both gaits in a self-stable manner is the bipedal spring-mass model 1 which is an extension of the well known Spring Loaded Inverted Pendulum (SLIP). 2 One of the strong simplifications is the representation of the body by a point mass. Hence, trunk stabilization is not addressed. Anyhow, this is a major problem in bipedal robots. In robots with spring-like leg behavior a common strategy for keeping the trunk upright is to measure the pitch angle with respect to the ground and to apply a PD control 3,4 or a higher level control. 5 In this study we propose a novel strategy to stabilize the trunk. Here, we apply a hip torque such that the ground reaction force (GRF) directs to a point on the body axis above the center of mass (COM). This concept
2 2 m, J r H r P P è ( x, y) y (m) 1 ô l y x F S á ø GRF hip torque ô (Nm) x (m) time t (s) x (m) time t (s) (a) (b) (c) Fig. 1. (a) Model with spring legs and rigid trunk. Note that the model has two legs while only one is shown. Periodic sequences of (b) walking and (c) running with corresponding hip torques. leads to a damped pendulum-like pitch motion during walking and running. 2. Methods The model we use here is a bipedal SLIP with a rigid trunk (Fig. 1(a)) similar to the Asymmetric Spring Loaded Inverted Pendulum (ASLIP). 5 The legs are represented by massless springs with leg stiffness k generating a leg force F S. The trunk is a rigid body with mass m, moment of inertia J and a COM located above the hip. The values are shown in Tab. 1. The strategy for stabilizing the trunk is to direct the GRF of a leg Table 1. Model parameters parameter symbol value body mass m 80 kg inertia J 4.58 kg m 2 initial leg length l 0 1 m leg stiffness k 20 kn m 1 distance hip - COM r H 0.1 m distance COM - P r P 0.1 m landing angle α 0 67 deg
3 3 to a certain point P located at the body axis a as illustrated in Fig. 1(a). Herefore, we apply a hip torque τ for each leg as exemplarily given for the right leg (the additional index R denotes the right leg): τ R = F S,R l R (r H + r P )sin ψ R l R (r H + r P )cosψ R. (1) Positive values correspond to a hip extension. The GRF for the right leg is GRF R = F S,R + τ ( ) R sinαr. (2) l R cosα R GRF and hip torque are zero during swing phase. We consider transitions between swing and stance by the following conditions: swing stance: y(t) = l 0 sin α 0 with ẏ < 0 and stance swing: l(t) = l 0 with l > 0. The parameters l 0 and α 0 are initial leg length and landing angle, respectively. We analyze dynamic stability of the system using a Poincaré map F for the system variables (y, ẋ, θ, θ) at the instant of upper apex. The system is stable if (1) a periodic solution exists (subsequent apices are equal) and (2) all eigenvalues of the Jacobian of F at the periodic solution have magnitudes less than one. We use a Newton-Raphson algorithm to find periodic solutions. 3. Results Periodic solutions exist for both gaits, walking and running (Fig. 1(b) and 1(c)), with small pitching motions. The strategy for generating the hip torque is equal in both gaits. Fig. 1(b) shows that in walking the hip torque is almost zero during midstance. For the selected solutions, three out of four eigenvalues of the Jacobian of F lie within the unit circle and one eigenvalue is one. Once these patterns are perturbed the system tends to another periodic solution. Such periodic patterns are called partially asymptotically stable. 6 For every velocity within a certain range exists at least one periodic solution. Fig. 2 shows the pitch angle of perturbed gait patterns. A body oscillation around the vertical axis occurs with a frequency similar to a pendulum (with moment of inertia J) which is mounted at the point P. The oscillation is slightly damped. Table 2 shows that the model can handle relatively large disturbances in running and comparatively small disturbances in walking. a The body axis is defined as the connecting line between hip and COM.
4 4 pitch angle è (deg) walking time t (s) (a) pitch angle è (deg) running time t (s) (b) Fig. 2. Pitch angle in perturbed walking (a), and running (b). The periodic patterns of Table 2 were perturbed by an increased initial pitch angle: 2 deg in (a) and 1 deg (b). Gray regions indicate stance phase in running and double support phase in walking. 4. Discussion and Conclusion 4.1. General Discussion In this paper, an intuitive strategy for stabilizing the trunk in bipedal walking and running is presented. Except for the landing angle, this controller requires only internal sensors. The model does not preserve energy, however, it reveals periodic solutions which do not affect the system energy. Because the body oscillates like a pendulum mounted at the point P, we call P a Virtual Pivot Point (VPP). The emergence of stability can be understood as results of the underlying systems which are asymptotically stable (SLIP) 7 or indifferently stable (pendulum), respectively. Apparently the combination is such that the indifferent stable pendulum becomes asymtotically stable. The VPP-strategy could be a basic framework for investigating postural stability and the hip function in dynamic bipedal locomotion. Interestingly, the model predicts hip torque patterns for walking which are similar in shape and magnitude to corresponding data observed in human overground walking. 8
5 5 Table 2. Initial conditions of the selected periodic solutions (middle column) and the range of initial conditions that lead to stable gaits. initial walking running conditions min periodic max min periodic max y 0 (m) ẋ 0 (m/s) θ 0 (deg) θ 0 (deg/s) The proposed VPP-strategy offers an alternative concept to the ZMP 9,10 for stabilizing upright gait. In contrast to state-of-the-art humanoid robots, this control offers the unique opportunity to stabilize walking and running without relying on a specific foot shape. Here, gait stability does not depend on the size of the foot but largely on the maximum stiction force allowed by the ground-foot-contact. Assuming a stiction coefficient of 0.8, to achieve the same effect of a VPP in a ZMP-controlled biped the foot length would need to be over 1.6 times leg length. Therefore, both strategies could be used dependent on external conditions and geometry of the leg. For example, on slippery surfaces the VPP torque is limited whereas on uneven ground a ZMP-based robot might fail r P = 0.05 m r P = 0.15 m r P = 0.20 m leg stiffness k (kn/m) landing angle Fig. 3. Regions of (k, α) for stable running for a given speed (ẋ = 5 m/s) and three positions of P. Only the left borders differ dependent on r P. á 0 (deg)
6 Comparison with the SLIP Stable running patterns exist within a region of parameter combinations (Fig. 3). This is a subset of the region of stable running in the SLIP model. 7 With increasing r P, the size of the stable region is reduced. The model is indifferently stable for r P = 0 as the total torque vanishes and so any rotation will persist. For r P = r H = 0, the model is identical to the SLIP. There exists a minimum r P for stable solutions which is approximately 0.01 m. By shifting the VPP forward or backward with respect to the body axis, the hip torque pattern is changed such that the system energy is continuously decreasing or increasing, respectively. This additional breaking or thrusting force can be used to cope with external loads (e.g. carrying a cart or uphill locomotion). The corresponding adaptation of trunk posture is in line with the observations in human locomotion (e.g. trunk lent forward for acceleration) as well as to the concept of the Segway two-wheeled mobile systems 11 or similar robots Future Work We plan to implement the proposed VPP-strategy in various bipedal robots. Also, we plan to extend the VPP-strategy for three-dimensional locomotion. Acknowledgement This work is supported by the German Research Foundation (DFG, SE1042/4). References 1. H. Geyer, A. Seyfarth and R. Blickhan, Proc. Roy. Soc. B 273, 2861 (2006). 2. R. J. Full and D. E. Koditschek, J. Exp. Biol. 202, 3325 (1999). 3. M. H. Raibert, Legged robots that balance (MIT Press, 1986). 4. N. Neville, M. Buehler and I. Sharf, A bipedal running robot with one actuator per leg, in Proc. IEEE Int. Conf. Robotics and Automation, I. Poulakakis and J. W. Grizzle, Monopedal running control: SLIP embedding and virtual constraint controllers, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, P. Holmes, R. J. Full, D. Koditschek and J. Guckenheimer, SIAM Review 48, 207 (2006). 7. A. Seyfarth, H. Geyer, M. Guenther and R. Blickhan, J. Biomech. 35, 649 (2002). 8. S. J. Lee and J. Hidler, J. Appl. Physiol. 104, 747 (2008).
7 7 9. M. Vukobratovic and J. Stepanenko, Math. Biosci. 15, 1 (1972). 10. S. Kajita, T. Nagasaki, K. Kaneko and H. Hirukawa, IEEE Robot. Autom. Mag. 14, 63 (2007). 11. Segway Inc. (2008), F. Grasser, A. D Arrigo, S. Colombi and A. C. Rufer, IEEE Trans. Ind. Electron. 49, 107 (2002).
Toward a Human-like Biped Robot with Compliant Legs
Book Title Book Editors IOS Press, 2003 1 Toward a Human-like Biped Robot with Compliant Legs Fumiya Iida a,b,1, Yohei Minekawa a Juergen Rummel a and Andre Seyfarth a a Locomotion Laboratory, University
RUNNING ON SOFT GROUND: SIMPLE, ENERGY-OPTIMAL DISTURBANCE REJECTION
CLAWAR 2012 Proceedings of the Fifteenth International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Baltimore, MD, USA, 23 26 July 2012 543 RUNNING ON SOFT
ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots
ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots Jong H. Park School of Mechanical Engineering Hanyang University Seoul, 33-79, Korea email:jong.park@ieee.org Yong K. Rhee School of
Toward a Human-like Biped Robot with Compliant Legs
Book Title Book Editors IOS Press, 23 1 Toward a Human-like Biped Robot with Compliant Legs Fumiya Iida a,b,1, Yohei Minekawa a Juergen Rummel a and Andre Seyfarth a a Locomotion Laboratory, University
Controlling Velocity In Bipedal Walking: A Dynamic Programming Approach
Controlling Velocity In Bipedal Walking: A Dynamic Programming Approach Thijs Mandersloot and Martijn Wisse Delft University of Technology Delft, Netherlands thijs.mandersloot@gmail.com, m.wisse@tudelft.nl
Simulation of the Hybtor Robot
Simulation of the Hybtor Robot Pekka Aarnio, Kari Koskinen and Sami Salmi Information and Computer Systems in Automation Helsinki University of Technology ABSTRACT A dynamic rigid body simulation model
Motion Control of a Bipedal Walking Robot
Motion Control of a Bipedal Walking Robot Lai Wei Ying, Tang Howe Hing, Mohamed bin Hussein Faculty of Mechanical Engineering Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia. Wylai2@live.my
Foot Placement in the Simplest Slope Walker Reveals a Wide Range of Walking Solutions
Foot Placement in the Simplest Slope Walker Reveals a Wide Range of Walking Solutions Pranav A. Bhounsule Abstract We show that the simplest slope walker can walk over wide combinations of step lengths
Dynamic Lateral Stability for an Energy Efficient Gait
Dynamic Lateral Stability for an Energy Efficient Gait Zhenglong Sun a Nico Roos a a Department of Knowledge Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands Abstract
Velocity Based Stability Margins for Fast Bipedal Walking
Velocity Based Stability Margins for Fast Bipedal Walking Jerry E. Pratt 1 and Russ Tedrake 2 1 Florida Institute for Human and Machine Cognition jpratt@ihmc.us 2 Massachusettes Institute of Technology
Faster and Smoother Walking of Humanoid HRP-2 with Passive Toe Joints *
Faster and Smoother Walking of Humanoid HRP-2 with Passive Toe Joints * Ramzi Sellaouti *1, Olivier Stasse *2, Shuuji Kajita *3, Kazuhito Yokoi *1 and Abderrahmane Kheddar *2 *1 JRL, AIST *2 JRL, CNRS
1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.
Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:
Influence of the swing ankle angle on walking stability for a passive dynamic walking robot with flat feet
Special Issue Article Influence of the swing ankle angle on walking stability for a passive dynamic walking robot with flat feet Advances in Mechanical Engineering 016, Vol. 8(3) 1 13 Ó The Author(s) 016
From Passive to Active Dynamic 3D Bipedal Walking - An Evolutionary Approach -
From Passive to Active Dynamic 3D Bipedal Walking - An Evolutionary Approach - Steffen Wischmann and Frank Pasemann Fraunhofer Institute for Autonomous Intelligent Systems (AiS) Schloss Birlinghoven, 53754
Reliable Dynamic Motions for a Stiff Quadruped
Reliable Dynamic Motions for a Stiff Quadruped Katie Byl, Alec Shkolnik, Sam Prentice, Nick Roy, and Russ Tedrake Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA 02139 katiebyl@alum.mit.edu,
Experimental Realization of Dynamic Walking for a Human-Riding Biped Robot, HUBO FX-1
Experimental Realization of Dynamic Walking for a Human-Riding Biped Robot, HUBO FX-1 JUNG-YUP KIM, JUNGHO LEE and JUN-HO OH HUBO Laboratory, Humanoid Robot Research Center Department of Mechanical Engineering,
Emergency Stop Algorithm for Walking Humanoid Robots
Emergency Stop Algorithm for Walking Humanoid Robots Mitsuharu Morisawa, Shuuji Kajita, Kensuke Harada, Kiyoshi Fujiwara Fumio Kanehiro, Kenji Kaneko, Hirohisa Hirukawa National Institute of Advanced Industrial
The Design and Control of a Bipedal Robot with Sensory Feedback
International Journal of Advanced Robotic Systems ARTICLE The Design and Control of a Bipedal Robot with Sensory Feedback Regular Paper Teck-Chew Wee 1,*, Alessandro Astolfi 1 and Xie Ming 2 1 Department
Neuro-Fuzzy ZMP Control of a Biped Robot
Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 26 331 Neuro-Fuzzy ZMP Control of a Biped Robot JOÃO PAULO FERREIRA (1)
Exciting Engineered Passive Dynamics in a Bipedal Robot
1244 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 5, OCTOBER 2015 Exciting Engineered Passive Dynamics in a Bipedal Robot Daniel Renjewski, Alexander Spröwitz, Andrew Peekema, Mikhail Jones, and Jonathan
Kinematic Differences between Set- and Jump-Shot Motions in Basketball
Proceedings Kinematic Differences between Set- and Jump-Shot Motions in Basketball Hiroki Okubo 1, * and Mont Hubbard 2 1 Department of Advanced Robotics, Chiba Institute of Technology, 2-17-1 Tsudanuma,
Bipedal walking and running with spring-like biarticular muscles
Journal of Biomechanics ] (]]]]) ]]] ]]] www.elsevier.com/locate/jbiomech www.jbiomech.com Bipedal walking and running with spring-like biarticular muscles Fumiya Iida a,b,,ju rgen Rummel c, Andre Seyfarth
Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor
J Intell Robot Syst (27) 48:457 484 DOI 1.17/s1846-6-917-8 Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor Jung-Yup Kim & Ill-Woo Park & Jun-Ho Oh Received: 31 July 26 /
Virtual Model Control: An Intuitive Approach for Bipedal Locomotion
Jerry Pratt Chee-Meng Chew Ann Torres Peter Dilworth Gill Pratt Leg Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts 2139, USA http://www.ai.mit.edu/projects/leglab/ Virtual Model
INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING
INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING Joseph P. Hunter 1, Robert N. Marshall 1,, and Peter J. McNair 3 1 Department of Sport and Exercise Science, The University of Auckland, Auckland,
Passive dynamic walking model with upper body M. Wisse, A. L. Schwab and F. C. T. van der Helm
Robotica (2004) volume 22, pp. 681 688. 2004 Cambridge University Press DOI: 10.1017/S0263574704000475 Printed in the United Kingdom Passive dynamic walking model with upper body M. Wisse, A. L. Schwab
The Influence of Friction on Gait and Energy Efficiency of the Walking Robot Based on Rhythmic Control
The Influence of Friction on Gait and Energy Efficiency of the Walking Robot Based on Rhythmic Control H. Takemura, J. Ueda, Y. Matsumoto, T. Ogasawara Nara Institute of Science and Technology, Takayama-cho,
BIPED LOCOMOTION: STABILITY, ANALYSIS AND CONTROL
BIPED LOCOMOTION: STABILITY, ANALYSIS AND CONTROL Prahlad Vadakkepat and Dip Goswami Electrical And Computer Engineering National University of Singapore, Singapore Emails: mailto:prahlad@ieee.org, mailto:dip.goswami@nus.edu.sg
BIPED TRANSFORMER. Group No. 9
BIPED TRANSFORMER Group No. 9 Name Roll Number Aditya Vikram Singh 11010305 Dhiraj Gandhi 11010321 Jagjeet Singh 11010326 Mayank Sanghani 11010336 Sriram Kumar 11010365 Vikas Singh 11010371 Abstract: This
OPTIMAL TRAJECTORY GENERATION OF COMPASS-GAIT BIPED BASED ON PASSIVE DYNAMIC WALKING
OPTIMAL TRAJECTORY GENERATION OF COMPASS-GAIT BIPED BASED ON PASSIVE DYNAMIC WALKING Minseung Kim Dept. of Computer Science Illinois Institute of Technology 3201 S. State St. Box 2082 Chicago IL 60616
A 3D passive dynamic biped with yaw and roll compensation M. Wisse*, A. L. Schwab**, R. Q. vd. Linde*
Robotica (2001) volume 19, pp. 275 284. Printed in the United Kingdom 2001 Cambridge University Press A 3D passive dynamic biped with yaw and roll compensation M. Wisse*, A. L. Schwab**, R. Q. vd. Linde*
Optimum Walking of the Bioloid Humanoid Robot on a Rectilinear Path
Optimum Walking of the Bioloid Humanoid Robot on a Rectilinear Path G. Reyes 1, J.A. Pamanes 1, J.E. Fierro 1 and V. Nunez 2 1 Division of Postgraduate Studies and Research, Institute of Technology of
The Physics of Lateral Stability 1
The Physics of Lateral Stability 1 This analysis focuses on the basic physics of lateral stability. We ask Will a boat heeled over return to the vertical? If so, how long will it take? And what is the
Dynamic Walking on Stepping Stones with Gait Library and Control Barrier Functions
Dynamic Walking on Stepping Stones with Gait Library and Control Barrier Functions Quan Nguyen 1, Xingye Da 2, J. W. Grizzle 3, Koushil Sreenath 1 1 Dept. of Mechanical Engineering, Carnegie Mellon University,
Supplementary Figure 1 An insect model based on Drosophila melanogaster. (a)
Supplementary Figure 1 An insect model based on Drosophila melanogaster. (a) Side and ventral images of adult female flies used to calculate the sizes of body and leg segments. Scale bar is 0.3 mm. Green,
Gaits and Gait Transitions for Legged Robots
Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida - May 2006 Gaits and Gait Transitions for Legged Robots G. Clark Haynes and Alfred A. Rizzi The Robotics
Towards Human-Like Bipedal Locomotion with Three-Segmented Elastic Legs
Towards Human-Like Bipedal Locomotion with Three-Segmented Elastic Legs Katayon Radkhah, Dorian Scholz, Oskar von Stryk Simulation, Systems Optimization and Robotics Group, Technische Universität Darmstadt,
Mechanical model of the recovery from stumbling
Biol. Cybern. 3, 1 9 (2004) DOI 10.1007/s00422-004-0508-0 Springer-Verlag 2004 Mechanical model of the recovery from stumbling A. Forner Cordero 1,2, H. J. F. M. Koopman 1, F. C. T. van der Helm 1 1 Institute
Spider Robot for Motion with Quasistatic. Force Constraints
Spider Robot for Motion with Quasistatic Force Constraints Shraga Shoval, Elon Rimon and Amir Shapira Technion - Israel Institute of Technology - Haifa, Israel 32000. Abstract In quasistatic motions the
EVOLVING HEXAPOD GAITS USING A CYCLIC GENETIC ALGORITHM
Evolving Hexapod Gaits Using a Cyclic Genetic Algorithm Page 1 of 7 EVOLVING HEXAPOD GAITS USING A CYCLIC GENETIC ALGORITHM GARY B. PARKER, DAVID W. BRAUN, AND INGO CYLIAX Department of Computer Science
PROPER PITCHING MECHANICS
PROPER PITCHING MECHANICS While each pitcher is a different person and can display some individuality in his mechanics, everyone has similar anatomy (the same muscles, bones and ligaments in the same locations)
Stair Descent in the Simple Hexapod RHex
Stair Descent in the Simple Hexapod RHex D. Campbell and M. Buehler dcampb@cim.mcgill.ca, buehler@cim.mcgill.ca, Ambulatory Robotics Laboratory, Centre for Intelligent Machines, McGill University Montreal,
Passive compliant quadruped robot using central pattern generators for locomotion control
Passive compliant quadruped robot using central pattern generators for locomotion control Simon Rutishauser, Alexander Spröwitz, Ludovic Righetti and Auke Jan Ijspeert Biologically Inspired Robotics Group,
Omnidirectional Walking and Active Balance for Soccer Humanoid Robot
Omnidirectional Walking and Active Balance for Soccer Humanoid Robot Nima Shafii 1,2,3, Abbas Abdolmaleki 1,2,4, Rui Ferreira 1, Nuno Lau 1,4, Luis Paulo Reis 2,5 1 IEETA - Instituto de Engenharia Eletrónica
The development of a biomechanical leg system and its neural control
The development of a biomechanical leg system and its neural control Daniel Renjewski and André Seyfarth Lauflabor Locomotion Laboratory University of Jena Dornburger Strae 23, 07743 Jena, Germany {daniel.renjewski,
Practical Bipedal Walking Control on Uneven Terrain Using Surface Learning and Push Recovery
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems September 25-30, 2011. San Francisco, CA, USA Practical Bipedal Walking Control on Uneven Terrain Using Surface Learning and Push
Embodiment of Legged Robots Emerged in Evolutionary Design: Pseudo Passive Dynamic Walkers
17 Embodiment of Legged Robots Emerged in Evolutionary Design: Pseudo Passive Dynamic Walkers Kojiro Matsushita and Hiroshi Yokoi Department of Precision Engineering, University of Tokyo Japan Open Access
IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan
INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON STABILITY AND LOAD LINES AND ON FISHING VESSELS SAFETY 49th session Agenda item 5 SLF 49/5/5 19 May 2006 Original: ENGLISH REVISION OF THE INTACT
Biomechanics Sample Problems
Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does
Mecánica de Sistemas Multicuerpo:
Universidad Pública de Navarra 12 de Noviembre de 2008 Departamento de Ingeniería Mecánica, Energética y de Materiales Mecánica de Sistemas Multicuerpo: Análisis de la Silla de Ruedas Triesférica y Dinámica
Javelin Throwing Technique and Biomechanics
Javelin Throwing Technique and Biomechanics Riku Valleala KIHU Research Institute for Olympic Sports Athletics Coaches Seminar, 6-8 Nowember 2015, Oslo Contents of this presentation Basics of biomechanics
A MODIFIED DYNAMIC MODEL OF THE HUMAN LOWER LIMB DURING COMPLETE GAIT CYCLE
Int. J. Mech. Eng. & Rob. Res. 2013 S M Nacy et al., 2013 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 2, No. 2, April 2013 2013 IJMERR. All Rights Reserved A MODIFIED DYNAMI MODEL OF THE HUMAN LOWER
Bipedal Robot Walking and Balancing using a Neuronal Network Model
Bipedal Robot Walking and Balancing using a Neuronal Network Model Robert Hercus 1, Litt-Pang Hiew 1, Nur Ain Saaidon 1, Kit-Yee Wong 1, and Kim-Fong Ho 1 1 Neuramatix Sdn. Bhd., Mid-Valley City, Kuala
A Neuromuscular Model of Human Locomotion and its Applications to Robotic Devices
A Neuromuscular Model of Human Locomotion and its Applications to Robotic Devices The 10th Workshop on Humanoid Soccer Robots at 15th IEEE-RAS International Conference on Humanoid Robots Nov 3, 2015 Seungmoon
Design and Philosophy of the BiMASC, a Highly Dynamic Biped
Design and Philosophy of the BiMASC, a Highly Dynamic Biped Jonathan W. Hurst, Joel E. Chestnutt, Alfred A. Rizzi Carnegie Mellon University The Robotics Institute Pittsburgh, Pennsylvania Abstract This
Simulation-based design to reduce metabolic cost
Simulation-based design to reduce metabolic cost Overview: Lecture + Hands On Exercise 1. Generating and evaluating a muscledriven simulation of walking 2. Metabolics 101 3. Designing and evaluating devices
Robotic Augmentation. Of Human Locomotion. For High Speed Running. Jason Kerestes
Robotic Augmentation Of Human Locomotion For High Speed Running by Jason Kerestes A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved November 2014 by
The Incremental Evolution of Gaits for Hexapod Robots
The Incremental Evolution of Gaits for Hexapod Robots Abstract Gait control programs for hexapod robots are learned by incremental evolution. The first increment is used to learn the activations required
To appear in IEEE Transactions on Systems, Man, and Cybernetics
To appear in IEEE Transactions on Systems, Man, and Cybernetics Design, Control, and Energetics of an Electrically Actuated Legged Robot P. Gregorio, M. Ahmadi, and M. Buehler Centre for Intelligent Machines
Chapter 14. Vibrations and Waves
Chapter 14 Vibrations and Waves Chapter 14 Vibrations and Waves In this chapter you will: Examine vibrational motion and learn how it relates to waves. Determine how waves transfer energy. Describe wave
Control of a humanoid robot walking with dynamic balance*
Proceeding of the IEEE International Conference on Robotics and Biomimetics (ROBIO) Shenzhen, China, December 213 Control of a humanoid robot walking with dynamic balance* Guocai Liu 1,2, Fusheng Zha 1,
Design and Simulation of Legged Walking Robots in MATLAB Environment
20 Design and Simulation of Legged Walking Robots in MATLAB Environment Conghui Liang, Marco Ceccarelli and Giuseppe Carbone LARM: Laboratory of Robotics and Mechatronics, University of Cassino Italy 1.
Foot side detection from lower lumbar spine acceleration
This is an Author's Original Manuscript of an article published by Elsevier in Gait and Posture Published online 6 June 2015 and available at: doi:10.1016/j.gaitpost.2015.05.021 Foot side detection from
Hammer Technical Model
Hammer Technical Model Progression related to Multi-Events Development (aged 8/9-12 years) can be referenced to Athletics 365 More technical information can be found HERE IAAF CECS Level II Event Specific
by Michael Young Human Performance Consulting
by Michael Young Human Performance Consulting The high performance division of USATF commissioned research to determine what variables were most critical to success in the shot put The objective of the
Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF
Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF George Chen May 17, 2002 Stanford Neuromuscular Biomechanics Lab Group Muscle contribution
MABEL, A New Robotic Bipedal Walker and Runner
MABEL, A New Robotic Bipedal Walker and Runner J.W. Grizzle 1, Jonathan Hurst 2, Benjamin Morris 3, Hae-Won Park 4, and Koushil Sreenath 1 Abstract This paper introduces MABEL, a new platform for the study
Mechanical Design of a Simple Bipedal Robot. Ming-fai Fong
Mechanical Design of a Simple Bipedal Robot by Ming-fai Fong Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Bachelor of Science in Mechanical
Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find
On the t Influence of Air Resistance and Wind during Long Jump Egoyan A. E. ( alex1cen@yahoo.com ), Khipashvili I. A. Georgian University GEOMEDI Abstract. In this article we perform theoretical analysis
Scissor Mechanisms. Figure 1 Torero Cabin Service Truck. Scissor Mechanism was chassis mounted and lifted the cabin to service aircraft
Scissor Mechanisms Scissor mechanisms are very common for lifting and stabilizing platforms. A variety of manlifts, service platforms and cargo lifts utilize this visually simple but structurally complex
Robot Walking with Genetic Algorithms
Robot Walking with Genetic Algorithms Bente Reichardt 14. December 2015 Bente Reichardt 1/52 Outline Introduction Genetic algorithms Quadruped Robot Hexapod Robot Biped Robot Evaluation Bente Reichardt
Design of Fast Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian
Design of Fast Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian Marten Byl and Katie Byl UCSB Robotics Lab, Dept. of Electrical and Computer Engineering University of California
Mechanics of dog walking compared with a passive, stiff-limbed, 4-bar linkage model, and their collisional implications
533 The Journal of Experimental Biology 1, 533-54 Published by The Company of Biologists 7 doi:1.14/jeb.647 Mechanics of dog walking compared with a passive, stiff-limbed, 4-bar linkage model, and their
Available online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 435 440 The 2014 Conference of the International Sports Engineering Association Accuracy performance parameters
Fast Bipedal Walk Using Large Strides by Modulating Hip Posture and Toe-heel Motion
Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics December 14-18, 2010, Tianjin, China Fast Bipedal Walk Using Large Strides by Modulating Hip Posture and Toe-heel Motion
Improving pedestrian dynamics modelling using fuzzy logic
Improving pedestrian dynamics modelling using fuzzy logic Phillip Tomé 1, François Bonzon 1, Bertrand Merminod 1, and Kamiar Aminian 2 1 EPFL Geodetic Engineering Lab (TOPO) Station 18 1015 Lausanne Switzerland
Basketball free-throw rebound motions
Available online at www.sciencedirect.com Procedia Engineering 3 () 94 99 5 th Asia-Pacific Congress on Sports Technology (APCST) Basketball free-throw rebound motions Hiroki Okubo a*, Mont Hubbard b a
The validity of a rigid body model of a cricket ball-bat impact
Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 682 687 9 th Conference of the International Sports Engineering Association (ISEA) The validity of a rigid body model of a cricket
A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses
Olenšek et al. Journal of NeuroEngineering and Rehabilitation (2016) 13:55 DOI 10.1186/s12984-016-0160-7 METHODOLOGY Open Access A novel robot for imposing perturbations during overground walking: mechanism,
Biped Passive Dynamic Walking: A Review
Biped Passive Dynamic Walking: A Review Shiqi Xiong, Guodong Liu, and Peng Zhu Research Center of Analysis and Control for Complex Systems, Chongqing University of Posts and Telecommunications, Chongqing
Analytical model of a rope and karabiner system
Analytical model of a rope and karabiner system By Philippe Bertreau and Chris Pipe 1. Introduction Various climbing accidents involving the failure of karabiners with their gate open have been reported.
Learning Ankle-Tilt and Foot-Placement Control for Flat-footed Bipedal Balancing and Walking
Learning Ankle-Tilt and Foot-Placement Control for Flat-footed Bipedal Balancing and Walking Bernhard Hengst Computer Science and Engineering University of New South Wales Sydney, Australia Email: bernhardh@cse.unsw.edu.au
Biped Walking Robot Control System Design
69 Biped Walking Robot Control System Design Jian Fang Abstract For biped walking robot posture instability problems presented this paper, ZMP gait planning algorithm and a time division multiplexing servo
Principles of glider flight
Principles of glider flight [ Lecture 2: Control and stability ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher GmbH &
Positioning and Control of Boom Crane Luffing with Double-Pendulum Payloads
Positioning and Control of Boom Crane Luffing with Double-Pendulum s Ehsan Maleki*, William Singhose*, and Sriram Srinivasan* Abstract Boom cranes are used for numerous materialhandling and manufacturing
Maneuverability characteristics of ships with a single-cpp and their control
Maneuverability characteristics of ships with a single-cpp and their control during in-harbor ship-handlinghandling Hideo YABUKI Professor, Ph.D., Master Mariner Tokyo University of Marine Science and
Ecole doctorale SMAER Sciences Mécaniques, Acoustique, Electronique, Robotique
Thesis subject 2017 Laboratory : Institut des Systèmes Intelligents et de Robotiques (ISIR) CNRS UMR 7222 University: Université Pierre et Marie Curie Title of the thesis: Development of a Body-Machine-Interface
QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;
QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms
Gait-Based Compliant Control for Snake Robots
2 IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6-, 2 Gait-Based Compliant Control for Snake Robots David Rollinson and Howie Choset Abstract We present a method
Marketing vs. Physics
Marketing vs. Physics The truth about axis migration and core dynamics By Nick Siefers, USBC research engineer Many theories about why and how a bowling ball rolls down a lane have been discussion topics
Serve the only stroke in which the player has full control over its outcome. Bahamonde (2000) The higher the velocity, the smaller the margin of
Lower Extremity Performance of Tennis Serve Reporter: Chin-Fu Hsu Adviser: Lin-Hwa Wang OUTLINE Introduction Kinetic Chain Serve Types Lower Extremity Movement Summary Future Work INTRODUCTION Serve the
Intermittent Non-Rhythmic Human Stepping and Locomotion
University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science May 1993 Intermittent Non-Rhythmic Human Stepping and Locomotion Hyeongseok Ko University
System overview of bipedal robots Flame and TUlip: tailor-made for Limit Cycle Walking
28 IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center Nice, France, Sept, 22-26, 28 System overview of bipedal robots Flame and TUlip: tailor-made for Limit
Creation of a Fallback Catch Method. Megan Berry Mechanical Engineering Senior MAE 490 (4 credits)
Creation of a Fallback Catch Method Megan Berry Mechanical Engineering Senior MAE 490 (4 credits) Abstract In order that the Cornell Ranger remains autonomous during long distance record attempts and avoids
Fundamental Mechanics of Alpine Skiing Across Adaptive Disciplines. Produced by PSIA-AASI, in cooperation with Disabled Sports USA.
Fundamental Mechanics of Alpine Skiing Across Adaptive Disciplines Produced by PSIA-AASI, in cooperation with Disabled Sports USA. Balance & Stance - Beginner/Novice Zone Control the relationship of the
U S F O S B u o y a n c y And Hydrodynamic M a s s
1 U S F O S B u o y a n c y And Hydrodynamic M a s s 2 CONTENTS: 1 INTRODUCTION... 3 2 ACCURACY LEVELS... 3 2.1 LEVEL-0... 3 2.2 LEVEL-1... 3 2.3 PANEL MODEL... 3 3 EX 1. SINGLE PIPE. NON FLOODED... 4
LOCOMOTION CONTROL CYCLES ADAPTED FOR DISABILITIES IN HEXAPOD ROBOTS
LOCOMOTION CONTROL CYCLES ADAPTED FOR DISABILITIES IN HEXAPOD ROBOTS GARY B. PARKER and INGO CYLIAX Department of Computer Science, Indiana University, Bloomington, IN 47405 gaparker@cs.indiana.edu, cyliax@cs.indiana.edu
AN ISOLATED SMALL WIND TURBINE EMULATOR
AN ISOLATED SMALL WIND TURBINE EMULATOR Md. Arifujjaman Graduate Student Seminar: Master of Engineering Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John s, NL, Canada
Dynamic analysis of offshore floating wind turbines
Dynamic analysis of offshore floating wind turbines Hasan Bagbanci Centre for Marine Technology and Engineering (CENTEC), Instituto Superior Técnico Technical University of Lisbon, Lisboa, Portugal ABSTRACT:
isprawl: Autonomy, and the Effects of Power Transmission
isprawl: Autonomy, and the Effects of Power Transmission Sangbae Kim, Jonathan E. Clark, and Mark R. Cutkosky Department of Mechanical Engineering Stanford University, Stanford, CA 935 cutkosky@stanford.edu