Effects of pedestrian gait, vehicle-front geometry and impact velocity on kinematics of adult and child pedestrian head

Size: px
Start display at page:

Download "Effects of pedestrian gait, vehicle-front geometry and impact velocity on kinematics of adult and child pedestrian head"

Transcription

1 This article was downloaded by: [Yong Peng] On: 03 July 2012, At: 11:32 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: Registered office: Mortimer House, Mortimer Street, London W1T 3JH, UK International Journal of Crashworthiness Publication details, including instructions for authors and subscription information: Effects of pedestrian gait, vehicle-front geometry and impact velocity on kinematics of adult and child pedestrian head Yong Peng a b d, Caroline Deck b, Jikuang Yang a c & Remy Willinger b a Research Center of Vehicle and Traffic Safety, State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, China b Institute of Fluid and Solid Mechanics, Strasbourg University, Strasbourg, Alsace, France c Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden d State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing, China Version of record first published: 03 Jul 2012 To cite this article: Yong Peng, Caroline Deck, Jikuang Yang & Remy Willinger (2012): Effects of pedestrian gait, vehicle-front geometry and impact velocity on kinematics of adult and child pedestrian head, International Journal of Crashworthiness, DOI: / To link to this article: PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

2 International Journal of Crashworthiness ifirst 2012, 1 9 Effects of pedestrian gait, vehicle-front geometry and impact velocity on kinematics of adult and child pedestrian head Yong Peng a,b,d, Caroline Deck b, Jikuang Yang a,c and Remy Willinger b a Research Center of Vehicle and Traffic Safety, State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, China; b Institute of Fluid and Solid Mechanics, Strasbourg University, Strasbourg, Alsace, France; c Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden; d State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing, China (Received 31 January 2012; final version received 28 May 2012) The objective of the study is to investigate the effects of pedestrian gait, vehicle-front geometry and impact velocity on the dynamic responses of the head. The multi-body dynamic (MBD) models were used to simulate the head responses in vehicle to pedestrian collisions with different vehicle types in terms of head-impact point measured with Wrap Around Distance (WAD), head relative velocity and impact angle. Furthermore, the distribution of the head contact point on the vehicle fronts is analysed for a comparison of the contact point with the testing areas in the EEVC headform impactor test procedures. A simulation matrix is established using five vehicle types, two mathematical models of the pedestrians represented a 50th male adult and a 6-year-old child as well as seven pedestrian gaits based on typical postures in pedestrian accidents. In order to simulate a large range of impact conditions, four vehicle velocities (30 km/h, 40 km/h, 50 km/h and 60 km/h) are considered for each pedestrian position and vehicle type. The results indicated that the pedestrian gait and vehicle-impact velocity strongly influence head-impact condition. It is obvious that due to different vehicle-front geometry, the head-impact velocity, impact angle and head-impact point could be varied as well. This study provides suggestions for different head-impact conditions of subsystem test to the front part of different passenger vehicles. Keywords: crash simulation; pedestrian gait; vehicle-front geometry; impact velocity; head-impact conditions 1. Introduction Pedestrians are considered to be an extremely vulnerable group of road users. Furthermore, head injury is one of the most common injuries in car-to-pedestrian accidents. International Harmonized Research Activities (IHRA) investigated and analysed 1605 pedestrian accidents from Australia, Germany, Japan and the USA and the results show that head injuries accounted for 31.4% of 3305 AIS2+ (Abbreviated Injury Scale) injuries [10]. Neal-Sturgess et al. [12] reviewed APROSYS European In-Depth Pedestrian Database from 1997 to 2004 and found that the most frequently injured body regions were the head and lower limbs. A statistical analysis was undertaken by Fildes et al. [2] using real world crash data and the results showed that head and face regions accounted for a sizeable proportion of serious injuries comprising 29% to children and 28% to adults as per the University of Hannover data and head injuries alone of AIS 4+ severity accounted for 20% of fatal injuries as per Australian fatal file. In order to minimise the risk of head injuries to pedestrians in traffic accidents, the subsystem test procedures with headform impactors have been used to assess the passenger vehicle-front performance for pedestrian protection since 1996 in EuroNCAP tested passenger vehicles. The child headform impacts on the vehicle area are from Wrap Around Distance (WAD) 1000 mm to WAD 1500 mm, with an impact angle of 65 to the ground, while the adult headform impacts on the vehicle area are from WAD 1500 mm to 2100 mm, with an impact angle of 50 to the ground. Both headforms are launched against the impact zones at a speed of 40 km/h. Recently, in order to harmonise with impactor specifications used in the draft of Global Technical Regulation on pedestrian protection, the EuroNCAP pedestrian test protocols were modified by the European Enhanced Safety of Vehicles Committee. Furthermore, the IHRA specifies three groups of vehicle shape: Sedan, SUV and 1-box, and defines different impact test speeds and different impact angles. The child headform impacts on the vehicle area determined by WAD between 1000 mm and 1700 mm and the impact angle for Sedan, SUV and 1- box are, respectively, 65,60 and 25. While the adult headform impacts on the vehicle are determined by WAD between 1700 mm and 2100 mm and the impact angle for Sedan, SUV and 1-box is 65,90 and 50, respectively. The impact test speed is 32 km/h both for child and adult headform. The Japanese legislation was developed based Corresponding author. pengyong @163.com ISSN: print / ISSN: online C 2012 Taylor & Francis

3 2 Y. Peng et al. on the IHRA recommended method. In the draft of Global Technical Regulation on pedestrian protection, the test protocols are carried out at a speed of 35 km/h. However, these subsystem tests cannot evaluate the integrated safety performance of a vehicle design in terms of the overall responses of pedestrian. The pedestrian protection testing protocols did not take into account the influence of different vehicle types and pedestrian gait on pedestrian head-impact conditions, but specified the identical head-impact conditions for all types of vehicle. The researches on the effects of vehicle-front parameters and impact speed on pedestrian dynamic responses have been widely studied by using mathematical models [3, 7, 8, 17, 18], pedestrian dummy crash tests [4, 11, 13] and in-depth accident data [5, 6, 12, 19]. For instance, the influences of impact speed, vehicle-front structure and the stiffness properties on the pedestrian dynamic responses have been investigated using the validated pedestrian multibody model [7, 8, 18]. These studies found that compared to the bumper lead length and bumper height, the hood edge height will have a great effect on the resultant head velocity and the resulted injury severity of head is strongly controlled by the local stiffness of head contact area. Han et al. [3] investigated the effect of vehicle types on the pedestrian kinematic by using finite element models. They found that the frontal shape of the vehicle had a large effect on the pedestrian kinematic behaviour, including the impact velocity of the pelvis, chest and head against the vehicle. Okamoto et al. [13] also reported that the headimpact conditions are influenced by the front construction of the vehicle and the pedestrian size. Kerrigan et al. [4] assessed pedestrian head-impact dynamics in small sedan and large SUV collisions using post-mortem human surrogates (PMHS) and the Polar-II pedestrian crash dummy. The results indicated that HIC 15 values and angular accelerations were higher in windshield impacts in the sedan tests than in hood impacts in the SUV tests and the head impacts to the sedan windshield were potentially more injurious than the head impacts to the SUV hood. In Moradi and Lankarani s study [11], different sizes of pedestrians were impacted by a utility vehicle with a frontal guard to evaluate the pedestrian kinematics and injury potential and the results showed that the mid-body region is more vulnerable for the vehicle with a frontal guard. Li and Yang [6] investigated the pedestrian dynamic responses and head brain injuries in car-to-pedestrian collisions with reconstructions using in-depth accident data in China. In their study, the results illustrated that the head-impact relative velocity to the car was proportional to the vehicle speed and head-impact angle was influenced by pedestrian height, car front structure and impact speed. In-depth accident data indicated that the range of impact velocity is from 10 km/h to 60 km/h in about 95% real world pedestrian accidents [5, 12, 19]. In this study, the influences of pedestrian gait, vehicle type and impact speed on pedestrian dynamic responses are evaluated by using fully validated human-body mathematical models. The final objective of this study is to define relative head-impact condition as a function of vehicle-frontend geometry, if it is necessary to specify head-impact test condition for different types of cars. 2. Methods and materials The multi-body dynamic (MBD) models were used to simulate responses of vehicle to pedestrian collisions with different vehicle types in terms of head-impact point (Wrap Around Distance: WAD), head relative velocity and impact angle. Furthermore, the distribution of the head contact points on the vehicle fronts is analysed for comparison with current testing areas used in the EEVC impactor procedures. In order to simulate a large range of impact conditions, a simulation matrix is established using five vehicle types, two mathematical models of the pedestrians, seven pedestrian gaits defined based on walking postures in typical pedestrian accidents, as well as four impact speeds are considered for each pedestrian position and vehicle type Pedestrian models Two mathematical models of the pedestrians which represented a 50th male adult and a 6-year-old child are used in this study. The Pedestrian Models (PM) were developed by TNO in the MADYMO environment. The TNO PM consists of 52 rigid bodies and includes six frangible joints in each leg. This model can be scaled to any required body size using GEBOD program. The 50th male PM was validated against blunt impact tests and car pedestrian crash tests [14, 16]. Both of the 50th percentile male model and the 6-year-old child model are shown in Figure Vehicle models As shown in Figure 2, five vehicle models are constructed according to the shapes and sizes of the main existing vehicles [1, 10]. In this study, five vehicles including Super Mini Car (SMC), Small Family Car (SFC), Large Family Car (LFC), Multi Purpose Vehicle (MPV) and Sport Utility Vehicle (SUV) are selected and constructed based on the vehicle geometry corridors. Vehicle-front model consists of bumper, hood edge, hood top, windscreen and four wheels ellipsoids to approximate the exterior profile of a vehicle. The contact stiffnesses of vehicle-front components are obtained according to Martinez et al. s work [9] Set-up of configurations and simulation matrix The configurations for simulations of vehicle-to-pedestrian collisions are developed using four different impact speeds

4 International Journal of Crashworthiness 3 Figure 3. Pedestrian stances for different gait parameters (%) vehicle-front geometry and vehicle-impact speed. Simulation outputs concern pedestrian impact conditions such as head-impact velocity, head-impact angle and head-impact location (Wrap Around Distance: WAD). A simulation matrix was designed with a total of 280 simulations. Figure 1. Pedestrian models. of 30, 40, 50 and 60 km/h. Seven pedestrian gaits (0%, 20%, 40%, 60%, 80%, front and rear) are used in the simulations for each child and adult PM as shown in Figure 3. The stances of the PM are obtained using functions of joint angles and H-point according to literature [15]. The pedestrian contact position is selected at the vehicle central line of the model in all of simulations. The friction coefficients are 0.6 for foot/ground and wheels/ground, and 0.5 for the contacts between body segments and vehicle-front structures [8]. A parametric study is conducted using four variables to understand the influence of pedestrian size and gait, 3. Results 3.1. Wrap around distance (WAD) A pedestrian hit by a car is wrapped around the front of the vehicle. Therefore, head-impact location is estimated by the WAD, which is the length measured along the vehicle s front profile from the ground to the head-impact location. The WAD values for five vehicle types are compared at different pedestrian gaits and impact velocity in Figure 4. For the adult pedestrian, the WAD values exceed 2.1 m above collision velocity of 40 km/h for the SFC and LFC, while the WAD values are closer to 1.8 m for the SMC, MPV and SUV. However, the effect of vehicle velocity on the WAD is not significant over collision velocity of 40 km/h. In the case of the child, the WAD values are below 1.35 m except the LFC, and there is a slight increase with increase in vehicle velocity. It can be seen in Figure 4 that the effects of pedestrian gait on WAD are larger for the adult than for the child, and that the WAD values are larger for the SFC and the LFC than other vehicle types in the adult simulations. Figure 2. Vehicle types used in this study.

5 4 Y. Peng et al. Figure 4. Comparison of the WAD value on different vehicles for different pedestrian gaits and vehicle-impact velocity. (a) at vehicleimpact velocity 30 km/h, (b) at vehicle-impact velocity 40 km/h, (c) at vehicle-impact velocity 50 km/h, (d) at vehicle-impact velocity 60 km/h. The results show that at a vehicle-impact velocity of 40 km/h, the mean values of WAD for the SMC, SFC, LFC, MPV and SUV are 1.78 m, 2.11 m, 2.14 m, 1.82 m and 1.74 m, respectively. However, for the 6-year-old child, the mean values of WAD for the SMC, SFC, LFC, MPV and SUV are 1.20 m, 1.16 m, 1.29 m, 1.14 m and 1.17 m, respectively Head-impact velocity relative to the vehicle The head relative impact velocities for five vehicle types and seven pedestrian gaits obtained at velocities of km/h for adult and child are plotted in Figure 5. The head-impact velocity is gradually increasing with the increase of vehicletravel velocity both for adult and child. It was found that the head-impact velocity is higher for the adult impacted with all of the vehicles than for the child. For the adult, the mean values of the head-impact velocity are larger for the SFC and the LFC than for the other vehicles and the head-impact velocities are below vehicle velocities in all cases except for the SFC, while the mean value of child head-impact velocity is the smallest for the SUV, and the value is lower than the vehicle velocity and the adult headimpact velocity. It can be also observed that the effects of pedestrian gait on head-impact velocity are larger for the adult than for the child. When the vehicle-travel velocity is set to 40 km/h, the mean value of head-impact velocity of the 50th percentile adult is 36 km/h for SMC, 42 km/h for SFC, 40 km/h for LFC, 36 km/h for MPV and 37 km/h for SUV, while the child head-impact velocity is 29 km/h for SMC, 35 km/h for SFC, 33 km/h for LFC, 31 km/h for MPV and 23 km/h for SUV. The maximum value of adult head-impact velocity for SMC, SFC, LFC, MPV and SUV is, respectively, 49 km/h, 50 km/h, 53 km/h, 47 km/h and 51 km/h. For the 6-year-old child, the maximum value of WAD for SMC, SFC, LFC, MPV and SUV is 34 km/h, 43 km/h, 36 km/h, 38 km/h and 42 km/h, respectively Head-impact angle The head-impact angle refers to the angle between the direction of the head-impact speed and the ground reference level in a downward and rearward direction. As shown in Figure 6, a comparison is made between the head-impact angle for different pedestrian gaits, vehicle types and vehicle-impact velocities. Figure 6 shows that a specific trend cannot be observed about the influence of vehicle types both for adult and child. However, in case of the child impact, the headimpact angle is observed to be highly dependent on the geometry of the vehicle. It also can be found that the headimpact angle is influenced by gait both for the adult and child and the fluctuation of head-impact angle is about 10. When the vehicle-travel velocity was set to 40 km/h, the mean value of adult head-impact angle is 63 for SMC, 55 for SFC, 66 for LFC, 55 for MPV and 63 for SUV, while the mean value of child head-impact angle is 63 for SMC, 55 for SFC, 66 for LFC, 48 for MPV and 29 for SUV.

6 International Journal of Crashworthiness 5 Figure 5. Effects of pedestrian gait and vehicle type on head-impact angle at different vehicle-impact velocity. (a) at vehicle-impact velocity 30 km/h, (b) at vehicle-impact velocity 40 km/h, (c) at vehicle-impact velocity 50 km/h, (d) at vehicle-impact velocity 60 km/h. Figure 6. Effects of pedestrian gait and vehicle type on head-impact velocity at different vehicle-impact velocity. (a) at vehicle-impact velocity 30 km/h, (b) at vehicle-impact velocity 40 km/h, (c) at vehicle-impact velocity 50 km/h, (d) at vehicle-impact velocity 60 km/h. 4. Discussions 4.1. Distribution of head-impact location by WAD values The WAD value is influenced by the front construction of the vehicle. The bumper centre height, hood edge height, hood slope angle and hood length all have significant effects on the pedestrian kinematics. For the adult, the WAD values are bigger for the SFC and the LFC than other vehicle types, and for the child, the WAD value is biggest for the LFC. As shown in Figure 7, for the SMC, the adult head-impact points are distributed on the lower end of the

7 6 Y. Peng et al. Figure 7. Comparison of the distribution of head contact point on different vehicle for different vehicle velocity and pedestrian gait. windscreen and the child head hits the middle of bonnet. Results from the simulations with the SFC show that the distribution of adult and child head-impact points is on the middle of the windscreen and bonnet areas, respectively. In the case of the LFC, the adult head hits the bonnet rear area and the low windscreen, and the child head-impact points are located on the bonnet middle area. From the simulation results of the MPV, it can be found that the adult and child heads are expected to hit the low windscreen area and the bonnet front, respectively. For the SUV, the adult head hits the lower end of the windscreen and rear bonnet, while the child head-impact points are concentrated on the bonnet front edge. At a vehicle-impact velocity of 40 km/h, for the SFC and the LFC, the adult head contact points are more rearward than the 2.1 m WAD position, while most of the pedestrian head-impact points are closer to the 1.7 m WAD position for other vehicle types. In the case of the child, most of head-impact points are closer to the 1.2 m WAD position located on the bonnet front edge for the MPV and SUV and the bonnet middle area for the SMC, SFC and LFC. Vehicle-impact velocity and pedestrian gait also have critical effects on the WAD. The WAD gradually increases with the increase of vehicle-travel velocity. The dynamic responses of the legs have a great influence for the adult pedestrian dynamic responses, but the growth trends are not remarkable at a collision velocity of 40 km/h and higher for the adult. In the case of the child, at the time of impact, the child s upper body came in contact with the vehicle, so the effect of vehicle-front structure and child gait on the WAD is not remarkable Head-impact velocity relative to the vehicle The average impact velocity of the adult pedestrian head is below the vehicle velocity except in the case of the SFC, while the child head-impact velocity is lower than the vehicle velocity and the adult head-impact velocity. When a vehicle impacts a pedestrian, the leg of the pedestrian first contacts with vehicle-front end and then the pedestrian is rotated around the impact position. So, the different bumper centre height, bumper lead length and hood slope angles of various vehicle types lead to different kinematics of the pedestrians. At a vehicle-impact velocity of 40 km/h, the head-impact velocity for the SMC, MPV and SUV is about 36 km/h which is 10% lower than 40 km/h for adult, while the child head-impact velocity is about 25% lower than the 40 km/h specified by EEVC Head-impact angle The differences in head-impact angle can be mainly attributed to the different vehicle-front geometries and pedestrian gaits (Figures 8 and 9), which lead to different kinematics of the pedestrian after impact. For the adult, the initial contacted position of the SFC and MPV is higher than other vehicle types, so the vertical component of the

8 International Journal of Crashworthiness 7 Figure 8. Comparison of child pedestrian kinematics for different vehicle type (at 40 km/h and 60% gait). Figure 9. Comparison of adult pedestrian kinematics for different vehicle type (at 40 km/h and 60% gait). head-impact velocity is lower and the impact angle is lower. The child head-impact angles are larger for the SMC, SFC and LFC than for the MPV and SUV, and it is the smallest for the SUV. For the SUV, the head impacted directly with the hood edge before there is big neck bending (Figure 8), so the child head contact angle is the smallest. At a vehicle-impact velocity of 40 km/h, the average of headimpact angles for the SFC and MPV are 55, which is 16% lower than the 65 specified by EEVC for an adult. The average head-impact angles for the SMC and LFC are 63 and 66, respectively, which are about 28% higher than the 50 specified by EEVC for a child, while for the SUV, the headimpact angle is 29 which is 42% lower than 50 specified by EEVC for a child. The kinematic of the pedestrian head is determined by the first contact between the vehicle and the pedestrian s legs. Therefore, the head-impact orientation at the time of contact with vehicle is influenced by pedestrian gaits, which can be observed from Figures 10 and 11. The head orientations at the time of impact simulated from different gaits are different which can result in different injuries. Due to change in gaits percentage the centre of gravity of the pedestrian changes, thus resulting in different stress points on pedestrian head, leading to different linear and angular accelerations. This analysis demonstrates that further investigation is needed in order to assess the pedestrian head injury risk in more details. There are several limitations of the current study and they are to be mentioned. In case of all the simulations, the pedestrian hitting position is restricted at the central line of vehicle model, whereas other impact situations should also be considered to be more realistic. The stiffness properties of each part of the vehicle models are selected from the data available in the literature and not from actual experimental data of the individual vehicle. Different brands of vehicle have different stiffiness properties in the real world situation. Also, the same friction coefficients are defined in all the simulations, which can also change the response of pedestrian. Finally, the validation of PM needs some detailed evaluations, especially for the child PM.

9 8 Y. Peng et al. Figure 10. SFC). Comparison of child pedestrian head-impact orientation at time of contact with vehicle for different gaits (at 40 km/h for Figure 11. SFC). Comparison of adult pedestrian head-impact orientation at time of contact with vehicle for different gaits (at 40 km/h for 5. Conclusions This study presents an extensive analysis of pedestrian head motion based on multi-body simulation and focusing on the head-impact conditions at the time before impact. The results contribute to an in-deep understanding of the headimpact conditions in regulation test procedures to the front part of different passenger vehicles. The WAD is influenced by the vehicle-front geometry and pedestrian gait, especially for the adult pedestrian. The WAD gradually increases with the increase of vehicle-travel velocity, but this trend will slow down while the velocity is above 40 km/h both for the adult and child. For the SFC, LFC and MPV, the adult head-impact points focus on the windscreen. The simulation results indicated that the adult headform impacts on the vehicle between 1700 mm and 2100 mm or more. The head-impact velocity is determined by vehiclefront geometry, vehicle-impact velocity and pedestrian gait. Most of the simulations, the head-impact velocities, are lower than the initial vehicle velocities, especially for the child, the head-impact velocity is about 25% lower than the vehicle velocity. The head-impact velocity is higher for the SFC and LFC than for SMC, MPV and SUV. The study recommends that the subsystem test procedures should define different impact speeds for different vehicle types. Furthermore, the child headform impact speed should be lower than the adult headform impact speed. The head-impact angle depends on the vehicle-front geometry and pedestrian gait. The head-impact orientation at the time of contact with vehicle is mainly influenced by the pedestrian gait. For the adult, the angles for the SFC and MPV are lower than for the other vehicle types, while the child head contact angles are larger for the SMC, SFC and LFC than for the MPV and SUV, and it is the smallest for the SUV. The simulation results also suggest that the subsystem test procedures should define different impact test angles for different vehicle types. The head-impact angles for the SFC and MPV should be lower than the 65 specified by EEVC for an adult. The head-impact angles for the SMC and LFC should be higher than the 50 specified by EEVC for a child, while for SUV, the head-impact angle should be lower than the 50 specified by EEVC for a child. Acknowledgements This study was sponsored by the State Key Laboratory of Vehicle NVH and Safety Technology No. NVHSKL , the Ministry of Education of P.R. China 111 program No The authors like to thank Fondation Securite Routiere-France and the MAIF foundation for their supports. In addition, thanks for the financial support of the China Scholarship Council (CSC).

10 International Journal of Crashworthiness 9 References [1] H.P. Chen, L.X. Fu, and H.Y. Zheng, A comparative study between China and IHRA for the vehicle-pedestrian impact, SAE International Journal of Passenger Cars-Mechanical Systems 2, 2009, pp [2] B. Fildes, H.C. Gabler, D. Otte, A. Linder, and L. Sparke, Pedestrian impact priorities using real-world crash data and harm, Proceedings of International Conference on the Biomechanics of Impacts (IRCOBI), Graz, Austria, [3] Y. Han, J.K. Yang, K. Nishimoto, K. Mizuno, Y. Matsui, D. Nakane, S. Wanami, and M. Hitosugi, Finite element analysis of kinematic behaviour and injuries to pedestrians in vehicle collisions, Int. J. Crashworthiness 17 (2012), pp [4] J. Kerrigan, C. Arregui-Dalmases, and J. Crandall, Assessment of pedestrian head impact dynamics in small sedan and large SUV collisions, Int. J. Crashworthiness 17 (2012), pp [5] C.Y. Kong and J.K. Yang, Logistic regression analysis of pedestrian casualty risk in passenger vehicle collisions in China, Accident Anal. Prev. 42(4) (2010), pp [6] F. Li and J.K. Yang, A study of head-brain injuries in carto-pedestrian crashes with reconstructions using in-depth accident data in China, Int. J. Crashworthiness 15 (2010), pp [7] X.J. Liu and J.K. Yang, Effects of vehicle impact velocity and front-end structure on dynamic responses of child pedestrians, Traffic Injury Prev. 4(4) (2003), pp [8] X.J. Liu, J.K. Yang, and Lövsund, A study of influences of vehicle speed and front structure on pedestrian impact responses using mathematical models, Traffic Injury Prev. 3 (2002), pp [9] L. Martinez, L.J. Guerra, G. Ferichola, A. Garcia, and J.K. Yang, Stiffness corridors of the European fleet for pedestrian simulation, Proceedings of 20th ESV Conference: Paper Number , Lyon, France, [10] Y. Mizuno, Summary of IHRA pedestrian safety WG activities (2005) proposed test methods to evaluate pedestrian protection afforded by passenger cars, Proceedings of the 19th International Technical Conference on the Enhanced Safety of Vehicles, Paper number , Washington, D.C., [11] R. Moradi and H.M. Lankarani, Evaluation of the kinematics and injury potential to different sizes of pedestrians impacted by a utility vehicle with a frontal guard,int.j.crashworthiness 16 (2011), pp [12] C.E. Neal-Sturgess, E. Carter, R. Hardy, R. Cuerden, L. Guerra, and J.K. Yang, APROSYS European in-depth pedestrian database, Proceedings of 20th Conference on the Enhanced Safety of Vehicles (ESV), Paper Number , Lyon, France, [13] Y. Okamoto, T. Sugimoto, K. Enomoto, and J. Kikuchi, Pedestrian head impact conditions depending on the vehicle front shape and its construction-full model simulation, Traffic Injury Prev. 4 (2003), pp [14] TNO, MADYMO Human Models Manual Version Delft, TNO Automotive, Netherlands, [15] C.D. Untaroiu, M.U. Meissner, J.R. Crandall, and Y. Takahashi, Crash reconstruction of pedestrian accidents using optimization techniques, Int. J. Impact. Eng. 36 (2009), pp [16] J.H. Van, L.R. De, and J. Wismans, Improving pedestrian safety using numerical human models, Stapp Car Crash J. 47 (2003), pp [17] J.K. Yang, Mathematical simulation of knee responses associated with leg fracture in car pedestrian Accidents, Int.J. Crashworthiness 2 (1997), pp [18] J.K. Yang, P. Lövsund, C. Cavallero, and J. Bonnoit, A human-body 3D mathematical model for simulation of carpedestrian impacts, Traffic Injury Prev. 2(2) (2000), pp [19] H. Zhao, Z.Y. Yin, R. Chen, H.P. Chen, C. Song, G.Y. Yang, and Z.G. Wang, Investigation of 184 passenger car pedestrian accidents, Int. J. Crashworthiness 15 (2010), pp

A Study on Injuries and Kinematics in Pedestrian Accidents involved Minivan and Sedan

A Study on Injuries and Kinematics in Pedestrian Accidents involved Minivan and Sedan A Study on Injuries and Kinematics in Pedestrian Accidents involved Minivan and Sedan LI Guibing*, NIE Jin*, YANG Jikuang**, Zhou Xuenong***, Zhang Chao****, Yu Xiaoping*****, Li Weiqiang******, Wang Meichuan*******

More information

Mathematical modelling of pedestrian crashes: Review of pedestrian models and parameter study of the influence of the sedan vehicle contour

Mathematical modelling of pedestrian crashes: Review of pedestrian models and parameter study of the influence of the sedan vehicle contour Mathematical modelling of pedestrian crashes: Review of pedestrian models and parameter study of the influence of the sedan vehicle contour Astrid Linder, Anthony Clark, Clay Douglas, Brian Fildes Monash

More information

CORRELATION OF DIFFERENT IMPACT CONDITIONS TO THE INJURY SEVERITY OF PEDESTRIANS IN REAL WORLD ACCIDENTS

CORRELATION OF DIFFERENT IMPACT CONDITIONS TO THE INJURY SEVERITY OF PEDESTRIANS IN REAL WORLD ACCIDENTS CORRELATION OF DIFFERENT IMPACT CONDITIONS TO THE INJURY SEVERITY OF PEDESTRIANS IN REAL WORLD ACCIDENTS Jikuang Yang Jianfeng Yao Chalmers University of Technology, Sweden Dietmar Otte Hannover Medical

More information

A study of kinematics of adult pedestrian and head impact conditions in case of passenger car collisions based on real world accident data

A study of kinematics of adult pedestrian and head impact conditions in case of passenger car collisions based on real world accident data A study of kinematics of adult pedestrian and head impact conditions in case of passenger car collisions based on real world accident data Yong PENG 1,2, Caroline DECK 2, Jikuang YANG 1,3, Dietmar OTTE

More information

Pedestrian and bicyclists head impact conditions against small electric vehicle

Pedestrian and bicyclists head impact conditions against small electric vehicle IRC-14-77 IRCOBI Conference 14 Pedestrian and bicyclists head impact conditions against small electric vehicle Nicolas Bourdet, Peter Luttenberger, Andreas Teibinger, Christian Mayer, Remy Willinger Abstract

More information

MADYMO human models for Euro NCAP pedestrian safety assessment

MADYMO human models for Euro NCAP pedestrian safety assessment MADYMO human models for Euro NCAP pedestrian safety assessment Contents Introduction MADYMO Human Models Virtual testing in Euro NCAP Active bonnet safety performance Application of human body models MADYMO

More information

Henry K. Van Offelen a, Charles C. Krueger a & Carl L. Schofield a a Department of Natural Resources, College of Agriculture and

Henry K. Van Offelen a, Charles C. Krueger a & Carl L. Schofield a a Department of Natural Resources, College of Agriculture and This article was downloaded by: [Michigan State University] On: 09 March 2015, At: 12:59 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

EFFECTS OF VEHICLE IMPACT VELOCITY AND FRONT-END STRUCTURE ON THE DYNAMIC RESPONSES OF CHILD PEDESTRIANS

EFFECTS OF VEHICLE IMPACT VELOCITY AND FRONT-END STRUCTURE ON THE DYNAMIC RESPONSES OF CHILD PEDESTRIANS EFFECTS OF VEHICLE IMPACT VELOCITY AND FRONT-END STRUCTURE ON THE DYNAMIC RESPONSES OF CHILD PEDESTRIANS Xuejun Liu and Jikuang Yang Crash Safety Division, Chalmers University of Technology 412 96, Göteborg,

More information

VEHICLE DESIGN. and PEDESTRIAN SAFETY. Pedestrian Safety and Car Design. Environment Causes of Accidents. Main Characteristics of Pedestrian Accidents

VEHICLE DESIGN. and PEDESTRIAN SAFETY. Pedestrian Safety and Car Design. Environment Causes of Accidents. Main Characteristics of Pedestrian Accidents 1 2 3 4 6 Pedestrian Safety and Car Design VEHICLE DESIGN and PEDESTRIAN SAFETY Dominique CESARI INRETS Main Characteristics of Pedestrian Accidents Injury Mechanisms Car Design and Pedestrian Protection

More information

R Cookson, R Cuerden, D Richards, J Manning TRL, UK. Keywords: Pedestrians, injuries, accident investigations, bumpers, windshields

R Cookson, R Cuerden, D Richards, J Manning TRL, UK. Keywords: Pedestrians, injuries, accident investigations, bumpers, windshields A REVIEW OF THE CAUSES OF FATAL PEDESTRIANS INJURIES RESULTING FROM COLLISIONS WITH CAR FRONTS COMPARING VEHICLES REGISTERED IN 2002 OR LATER WITH EARLIER MODELS. R Cookson, R Cuerden, D Richards, J Manning

More information

In-Depth Investigation of Vehicle Traffic Injuries in Changsha of China 1

In-Depth Investigation of Vehicle Traffic Injuries in Changsha of China 1 38 C.Y. Kong, J.K. Yang, L. Li Hunan University, Changsha, China W.Q. Li, Z. Zhao WuJing Hospital, Changsha, China D. Otte Hannover Medical University, Germany In-Depth Investigation of Vehicle Traffic

More information

Estimation of impact severity in pedestrian accidents using accident investigation, computer simulation and physical reconstruction

Estimation of impact severity in pedestrian accidents using accident investigation, computer simulation and physical reconstruction Estimation of impact severity in pedestrian accidents using accident investigation, computer simulation and physical reconstruction Abstract Robert Anderson, Luke Streeter, Jack McLean Road Accident Research

More information

Carter G. Kruse a, Wayne A. Hubert a & Frank J. Rahel b a U.S. Geological Survey Wyoming Cooperative Fish and. Available online: 09 Jan 2011

Carter G. Kruse a, Wayne A. Hubert a & Frank J. Rahel b a U.S. Geological Survey Wyoming Cooperative Fish and. Available online: 09 Jan 2011 This article was downloaded by: [Montana State University Bozeman] On: 03 October 2011, At: 09:48 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

Sensitivity Analysis for Pedestrian Lower Leg Impact

Sensitivity Analysis for Pedestrian Lower Leg Impact Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry October 11-13, 2017 in Stuttgart, Germany Sensitivity Analysis for Pedestrian Lower Leg

More information

Development and Validation of a 95 th Percentile Male Pedestrian Finite Element Model

Development and Validation of a 95 th Percentile Male Pedestrian Finite Element Model Development and Validation of a 95 th Percentile Male Pedestrian Finite Element Model Wansoo Pak 1, Costin D. Untaroiu 1 1 Virginia Tech, Blacksburg, VA, USA Abstract The pedestrian is one of the most

More information

Examination of Human Body Mass Influence on Pedestrian Pelvis Injury Prediction Using a Human FE Model

Examination of Human Body Mass Influence on Pedestrian Pelvis Injury Prediction Using a Human FE Model IRC-2 IRCOBI Conference 22 Examination of Human Body Mass Influence on Pedestrian Pelvis Injury Prediction Using a Human FE Model Yasuaki Gunji, Masayoshi Okamoto, Yukou Takahashi Abstract This research

More information

Effect of Pedestrian Buck Contact Area and Force-Deflection Property on Pedestrian Pelvis and Lower Limb Injuries

Effect of Pedestrian Buck Contact Area and Force-Deflection Property on Pedestrian Pelvis and Lower Limb Injuries IRC-12-26 IRCOBI Conference 212 Effect of Pedestrian Buck Contact Area and Force-Deflection Property on Pedestrian Pelvis and Lower Limb Injuries Miwako Ikeda 1, Shunji Suzuki 1, Yukou Takahashi 1, Shinsuke

More information

Optimization of Passenger Car Design for the Mitigation of Pedestrian Head Injury Using a Genetic Algorithm

Optimization of Passenger Car Design for the Mitigation of Pedestrian Head Injury Using a Genetic Algorithm Optimization of Passenger Car Design for the Mitigation of Pedestrian Head Injury Using a Genetic Algorithm Emma Carter The University of Birmingham Edgbaston Birmingham, UK +44 (0)121-414 3545 e.l.carter@bham.ac.uk

More information

OPTIMIZATION OF VEHICLE FRONT FOR SAFETY OF PEDESTRIANS

OPTIMIZATION OF VEHICLE FRONT FOR SAFETY OF PEDESTRIANS OPTIMIZATION OF VEHICLE FRONT FOR SAFETY OF PEDESTRIANS Hariharan Sankarasubramanian Sudipto Mukherjee Anoop Chawla Indian Institute of Technology, Delhi, India. Paper number: 11-422 ABSTRACT During impact

More information

EUROPEAN COMMISSION DG RTD SEVENTH FRAMEWORK PROGRAMME THEME 7 TRANSPORT - SST SST.2011.RTD-1 GA No

EUROPEAN COMMISSION DG RTD SEVENTH FRAMEWORK PROGRAMME THEME 7 TRANSPORT - SST SST.2011.RTD-1 GA No EUROPEAN COMMISSION DG RTD SEVENTH FRAMEWORK PROGRAMME THEME 7 TRANSPORT - SST SST.2011.RTD-1 GA No. 285106 ASPECSS Assessment methodologies for forward looking Integrated Pedestrian and further extension

More information

SUMMARY OF IHRA PEDESTRIAN SAFETY WG ACTIVITIES ( 2003 ) PROPOSED TEST METHODS TO EVALUATE PEDESTRIAN PROTECTION OFFERED BY PASSENGER CARS

SUMMARY OF IHRA PEDESTRIAN SAFETY WG ACTIVITIES ( 2003 ) PROPOSED TEST METHODS TO EVALUATE PEDESTRIAN PROTECTION OFFERED BY PASSENGER CARS SUMMARY OF IHRA PEDESTRIAN SAFETY WG ACTIVITIES ( 23 ) PROPOSED TEST METHODS TO EVALUATE PEDESTRIAN PROTECTION OFFERED BY PASSENGER CARS Yoshiyuki Mizuno, Chairman on behalf of IHRA / P. S. WG Japan Automobile

More information

IRC IRCOBI Conference 2014

IRC IRCOBI Conference 2014 Head Injury Reduction Potential of Integrated Pedestrian Protection Systems Based on Accident and Experimental Data Benefit of Combining Passive and Active Systems Rikard Fredriksson, Erik Rosén Abstract

More information

Design of pedestrian friendly vehicle bumper

Design of pedestrian friendly vehicle bumper Journal of Mechanical Science and Technology 24 (1) (21) 267~273 www.springerlink.com/content/1738-494x DOI 1.17/s1226-1-612- Design of pedestrian friendly vehicle bumper Tso-Liang Teng 1,*, Van-Luc Ngo

More information

Vehicle design for pedestrian protection. AJ McLean

Vehicle design for pedestrian protection. AJ McLean Vehicle design for pedestrian protection AJ McLean CASR REPORT SERIES CASR037 May 2005 Report documentation REPORT NO. DATE PAGES ISBN ISSN CASR037 May 2005 22 1 920947 39 6 1449-2237 TITLE Vehicle design

More information

Head Impact Analysis Validation for Aluminium Bonnet

Head Impact Analysis Validation for Aluminium Bonnet Head Impact Analysis Validation for Aluminium Bonnet Arda Yüksel 1, Fırat Aras 1, Osman Çolpan 1 1 TOFAS, Bursa TR Abstract In recent years, vehicle manufacturers are making improvements to find more reliable

More information

Simulation on the form and kinematics law of contacting process for car/pedestrian collision

Simulation on the form and kinematics law of contacting process for car/pedestrian collision Simulation on the form and kinematics law of contacting process for car/pedestrian collision Xu Hong-guo 1 & Fan Yan-hui 2 1 Transportation College, Jilin University, P.O. Box 13002, Changchun, Renmin

More information

Analysis of Vulnerable Road User Kinematics Before/During/After Vehicle Collisions Based on Video Records

Analysis of Vulnerable Road User Kinematics Before/During/After Vehicle Collisions Based on Video Records Analysis of Vulnerable Road User Kinematics Before/During/After Vehicle Collisions Based on Video Records Yong Han, Quan Li, Wei He, Fang Wan, Bingyu Wang, Koji Mizuno Abstract The vulnerable road users

More information

INFLUENCE OF HEAD BOUNDARY CONDITIONS IN PEDESTRIAN REAL WORLD HEAD TRAUMA SIMULATIONS

INFLUENCE OF HEAD BOUNDARY CONDITIONS IN PEDESTRIAN REAL WORLD HEAD TRAUMA SIMULATIONS INFLUENCE OF HEAD BOUNDARY CONDITIONS IN PEDESTRIAN REAL WORLD HEAD TRAUMA SIMULATIONS Marie Munsch (a), Robert Anderson (b), Caroline Deck (a), Bertrand Ludes (c), Rémy Willinger (a) (a) University of

More information

Priorities for Bicyclist Protection in Car Impacts a Real life Study of Severe Injuries and Car Sources. Rikard Fredriksson 1, Erik Rosén 2

Priorities for Bicyclist Protection in Car Impacts a Real life Study of Severe Injuries and Car Sources. Rikard Fredriksson 1, Erik Rosén 2 Priorities for Bicyclist Protection in Car Impacts a Real life Study of Severe Injuries and Car Sources Rikard Fredriksson 1, Erik Rosén 2 Abstract The German database GIDAS was queried to find all cases

More information

ESTIMATION OF THE EFFECT OF AUTONOMOUS EMERGENCY BRAKING SYSTEMS FOR PEDESTRIANS ON REDUCTION IN THE NUMBER OF PEDESTRIAN VICTIMS

ESTIMATION OF THE EFFECT OF AUTONOMOUS EMERGENCY BRAKING SYSTEMS FOR PEDESTRIANS ON REDUCTION IN THE NUMBER OF PEDESTRIAN VICTIMS ESTIMATION OF THE EFFECT OF AUTONOMOUS EMERGENCY BRAKING SYSTEMS FOR PEDESTRIANS ON REDUCTION IN THE NUMBER OF PEDESTRIAN VICTIMS Toshiyuki, Yanaoka Yukou, Takahashi Honda R&D Co.,Ltd. Automobile R&D Center

More information

ANALYSIS OF PEDESTRIAN COLLISION WITH A PICKUP TRUCK

ANALYSIS OF PEDESTRIAN COLLISION WITH A PICKUP TRUCK ANALYSIS OF PEDESTRIAN COLLISION WITH A PICKUP TRUCK A Thesis by Sachin Narayan Narkhede Bachelor of Engineering, 2003 Submitted to the Department of Mechanical Engineering and the faculty of Graduate

More information

IRC IRCOBI Conference 2016

IRC IRCOBI Conference 2016 IRC-16-98 IRCOBI Conference 216 Development and Evaluation of the Advanced Pedestrian Legform Impactor Prototype which can be Applicable to All Types of Vehicles Regardless of Bumper Height Part 1: Finite

More information

Injury Patterns of Korea Pedestrian Accidents in KIDAS

Injury Patterns of Korea Pedestrian Accidents in KIDAS Injury Patterns of Korea Pedestrian Accidents in KIDAS Younghan Youn *, Kang-Hyun Lee **, Hee-Young Lee **, Sang-Chul Kim *** * KoreaTech University, School of Mechatronics Engineering, Cheonan, Korea

More information

Numerical analysis of real-world cyclist crashes: impact speed, collision mechanism and movement trajectories.

Numerical analysis of real-world cyclist crashes: impact speed, collision mechanism and movement trajectories. Numerical analysis of real-world cyclist crashes: impact speed, collision mechanism and movement trajectories T.Y. Pang 1, H. Sakeran 1, A. Short 2, A.S. McIntosh 1, G. Rechnitzer 2, K.Thai 1 1 School

More information

POSITION PAPER Revision of the regulation on protection of pedestrians and other vulnerable road users 78/2009

POSITION PAPER Revision of the regulation on protection of pedestrians and other vulnerable road users 78/2009 POSITION PAPER Revision of the regulation on protection of pedestrians and other vulnerable road users 78/2009 March 2016 Contents 1 Introduction... 3 2 Background... 5 3 Regulated car design can help

More information

PEDESTRIAN COLLISION RESPONSES USING LEGFORM IMPACTOR SUBSYSTEM AND FULL-SIZED PEDESTRIAN MODELS ON DIFFERENT WORKBENCHES.

PEDESTRIAN COLLISION RESPONSES USING LEGFORM IMPACTOR SUBSYSTEM AND FULL-SIZED PEDESTRIAN MODELS ON DIFFERENT WORKBENCHES. PEDESTRIAN COLLISION RESPONSES USING LEGFORM IMPACTOR SUBSYSTEM AND FULL-SIZED PEDESTRIAN MODELS ON DIFFERENT WORKBENCHES A Thesis by Obaidur Rahman Mohammed Bachelor of Technology, Jawaharlal Nehru Technological

More information

Studies About the Front Bumper Performance During a Pedestrian Leg Impact

Studies About the Front Bumper Performance During a Pedestrian Leg Impact Studies About the Front Bumper Performance During a Pedestrian Leg Impact Bogdan-Alexandru Constantin, Daniel Iozsa, and Gheorghe Fraţilă University POLITEHNICA of Bucharest, Romania constantin.bogdan.alexandru@gmail.com,

More information

20XX. Bicycle Helmets for Children 2017 tested by Folksam

20XX. Bicycle Helmets for Children 2017 tested by Folksam 20XX Bicycle Helmets for Children 2017 tested by Folksam This is why we test bicycle helmets Every day three cyclists in Sweden sustain head injuries, which are some of the most severe injuries a cyclist

More information

Vehicle speed correlation with deformation amplitude due to adult pedestrian impact in car traffic accidents

Vehicle speed correlation with deformation amplitude due to adult pedestrian impact in car traffic accidents Ovidius University Annals of Mechanical, Industrial and Maritime Engineering Volume X, Tom I, 2008 Vehicle speed correlation with deformation amplitude due to adult pedestrian impact in car traffic accidents

More information

Pedestrian Safety Research in Japan

Pedestrian Safety Research in Japan Submitted by the expert from Japan Informal document GRSP59 21 (59 th GRSP May 9 13, 2016, Agenda item 22(a)) Pedestrian Safety Research in Japan 59th GRSP 9 th 13 th May 2016 MLIT / NTSEL Ministry of

More information

The SaveCAP project: Cyclist and pedestrian protection

The SaveCAP project: Cyclist and pedestrian protection The SaveCAP project: Cyclist and pedestrian protection Carmen Rodarius Stefanie de Hair Margriet van Schijndel 1 BGS Aim SaveCAP project Development of Vulnerable Road Users protection measures Project

More information

K. Bhalla 1, P. Montazemi 1, J. Crandall 1, J. Yang 2, X. Liu 2, Y. Dokko 3, Y. Takahashi 3, Y. Kikuchi 3, D. Longhitano 4

K. Bhalla 1, P. Montazemi 1, J. Crandall 1, J. Yang 2, X. Liu 2, Y. Dokko 3, Y. Takahashi 3, Y. Kikuchi 3, D. Longhitano 4 VEHICLE IMPACT VELOCITY PREDICTION FROM PEDESTRIAN THROW DISTANCE: TRADE-OFFS BETWEEN THROW FORMULAE, CRASH SIMULATORS, AND DETAILED MULTI-BODY MODELING K. Bhalla 1, P. Montazemi 1, J. Crandall 1, J. Yang

More information

Dynamic Response of the Dummy in Case of Child Cyclist Collision with Passenger Car

Dynamic Response of the Dummy in Case of Child Cyclist Collision with Passenger Car International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 11 (July 2013), PP. 26-34 Dynamic Response of the Dummy in Case of Child

More information

PROPOSAL OF CFRTP AUTOMOBILE BONNET FOR PEDESTRIAN SAFETY

PROPOSAL OF CFRTP AUTOMOBILE BONNET FOR PEDESTRIAN SAFETY PROPOSAL OF CFRTP AUTOMOBILE BONNET FOR PEDESTRIAN SAFETY J. Takahashi *1, H. Koyama *1, R. Shida *1*2 and K. Uzawa *1 *1 The University of Tokyo, *2 Mitsubishi Research Institute, Inc. (since 2008/4/1)

More information

A 6 Year-Old Pediatric Finite Element Model for Simulating Pedestrian Impacts

A 6 Year-Old Pediatric Finite Element Model for Simulating Pedestrian Impacts 14 th International LS-DYNA Users Conference Session: Automotive A 6 Year-Old Pediatric Finite Element Model for Simulating Pedestrian Impacts Yunzhu Meng 1,3, Berkan Guleyupoglu 2,3, Bharath Koya 2,3,

More information

Analysis of pedestrian accident leg contacts and distribution of contact points across the vehicle front

Analysis of pedestrian accident leg contacts and distribution of contact points across the vehicle front Analysis of pedestrian accident leg contacts and distribution of contact points across the vehicle front A Barrow*, C Reeves*, J A Carroll*, R Cuerden*, H Liers**, M Marschner** and P Broertjes*** *TRL

More information

DEVELOPMENT OF A PEDESTRIAN LOWER EXTREMITY PROTECTION CAR USING A BIOFIDELIC FLEXIBLE PEDESTRIAN LEGFORM IMPACTOR

DEVELOPMENT OF A PEDESTRIAN LOWER EXTREMITY PROTECTION CAR USING A BIOFIDELIC FLEXIBLE PEDESTRIAN LEGFORM IMPACTOR DEVELOPMENT OF A PEDESTRIAN LOWER EXTREMITY PROTECTION CAR USING A BIOFIDELIC FLEXIBLE PEDESTRIAN LEGFORM IMPACTOR Atsuhiro Konosu, Takahiro Issiki Japan Automobile Research Institute (JARI) Masaaki Tanahashi

More information

PEDESTRIAN IMPACT PRIORITIES USING REAL-WORLD CRASH DATA AND HARM

PEDESTRIAN IMPACT PRIORITIES USING REAL-WORLD CRASH DATA AND HARM PEDESTRIAN IMPACT PRIORITIES USING REAL-WORLD CRASH DATA AND HARM Brian Fildes 1, Hampton Clay Gabler 2, Dietmar Otte 3, Astrid Linder 1 and Laurie Sparke 4 1. Monash University Accident Research Centre,

More information

Post impact trajectory of vehicles at rural intersections

Post impact trajectory of vehicles at rural intersections Post impact trajectory of vehicles at rural intersections Doecke SD., Woolley JE. and Mackenzie JR. Centre for Automotive Safety Research Abstract This report describes the path of vehicles after a collision

More information

Analysis of Backward Falls Caused by Accelerated Floor Movements Using a Dummy

Analysis of Backward Falls Caused by Accelerated Floor Movements Using a Dummy Original Article Analysis of Backward Falls Caused by Accelerated Floor Movements Using a Dummy Hisao NAGATA 1 * and Hisato OHNO 2 1 National Institute of Occupational Safety and Health, 1 4 6 Umezono,

More information

Numerical analysis of a pedestrian to car collision: Effect of variations in walk

Numerical analysis of a pedestrian to car collision: Effect of variations in walk Applied and Computational Mechanics 10 (2016) 139 160 Numerical analysis of a pedestrian to car collision: Effect of variations in walk J. Špička a,,j.vychytil a, L. Hynčík a a New Technologies Research

More information

Belted driver protection in frontal impact - what has been achieved and where do future priorities lie?

Belted driver protection in frontal impact - what has been achieved and where do future priorities lie? Loughborough University Institutional Repository Belted driver protection in frontal impact - what has been achieved and where do future priorities lie? This item was submitted to Loughborough University's

More information

Analyses and statistics on the frequency and the incidence of traffic accidents within Dolj County

Analyses and statistics on the frequency and the incidence of traffic accidents within Dolj County UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN Faculty of Mechanics and Technology AUTOMOTIVE series, year XXIV, no. 28 Analyses and statistics on the frequency and the incidence of traffic accidents within

More information

CRASH SIMULATIONS OF THREE WHEELED SCOOTER TAXI (TST)

CRASH SIMULATIONS OF THREE WHEELED SCOOTER TAXI (TST) CRASH SIMULATIONS OF THREE WHEELED SCOOTER TAXI (TST) A. CHAWLA, S. MUKHERJEE, D. MOHAN, Jasvinder SINGH, Nadeem RIZVI Transportation Research & Injury Prevention Programme Indian Institute of Technology,

More information

Latest FE Model Development of THOR-50M Crash Test Dummy

Latest FE Model Development of THOR-50M Crash Test Dummy Latest FE Model Development of THOR-50M Crash Test Dummy Ismail Maatouki*, Stephen Fu**, Zaifei Zhou**, *Humanetics Europe GmbH, Heidelberg, Germany **Humanetics Innovative Solutions, Inc. Farmington Hills,

More information

GLOBAL REGISTRY. Created on 18 November 2004, pursuant to Article 6 of the

GLOBAL REGISTRY. Created on 18 November 2004, pursuant to Article 6 of the 26 January 2009 GLOBAL REGISTRY Created on 18 November 2004, pursuant to Article 6 of the AGREEMENT CONCERNING THE ESTABLISHING OF GLOBAL TECHNICAL REGULATIONS FOR WHEELED VEHICLES, EQUIPMENT AND PARTS

More information

Current Accident Analysis and AEB Evaluation Method for Pedestrians in Japan

Current Accident Analysis and AEB Evaluation Method for Pedestrians in Japan Final AsPeCSS Workshop Current Accident Analysis and AEB Evaluation Method for Pedestrians in Japan July 1st, 214 National Traffic Safety and Environment Laboratory Kenichi Ando Outline Pedestrian accident

More information

Analysis of Car-Pedestrian Impact Scenarios for the Evaluation of a Pedestrian Sensor System Based on the Accident Data from Sweden

Analysis of Car-Pedestrian Impact Scenarios for the Evaluation of a Pedestrian Sensor System Based on the Accident Data from Sweden 136 S.N. Huang, J.K. Yang Division of Vehicle Safety, Chalmers University of Technology, Göteborg, Sweden F. Eklund Automotive Safety Electronics, Autoliv Electronics AB, Linköping, Sweden Analysis of

More information

PLEASE SCROLL DOWN FOR ARTICLE. Full terms and conditions of use:

PLEASE SCROLL DOWN FOR ARTICLE. Full terms and conditions of use: This article was downloaded by: [Vrije Universiteit, Library] On: 10 June 2011 Access details: Access Details: [subscription number 907218019] Publisher Routledge Informa Ltd Registered in England and

More information

Comparative Evaluation for Pedestrian Safety Systems

Comparative Evaluation for Pedestrian Safety Systems Comparative Evaluation for Pedestrian Safety Systems Mukesh Chaudhari E-mail : Mukesh9803@gmail.com Abstract Pedestrian injuries, fatalities, and accessibility continue to be a serious concern in India

More information

SaveCAP Project Summary. Margriet van Schijndel-de Nooij TNO

SaveCAP Project Summary. Margriet van Schijndel-de Nooij TNO SaveCAP Project Summary Margriet van Schijndel-de Nooij TNO 2 Content Background of the project Project activities Sensor field test Full scale tests Potential / effectiveness Dissemination Conclusions

More information

Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics

Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones

More information

Publication details Robert A. Douglas Published online on: 08 Dec 2015

Publication details   Robert A. Douglas Published online on: 08 Dec 2015 This article was downloaded by: 10.3.98.93 On: 08 Sep 2018 Access details: subscription number Publisher:Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

INFLUENCE OF CRASH PULSE DURATION ON INJURY RISK IN FRONTAL IMPACTS BASED ON REAL LIFE CRASHES. Anders Ydenius Folksam Research, Stockholm, Sweden

INFLUENCE OF CRASH PULSE DURATION ON INJURY RISK IN FRONTAL IMPACTS BASED ON REAL LIFE CRASHES. Anders Ydenius Folksam Research, Stockholm, Sweden INFLUENCE OF CRASH PULSE DURATION ON INJURY RISK IN FRONTAL IMPACTS BASED ON REAL LIFE CRASHES Anders Ydenius Folksam Research, Stockholm, Sweden ABSTRACT To study the influence of crash pulse duration

More information

Study on fatal accidents in Toyota city aimed at zero traffic fatality

Study on fatal accidents in Toyota city aimed at zero traffic fatality Study on fatal accidents in Toyota city aimed at zero traffic fatality Toru Kiuchi, Yoshihisa Kanno, Makoto Shiota Toyota Motor Corporation, 1 Toyota-cho, Toyota-shi, Aichi 471-8571, Japan Abstract - Since

More information

AN ADVANCED TESTING PROCEDURE FOR THE PEDESTRIAN-CAR-COLLISION

AN ADVANCED TESTING PROCEDURE FOR THE PEDESTRIAN-CAR-COLLISION AN ADVANCED TESTING PROCEDURE FOR THE PEDESTRIAN-CAR-COLLISION Matthias Kuehn Robert Froeming Volker Schindler Technical University Berlin Germany Paper Number 272 ABSTRACT Pedestrian safety is one of

More information

ANALYSIS OF PEDESTRIAN PASSIVE SAFETY WITH THE USE OF NUMERICAL SIMULATION

ANALYSIS OF PEDESTRIAN PASSIVE SAFETY WITH THE USE OF NUMERICAL SIMULATION Journal of KONES Powertrain and Transport, Vol. 17, No. 1 2010 ANALYSIS OF PEDESTRIAN PASSIVE SAFETY WITH THE USE OF NUMERICAL SIMULATION Mariusz Ptak, Jacek Karli ski Wroclaw University of Technology,

More information

A preliminary analysis of in-depth accident data for powered two-wheelers and bicycles in Europe

A preliminary analysis of in-depth accident data for powered two-wheelers and bicycles in Europe International Research Council on Biomechanics of Injury IRCOBI 2018 Athens, Greece, 12 September 2018 A preliminary analysis of in-depth accident data for powered two-wheelers and bicycles in Europe Ziakopoulos

More information

Use of Throw Distances of Pedestrians and Bicyclists as Part of a Scientific Accident Reconstruction Method 1

Use of Throw Distances of Pedestrians and Bicyclists as Part of a Scientific Accident Reconstruction Method 1 contents Introduction xi CHAPTER 1 Use of Throw Distances of Pedestrians and Bicyclists as Part of a Scientific Accident Reconstruction Method 1 Introduction 2 Basis of Speed Calculation 2 New Results

More information

PEDESTRIAN CRASH LEG/FRONT BUMPER ANALYSIS

PEDESTRIAN CRASH LEG/FRONT BUMPER ANALYSIS THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN 11-4566, 009 PEDESTRIAN CRASH LEG/FRONT BUMPER ANALYSIS Emilia Burnaz, Andrei Giubalca Renault Technologie

More information

R J Tunbridge and J T Everest Transport and Road Research Laboratory CROWTHORNE, England

R J Tunbridge and J T Everest Transport and Road Research Laboratory CROWTHORNE, England AN ASSESSMENT OF THE UNDER REPORTING OF ROAD ACCIDENT CASUALTIES IN RELATION TO INJURY SEVERITY R J Tunbridge and J T Everest Transport and Road Research Laboratory CROWTHORNE, England 1. INTRODUCTION

More information

Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind

Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Aerodynamic Performance of Trains with Different Longitudinal Section Lines under Crosswind Taizhong Xie

More information

INVESTIGATION ON PEDESTRIAN PELVIS LOADING MECHANISMS USING FINITE ELEMENT SIMULATIONS

INVESTIGATION ON PEDESTRIAN PELVIS LOADING MECHANISMS USING FINITE ELEMENT SIMULATIONS INVESTIGATION ON PEDESTRIAN PELVIS LOADING MECHANISMS USING FINITE ELEMENT SIMULATIONS Yukou Takahashi 1, Shunji Suzuki 1, Miwako Ikeda 1, Yasuaki Gunji 1 1 Honda R&D Co., Ltd. Automobile R&D Center ABSTRACT

More information

PEMP AME2510. Pedestrian Safety. M.S. Ramaiah School of Advanced Studies, Bengaluru 1

PEMP AME2510. Pedestrian Safety. M.S. Ramaiah School of Advanced Studies, Bengaluru 1 Pedestrian Safety Session delivered by: Dr. Vinod K. Banthia M.S. Ramaiah School of Advanced Studies, Bengaluru 1 Session Objectives At the end of this session the delegate would have understood the Need

More information

Reference PMHS Tests to Assess Whole Body Pedestrian Impact Using a Simplified Generic Vehicle Front End

Reference PMHS Tests to Assess Whole Body Pedestrian Impact Using a Simplified Generic Vehicle Front End Reference PMHS Tests to Assess Whole Body Pedestrian Impact Using a Simplified Generic Vehicle Front End Eric Song, Jerome Uriot, Pascal Potier, Denis Dubois, Philippe Petit, Xavier Trosseille, Richard

More information

PEDESTRIAN CRASH MODEL FOR VEHICLE SPEED CALCULATION AT ROAD ACCIDENT

PEDESTRIAN CRASH MODEL FOR VEHICLE SPEED CALCULATION AT ROAD ACCIDENT International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 9, September 017, pp. 1093 1099, Article ID: IJCIET_08_09_1 Available online at http://http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=9

More information

Q10 dummy in Lateral Impact Report

Q10 dummy in Lateral Impact Report Q10 dummy in Lateral Impact Report Advanced Child Dummies and Injury Criteria for Lateral impact Working Group 12 Report, November 24, 2015 1 Working Group 12 Dummies, members: Jac Wismans (Chairman, Netherlands)

More information

EUROPEAN NEW CAR ASSESSMENT PROGRAMME (Euro NCAP) SLED TEST PROCEDURE FOR ASSESSING KNEE IMPACT AREAS

EUROPEAN NEW CAR ASSESSMENT PROGRAMME (Euro NCAP) SLED TEST PROCEDURE FOR ASSESSING KNEE IMPACT AREAS www.euroncap.com EUROPEAN NEW CAR ASSESSMENT PROGRAMME (Euro NCAP) SLED TEST PROCEDURE FOR ASSESSING KNEE IMPACT AREAS Version 1.0a December 2004 Sled Test Procedure for Assessing Knee Impact Areas (V1.0a)

More information

ESTIMATION OF THE HEAD INJURY SEVERITY USING THE HEAD IMPACT SPEED BASED ON REAL PEDESTRIAN COLLISIONS

ESTIMATION OF THE HEAD INJURY SEVERITY USING THE HEAD IMPACT SPEED BASED ON REAL PEDESTRIAN COLLISIONS ESTIMATION OF THE HEAD INJURY SEVERITY USING THE HEAD IMPACT SPEED BASED ON REAL PEDESTRIAN COLLISIONS Samuel, Sánchez Francisco Javier, Páez Arturo, Furones Francisco, Martínez University Institute of

More information

DEVELOPMENT OF A CYCLIST-AEB TESTING SYSTEM. CATS - Sjef van Montfort, TNO

DEVELOPMENT OF A CYCLIST-AEB TESTING SYSTEM. CATS - Sjef van Montfort, TNO DEVELOPMENT OF A CYCLIST-AEB TESTING SYSTEM CATS - Sjef van Montfort, TNO OUTLINE Introduction CATS project: Objectives & timing Process Accident analysis Test scenario definition Dummy & Propulsion system

More information

Pedestrian Shoulder and Spine Kinematics and their Influence on Head Kinematics

Pedestrian Shoulder and Spine Kinematics and their Influence on Head Kinematics THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING in MACHINE AND VEHICLE SYSTEMS Pedestrian Shoulder and Spine Kinematics and their Influence on Head Kinematics RUTH PAAS Department of Applied Mechanics

More information

Вісник національного технічного університету України «Київський політехнічний інститут»

Вісник національного технічного університету України «Київський політехнічний інститут» Вісник національного технічного університету України «Київський політехнічний інститут» Mariusz Ptak, Eugeniusz Rusiński, Artur Kopczyński, Piotr Harnatkiewicz, Paweł Kaczynski Institute of Machines Design

More information

CORRELATION BETWEEN THOR BrIC AND TBI RISK FROM FULL BODY HUMAN MODEL

CORRELATION BETWEEN THOR BrIC AND TBI RISK FROM FULL BODY HUMAN MODEL CORRELATION BETWEEN THOR BrIC AND TBI RISK FROM FULL BODY HUMAN MODEL Maika Katagiri Ning Zhang Jay Zhao Jialou Hu Mike Scavnicky Bernd Cyliax Ingo Mueller Torsten Steiner TAKATA Corporation United States,

More information

ACCIDENT CHARACTERISTICS IN CAR-TO-PEDESTRIAN IMPACTS. Kramlich, Thomas Langwieder, Klaus Lang, Dina Hell, Wolfram

ACCIDENT CHARACTERISTICS IN CAR-TO-PEDESTRIAN IMPACTS. Kramlich, Thomas Langwieder, Klaus Lang, Dina Hell, Wolfram ABSTRACT ACCIDENT CHARACTERISTICS IN CAR-TO-PEDESTRIAN IMPACTS Kramlich, Thomas Langwieder, Klaus Lang, Dina Hell, Wolfram GDV Institute for Vehicle Safety, Munich Aim of this study was to show typical

More information

Improving Spine Biofidelity of HYBRID-III 6-Year-Old ATD

Improving Spine Biofidelity of HYBRID-III 6-Year-Old ATD Improving Spine Biofidelity of HYBRID-III 6-Year-Old ATD Jun Wu 1,2, Libo Cao 1, Matthew P. Reed 2, and Jingwen Hu 2 1 The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Hunan

More information

The investigation of car movement trajectories after contact in the case of collisions with stationary safety barriers

The investigation of car movement trajectories after contact in the case of collisions with stationary safety barriers Urban Transport XIII: Urban Transport and the Environment in the 2st Century 557 The investigation of car movement trajectories after contact in the case of collisions with stationary safety barriers A.

More information

APROSYS European In-Depth Pedestrian Database

APROSYS European In-Depth Pedestrian Database APROSYS European In-Depth Pedestrian Database CE Neal-Sturgess 1, E. Carter 1, R. Hardy 2, R. Cuerden 3, L. Guerra 4, J. Yang 5. 1 Birmingham Automotive Safety Centre (BASC) 2 Cranfield Impact Centre (CIC)

More information

CALIBRATION OF THE PLATOON DISPERSION MODEL BY CONSIDERING THE IMPACT OF THE PERCENTAGE OF BUSES AT SIGNALIZED INTERSECTIONS

CALIBRATION OF THE PLATOON DISPERSION MODEL BY CONSIDERING THE IMPACT OF THE PERCENTAGE OF BUSES AT SIGNALIZED INTERSECTIONS CALIBRATION OF THE PLATOON DISPERSION MODEL BY CONSIDERING THE IMPACT OF THE PERCENTAGE OF BUSES AT SIGNALIZED INTERSECTIONS By Youan Wang, Graduate Research Assistant MOE Key Laboratory for Urban Transportation

More information

NPACS TASK FINAL REPORT

NPACS TASK FINAL REPORT NPACS TASK FINAL REPORT NPACS RESEARCH PROGRAMME OUTPUT FOR TASK: C17 / 1.1.3.17 Rear Impact Participating Organisations IDIADA (Task Leader) DATE: 21 November 2005 TASK: C17 / 1.1.3.17 Rear Impact OBJECTIVES:

More information

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system K. OBERG and H. LANSHAMMAR* Amputee Training and Research Unit, University Hospital, Fack,

More information

CATS Deliverable 3.2: CATS report target specifications

CATS Deliverable 3.2: CATS report target specifications Integrated Vehicle Safety Automotive Campus 30 5708 JZ Helmond P.O. Box 756 5700 AT Helmond The Netherlands TNO 2016 R10925 CATS Deliverable 3.2: CATS report target specifications www.tno.nl T +31 88 866

More information

Methodology for a global bicycle real world accidents reconstruction

Methodology for a global bicycle real world accidents reconstruction Methodology for a global bicycle real world accidents reconstruction Nicolas Bourdet, Caroline Deck, Thierry Serre, Christophe Perrin, Maxime Llari, Rémy Willinger To cite this version: Nicolas Bourdet,

More information

Keywords: multiple linear regression; pedestrian crossing delay; right-turn car flow; the number of pedestrians;

Keywords: multiple linear regression; pedestrian crossing delay; right-turn car flow; the number of pedestrians; Available online at www.sciencedirect.com ScienceDirect Procedia - Social and Behavioral Scien ce s 96 ( 2013 ) 1997 2003 13th COTA International Conference of Transportation Professionals (CICTP 2013)

More information

Comparison of Biofidelic Responses to Rear Impact of the Head/Neck/Torso among Human Volunteers, PMHS, and Dummies

Comparison of Biofidelic Responses to Rear Impact of the Head/Neck/Torso among Human Volunteers, PMHS, and Dummies Comparison of Biofidelic Responses to Rear Impact of the Head/Neck/Torso among Human Volunteers, PMHS, and Dummies Masayuki Yaguchi 1, Koshiro Ono 1, Masami Kubota 1, Fumio Matsuoka 2 1 Japan Automobile

More information

Occupant restraint optimisation in frontal crash to mitigate the risk of submarining in out of position situation

Occupant restraint optimisation in frontal crash to mitigate the risk of submarining in out of position situation IRC-15-19 IRCOBI Conference 2015 Occupant restraint optimisation in frontal crash to mitigate the risk of submarining in out of position situation Olivier Richard, Jérôme Uriot, Xavier Trosseille, Marcin

More information

2014 European Workshop AFB20 (2) Roadside Safety Design International Research Activities Subcommittee Wednesday, November 5, 2014

2014 European Workshop AFB20 (2) Roadside Safety Design International Research Activities Subcommittee Wednesday, November 5, 2014 2014 European Workshop AFB20 (2) Roadside Safety Design International Research Activities Subcommittee Wednesday, November 5, 2014 SESSION II: Innovation for Road side Safety Run-off accidents against

More information

Urban planning and traffic safety at night

Urban planning and traffic safety at night IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Urban planning and traffic safety at night To cite this article: N Ispas and D Trusca 2016 IOP Conf. Ser.: Mater. Sci. Eng. 147

More information

Assessment of retaining levels of safety barriers

Assessment of retaining levels of safety barriers Safety and Security Engineering V 319 Assessment of retaining levels of safety barriers K. Jung & J. Markova Department of Structural Reliability, Klokner Institute of the Czech Technical University in

More information

Relative safety of alternative intersection designs

Relative safety of alternative intersection designs Urban Transport XII: Urban Transport and the Environment in the 21st Century 379 Relative safety of alternative intersection designs L. C. Wadhwa 1 & M. Thomson 2 1 James Cook University Townsville Queensland

More information

Priorities for enhanced side impact protection in regulation 95 compliant cars

Priorities for enhanced side impact protection in regulation 95 compliant cars Loughborough University Institutional Repository Priorities for enhanced side impact protection in regulation 95 compliant cars This item was submitted to Loughborough University's Institutional Repository

More information