Lecture # 08: Boundary Layer Flows and Drag

Size: px
Start display at page:

Download "Lecture # 08: Boundary Layer Flows and Drag"

Transcription

1 AerE 311L & AerE343L Lecture Notes Lecture # 8: Boundary Layer Flows and Drag Dr. Hui H Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A

2 y AerE343L #4: Hot wire measurements in the wake of an airfoil Pressure rake with 41 total pressure probes (the distance between the probes d=2mm) x 8 mm Lab#3 Test conditions: Velocity: V=15 m/s Angle of attack: AOA=, and 12 deg. Date sampling rate: f=1hz Number of samples: 1, (1s in time) No. of points: 2~25 points Gap between points: ~.2 inches Lab#4 Hotwire probe

3 AerE343L #4: Hot wire measurements in the wake of an airfoil Y /C *1 Lab#4 Hotwire probe m/s shadow region vort: X/C *1 FFT arbitary scale Force -Z component (N) time sequence with data sampling rate of 1 Hz Freqency (Hz)

4 AerE343L #4: Hot wire measurements in the wake of an airfoil Lab#4 Hotwire probe Required data for the lab report: 1. Wake velocity profiles at AOA = and 12 deg 2. Wake turbulence intensity profiles at AOA = and 12 deg. 3. Estimated drag coefficients at AOA=, and 12 deg. 4. FFT transformation to find vortex shedding frequency in the wake of the airfoil 5. Discussions based on the measurement results

5 Boundary Layer Flows Y X τ w U = μ y wall Which one will induce more drag? Laminar boundary layer? Turbulent boundary layer?

6 CONVENTIONAL AIRFOILS and LAMINAR FLOW AIRFOILS Laminar flow airfoils are usually thinner than the conventional airfoil. The leading edge is more pointed and its upper and lower surfaces are nearly symmetrical. The major and most important difference between the two types of airfoil is this, the thickest part of a laminar wing occurs at 5% chord while in the conventional design the thickest part is at 25% chord. Drag is considerably reduced since the laminar airfoil takes less energy to slide through the air. Extensive laminar flow is usually only experienced over a very small range of angles-of-attack, on the order of 4 to 6 degrees. Once you break out of that optimal angle range, the drag increases by as much as 4% depending on the airfoil

7 Flow Separation

8 Aerodynamic Performance of An Airfoil Lift Coefficient, C l L = 1 ρv 2 C l 2 c C L =2πα Experimental data Airfoil stall Y /C * m/s shadow region Before stall -6 vort: Angle of Attack (degrees) X/C * Drag Coefficient, C d D = 1 ρv 2 C d 2 c Experimental data Y /C * m/s shadow region After stall.5 Airfoil stall -4 vort: Angle of Attack (degrees) X/C *1

9 Flow Separation and Transition on Low-Reynolds Reynolds-number number Airfoils Low-Reynolds Reynolds-number number airfoil (with Re<5,) aerodynamics is important for both military and civilian applications,, such as propellers, sailplanes, ultra-light light man- carrying/man-powered aircraft, high-altitude vehicles, wind turbines, unmanned aerial vehicles (UAVs( UAVs) ) and Micro-Air Air-Vehicles (MAVs). Since laminar boundary layers are unable to withstand any significant adverse pressure gradient,, laminar flow separation is usually found on low-reynolds Reynolds-number number airfoils. Post- separation behavior of the laminar boundary layers would affect the aerodynamic performances of the low-reynolds Reynolds-number number airfoils significantly Separation bubbles are usually found to form on the upper surfaces of low-reynolds Reynolds-number number airfoils. Separation bubble would burst suddenly to cause airfoil stall at high AOA when the adverse pressure gradient becoming too big. C L Thin airfoil theory C L (Re=68,) C D (Re=68,) Copyright by Dr. Hui Iowa State University. All angle Rights of attack Reserved! (degree) C D

10 Surface Pressure Coefficient distributions (Re=68,) Separation point C P Turbulence transition Reattachment point AOA = 6 deg AOA = 8 deg AOA = 9 deg AOA = 1 deg AOA = 11 deg AOA = 12 deg AOA = 14 deg Y/C Typical surface pressure distribution when a laminar separation bubble is formed (Russell, 1979) X/C GA (W)-1 1 airfoil (also labeled as NASA LS(1)-417 ) X / C AOA (degree) 12. Transition 11.5 Reattachm ent Separation X/C

11 Laminar Separation Bubble on a Low-Reynolds Reynolds-number number Airfoil 1 1 Y/C*1 Y/C* Spawise vorticity GA (W)-1 airfoil 1 m/s X/C*1 1 m/s Instantaneous flow field Spanwise Vorticity (1/s * 1 3 ) X/C*1 Y/C*1 Y/C* separation U m/s: X/C*1 1 m/s PIV measurement results at AOA = 1 deg, Re=68, (Hu et al., ASME Journal of Fluid Engineering, 28) GA (W)-1 airfoil Ensemble-averaged flow field Reattachment Um/s: reattachment X/C*1

12 Stall Hysteresis Phenomena Stall hysteresis, a phenomenon where stall inception and stall recovery do not occur at the same angle of attack, has been found to be relatively common in low-reynolds-number airfoils. When stall hysteresis occurs, the coefficients of lift, drag, and moment of the airfoil are found to be multiplevalued rather than single-valued functions of the angle of attack. Stall hysteresis is of practical importance because it produces widely different values of lift coefficient and lift-to-drag ratio for a given airfoil at a given angle of attack. It could also affect the recovery from stall and/or spin flight conditions. Lift coefficient Increasing AOA decreasing AOA Lift coefficient Increasing AOA decreasing AOA AOA Angle of Attack Lift coefficient curve of a typical airfoil AOA Angle of Attack Lift coefficient curve with stall hysteresis

13 Measured airfoil lift and drag coefficient profiles Lift Coefficient, C l Hysteresis loop AOA increasing AOA decreasing Drag Coefficient, C d AOA increasing AOA decreasing Hysteresis loop Angle of Attack (degree) Angle of Attack (degree) GA(W)-1 1 airfoil, Re C = 16, The hysteresis loop was found to be clockwise in the lift coefficient profiles,, and counter-clockwise clockwise in the drag coefficient profiles. The aerodynamic hysteresis resulted in significant variations of lift coefficient, C l, and lift-to to-drag ratio, l/d, for the airfoil at a given angle of attack. The lift coefficient and lift-to to-drag ratio at AOA = 14. degrees were found to be C l = 1.33 and l/d = 23.5 when the angle is at the increasing angle branch of the hysteresis loop. The values were found to become C l =.8 and l/d = 3.66 for the same AOA=14. degrees when the angle is at the deceasing angle branch of the hysteresis loop

14 PIV Measurement results Y /C *1-2 Y /C *1 separation bubble m/s shadow region vort: m/s shadow region vort: X/C *1 Lift Coefficient, C l AOA decreasing AOA increasing X/C *1 Y /C * m/s shadow region Angle of Attack (degree) Y /C * m/s shadow region -4 vort: vort: X/C * X/C *1 Copyright (Hu, Yang, by Dr. Igarashi, Hui Hu Iowa State of Aircraft, University. Vol. All Rights 44. No. Reserved! 6, 27)

15 Refined PIV Measurement Results Y /C *1 1 5 Y /C *1 1 5 Y /C * m/s vort: X/C * Lift Coefficient, C l -1 2 AOA decreasing AOA increasing Angle of Attack (degree) Y /C * m/s X/C *1 25 m/s 25 m/s -5 vort: vort: X/C * X/C *1 Copyright (Hu, Yang, by Dr. Igarashi, Hui Hu Iowa State of Aircraft, University. Vol. All Rights 44. No. Reserved! 6, 27) -1

16 Aerodynamics of Golf Ball

17 Laminar Flows and Turbulence Flows 1. Re=1, Centerline Velocity (U/U ) smooth-ball rough-ball golf-ball Smooth ball Rough ball Distance (X/D) Golf ball U m/s: U m/s: U m/s: Y/D Y/D Y/D X/D X/D 1 X/D -1

Lecture # 08: Boundary Layer Flows and Controls

Lecture # 08: Boundary Layer Flows and Controls AerE 344 Lecture Notes Lecture # 8: Boundary Layer Flows and Controls Dr. Hui Hu Department of Aerospace Engineering Iowa State University Ames, Iowa 511, U.S.A Flow Separation on an Airfoil Quantification

More information

Reduction of Skin Friction Drag in Wings by Employing Riblets

Reduction of Skin Friction Drag in Wings by Employing Riblets Reduction of Skin Friction Drag in Wings by Employing Riblets Kousik Kumaar. R 1 Assistant Professor Department of Aeronautical Engineering Nehru Institute of Engineering and Technology Coimbatore, India

More information

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability.

AE Dept., KFUPM. Dr. Abdullah M. Al-Garni. Fuel Economy. Emissions Maximum Speed Acceleration Directional Stability Stability. Aerodynamics: Introduction Aerodynamics deals with the motion of objects in air. These objects can be airplanes, missiles or road vehicles. The Table below summarizes the aspects of vehicle performance

More information

An Experimental Investigation on a Bio-inspired Corrugated Airfoil

An Experimental Investigation on a Bio-inspired Corrugated Airfoil Jan. 8, 29, Orlando, Florida AIAA-29-187 An Experimental Investigation on a Bio-inspired Corrugated Airfoil Jeffery Murphy 1 and Hui Hu 2 ( ) Iowa State University, Ames, Iowa, 11 An experimental study

More information

Aerodynamic characteristics around the stalling angle of the discus using a PIV

Aerodynamic characteristics around the stalling angle of the discus using a PIV 10TH INTERNATIONAL SYMPOSIUM ON PARTICLE IMAGE VELOCIMETRY PIV13 Delft, The Netherlands, July 1-3, 2013 Aerodynamic characteristics around the stalling angle of the discus using a PIV Kazuya Seo 1 1 Department

More information

An Experimental Study of the Laminar Flow Separation on a Low-Reynolds-Number Airfoil

An Experimental Study of the Laminar Flow Separation on a Low-Reynolds-Number Airfoil An Experimental Study of the Laminar Flow Separation on a Low-Reynolds-Number Airfoil Hui Hu Assistant Professor e-mail: huhui@iastate.edu Zifeng Yang Graduate Student Department of Aerospace Engineering,

More information

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE

EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL ANALYSIS OF THE CONFLUENT BOUNDARY LAYER BETWEEN A FLAP AND A MAIN ELEMENT WITH SAW-TOOTHED TRAILING EDGE Lemes, Rodrigo Cristian,

More information

AerE 343L: Aerodynamics Laboratory II. Lab Instructions

AerE 343L: Aerodynamics Laboratory II. Lab Instructions AerE 343L: Aerodynamics Laboratory II Lab Instructions Lab #2: Airfoil Pressure Distribution Measurements and Calibration of a Small Wind Tunnel Instructor: Dr. Hui Hu Department of Aerospace Engineering

More information

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS The sources of a graphical material used in this lecture are: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013.

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodynamics I UNIT C: 2-D Airfoils C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory AE301 Aerodynamics I : List of Subjects

More information

Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle

Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle Experimental investigation on the aft-element flapping of a two-element airfoil at high attack angle Tan Guang-kun *, Shen Gong-xin, Su Wen-han Beijing University of Aeronautics and Astronautics (BUAA),

More information

Computational Analysis of the S Airfoil Aerodynamic Performance

Computational Analysis of the S Airfoil Aerodynamic Performance Computational Analysis of the 245-3S Airfoil Aerodynamic Performance Luis Velazquez-Araque and Jiří Nožička 2 Department of Mechanical Engineering National University of Táchira, San Cristóbal 5, Venezuela

More information

Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles

Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles Investigation of the flow around uncambered airfoils at 1000 Reynolds number using computational fluid dynamics for micro air vehicles Emad Uddin 1), Muhammad Adil Naseem 2), Saif Ullah Khalid 3), Aamir

More information

Bioinspired Corrugated Airfoil at Low Reynolds Numbers

Bioinspired Corrugated Airfoil at Low Reynolds Numbers JOURNAL OF AIRCRAFT Vol. 45, No. 6, November December 2008 Bioinspired Corrugated Airfoil at Low Reynolds Numbers Hui Hu and Masatoshi Tamai Iowa State University, Ames, Iowa 50011 DOI: 10.2514/1.37173

More information

International Engineering Research Journal Experimental & Numerical Investigation of Lift & Drag Performance of NACA0012 Wind Turbine Aerofoil

International Engineering Research Journal Experimental & Numerical Investigation of Lift & Drag Performance of NACA0012 Wind Turbine Aerofoil International Engineering Research Journal Experimental & Numerical Investigation of Lift & Drag Performance of NACA0012 Wind Turbine Aerofoil Mr. Sandesh K. Rasal, Mr. Rohan R. Katwate PG student of Department

More information

Incompressible Flow over Airfoils

Incompressible Flow over Airfoils Road map for Chap. 4 Incompressible Flow over Airfoils Aerodynamics 2015 fall - 1 - < 4.1 Introduction > Incompressible Flow over Airfoils Incompressible flow over airfoils Prandtl (20C 초 ) Airfoil (2D)

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft

Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft , July 1-3, 2015, London, U.K. Aerodynamic Analysis of Blended Winglet for Low Speed Aircraft Pooja Pragati, Sudarsan Baskar Abstract This paper provides a practical design of a new concept of massive

More information

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2

EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2 EXPERIMENTAL ANALYSIS OF FLOW OVER SYMMETRICAL AEROFOIL Mayank Pawar 1, Zankhan Sonara 2 1,2 Assistant Professor,Chandubhai S. Patel Institute of Technology, CHARUSAT, Changa, Gujarat, India Abstract The

More information

High Swept-back Delta Wing Flow

High Swept-back Delta Wing Flow Advanced Materials Research Submitted: 2014-06-25 ISSN: 1662-8985, Vol. 1016, pp 377-382 Accepted: 2014-06-25 doi:10.4028/www.scientific.net/amr.1016.377 Online: 2014-08-28 2014 Trans Tech Publications,

More information

Lecture # 15: Aircraft and wind turbine icing and anti-/de-icing

Lecture # 15: Aircraft and wind turbine icing and anti-/de-icing AerE 344 Lecture Notes Lecture # 15: Aircraft and wind turbine icing and anti-/de-icing Dr Hui Hu Dr Rye M Waldman Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Introduction

More information

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil

Experimental and Theoretical Investigation for the Improvement of the Aerodynamic Characteristic of NACA 0012 airfoil International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME) Volume 2, Issue 1 (214) ISSN 232 46 (Online) Experimental and Theoretical Investigation for the Improvement of the Aerodynamic

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 7B: Forces on Submerged Bodies 7/26/2018 C7B: Forces on Submerged Bodies 1 Forces on Submerged Bodies Lift and Drag are forces exerted on an immersed body by the surrounding

More information

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage

Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped Fuselage International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-213 1 Improved Aerodynamic Characteristics of Aerofoil Shaped Fuselage than that of the Conventional Cylindrical Shaped

More information

Theory of Flight Stalls. References: FTGU pages 18, 35-38

Theory of Flight Stalls. References: FTGU pages 18, 35-38 Theory of Flight 6.07 Stalls References: FTGU pages 18, 35-38 Review 1. What are the two main types of drag? 2. Is it possible to eliminate induced drag? Why or why not? 3. What is one way to increase

More information

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur

Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur Aircraft Design Prof. A.K Ghosh Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture - 12 Design Considerations: Aerofoil Selection Good morning friends. The last lecture

More information

Aerodynamic Performance of a Corrugated Dragonfly Airfoil Compared with Smooth Airfoils at Low Reynolds Numbers

Aerodynamic Performance of a Corrugated Dragonfly Airfoil Compared with Smooth Airfoils at Low Reynolds Numbers 4th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 27, Reno, Nevada AIAA 27-483 Aerodynamic Performance of a Corrugated Dragonfly Airfoil Compared with Smooth Airfoils at Low Reynolds Numbers

More information

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING ICAS 2002 CONGRESS AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING Yoshiaki NAKAMURA (nakamura@nuae.nagoya-u.ac.jp) Takafumi YAMADA (yamada@nuae.nagoya-u.ac.jp) Department of Aerospace Engineering,

More information

Numerical Analysis of Wings for UAV based on High-Lift Airfoils

Numerical Analysis of Wings for UAV based on High-Lift Airfoils Numerical Analysis of Wings for UAV based on High-Lift Airfoils Sachin Srivastava Department of Aeronautical Engineering Malla Reddy College of Engineering & Technology, Hyderabad, Telangana, India Swetha

More information

Incompressible Flow over Airfoils

Incompressible Flow over Airfoils < 4.7 Classical Thin Airfoil Theory > The Symmetric Airfoil * Assumptions Incompressible Flow over Airfoils i) The camber line is one of the streamlines ii) Small maximum camber and thickness relative

More information

An Experimental Study of Flexible Membrane Airfoils at Low Reynolds Numbers

An Experimental Study of Flexible Membrane Airfoils at Low Reynolds Numbers Jan 7 1, 28, Reno, Nevada AIAA-28-58 An Experimental Study of Flexible Membrane Airfoils at Low Reynolds Numbers Masatoshi Tamai 1, Jeffery T. Murphy 2, and Hui Hu 3 ( ) Iowa State University, Ames, Iowa,

More information

8d. Aquatic & Aerial Locomotion. Zoology 430: Animal Physiology

8d. Aquatic & Aerial Locomotion. Zoology 430: Animal Physiology 8d. Aquatic & Aerial Locomotion 1 Newton s Laws of Motion First Law of Motion The law of inertia: a body retains its state of rest or motion unless acted on by an external force. Second Law of Motion F

More information

Tim Lee s journal publications

Tim Lee s journal publications Tim Lee s journal publications 82. Lee, T., and Tremblay-Dionne, V., (2018) Impact of wavelength and amplitude of a wavy ground on a static NACA 0012 airfoil submitted to Journal of Aircraft (paper in

More information

JOURNAL PUBLICATIONS

JOURNAL PUBLICATIONS 1 JOURNAL PUBLICATIONS 71. Lee, T., Mageed, A., Siddiqui, B. and Ko, L.S., (2016) Impact of ground proximity on aerodynamic properties of an unsteady NACA 0012 airfoil, submitted to Journal of Aerospace

More information

Parasite Drag. by David F. Rogers Copyright c 2005 David F. Rogers. All rights reserved.

Parasite Drag. by David F. Rogers  Copyright c 2005 David F. Rogers. All rights reserved. Parasite Drag by David F. Rogers http://www.nar-associates.com Copyright c 2005 David F. Rogers. All rights reserved. How many of you still have a Grimes rotating beacon on both the top and bottom of the

More information

DYAMIC BEHAVIOR OF VORTEX SHEDDING FROM AN OSCILLATING THREE-DIMENSIONAL AIRFOIL

DYAMIC BEHAVIOR OF VORTEX SHEDDING FROM AN OSCILLATING THREE-DIMENSIONAL AIRFOIL 27 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES DYAMIC BEHAVIOR OF VORTEX SHEDDING FROM AN OSCILLATING THREE-DIMENSIONAL AIRFOIL Hiroaki Hasegawa*, Kennichi Nakagawa** *Department of Mechanical

More information

Measurement of Pressure. The aerofoil shape used in wing is to. Distribution and Lift for an Aerofoil. generate lift due to the difference

Measurement of Pressure. The aerofoil shape used in wing is to. Distribution and Lift for an Aerofoil. generate lift due to the difference Measurement of Pressure Distribution and Lift for an Aerofoil. Objective The objective of this experiment is to investigate the pressure distribution around the surface of aerofoil NACA 4415 and to determine

More information

EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL

EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL Mr. Sandesh K. Rasal 1, Mr. Rohan R. Katwate 2 1 PG Student, 2 Assistant Professor, DYPSOEA Ambi Talegaon, Heat Power

More information

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Colloquium FLUID DYNAMICS 2008 Institute of Thermomechanics AS CR, v.v.i., Prague, October 22-24, 2008 p.1 CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Vladimír Horák 1, Dalibor

More information

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK

AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction...1 2) Methodology.3 3) Results...5

More information

Performance Analysis of the Flying Wing Airfoils

Performance Analysis of the Flying Wing Airfoils Performance Analysis of the Flying Wing Airfoils PRISACARIU Vasile Henri Coandă Air Force Academy, Brașov, Romania, aerosavelli73@yahoo.com Abstract Flying wings flight performances depend directly on

More information

Flow Over Bodies: Drag and Lift

Flow Over Bodies: Drag and Lift Fluid Mechanics (0905241) Flow Over Bodies: Drag and Lift Dr.-Eng. Zayed dal-hamamre 1 Content Overview Drag and Lift Flow Past Objects Boundary Layers Laminar Boundary Layers Transitional and Turbulent

More information

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span)

Lift for a Finite Wing. all real wings are finite in span (airfoils are considered as infinite in the span) Lift for a Finite Wing all real wings are finite in span (airfoils are considered as infinite in the span) The lift coefficient differs from that of an airfoil because there are strong vortices produced

More information

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap

Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap Design & Analysis of Natural Laminar Flow Supercritical Aerofoil for Increasing L/D Ratio Using Gurney Flap U.Praveenkumar 1, E.T.Chullai 2 M.Tech Student, School of Aeronautical Science, Hindustan University,

More information

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model

ScienceDirect. Investigation of the aerodynamic characteristics of an aerofoil shaped fuselage UAV model Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 225 231 10th International Conference on Mechanical Engineering, ICME 2013 Investigation of the aerodynamic characteristics

More information

AN EXPERIMENTAL STUDY OF THE EFFECTS OF SWEPT ANGLE ON THE BOUNDARY LAYER OF THE 2D WING

AN EXPERIMENTAL STUDY OF THE EFFECTS OF SWEPT ANGLE ON THE BOUNDARY LAYER OF THE 2D WING AN EXPERIMENTAL STUDY OF THE EFFECTS OF SWEPT ANGLE ON THE BOUNDARY LAYER OF THE 2D WING A. Davari *, M.R. Soltani, A.Tabrizian, M.Masdari * Assistant Professor, Department of mechanics and Aerospace Engineering,

More information

The subsonic compressibility effect is added by replacing. with

The subsonic compressibility effect is added by replacing. with Swept Wings The main function of a swept wing is to reduce wave drag at transonic and supersonic speeds. Consider a straight wing and a swept wing in a flow with a free-stream velocity V. Assume that the

More information

Aerofoil Design for Man Powered Aircraft

Aerofoil Design for Man Powered Aircraft Man Powered Aircraft Group Aerofoil Design for Man Powered Aircraft By F. X. Wortmann Universitat Stuttgart From the Second Man Powered Aircraft Group Symposium Man Powered Flight The Way Ahead 7 th February

More information

AERODYNAMIC ANALYSIS OF MULTI-WINGLETS FOR LOW SPEED AIRCRAFT

AERODYNAMIC ANALYSIS OF MULTI-WINGLETS FOR LOW SPEED AIRCRAFT AERODYNAMIC ANALYSIS OF MULTI-WINGLETS FOR LOW SPEED AIRCRAFT Cosin, R., Catalano, F.M., Correa, L.G.N., Entz, R.M.U. Engineering School of São Carlos - University of São Paulo Keywords: multi-winglets,

More information

HEFAT th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics July 2012 Malta

HEFAT th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics July 2012 Malta HEFAT212 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 212 Malta AN EXPERIMENTAL STUDY OF SWEEP ANGLE EFFECTS ON THE TRANSITION POINT ON A 2D WING BY USING

More information

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE

A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A COMPUTATIONAL STUDY ON THE DESIGN OF AIRFOILS FOR A FIXED WING MAV AND THE AERODYNAMIC CHARACTERISTIC OF THE VEHICLE Jung-Hyun Kim*, Kyu-Hong

More information

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES

ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES ADVANCES IN AERODYNAMICS OF WIND TURBINE BLADES Herning / October 3 / 2017 By Jesper Madsen Chief Engineer, Aerodynamics & Acoustics WIND ENERGY DENMARK Annual Event 2017 Agenda 1. Aerodynamic design and

More information

Design and Development of Micro Aerial Vehicle

Design and Development of Micro Aerial Vehicle Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 4, Number 1 (2014), pp. 91-98 Research India Publications http://www.ripublication.com/aasa.htm Design and Development of Micro Aerial

More information

Avai 193 Fall 2016 Laboratory Greensheet

Avai 193 Fall 2016 Laboratory Greensheet Avai 193 Fall 2016 Laboratory Greensheet Lab Report 1 Title: Instrumentation Test Technique Research Process: Break into groups of 4 people. These groups will be the same for all of the experiments performed

More information

OPTIMUM LOCATION OF PRESSURE MEASURMENTS AROUND A WING AS A DYNAMIC CONTROL INPUT IN SMOOTH AND TURBULENT CONDITIONS

OPTIMUM LOCATION OF PRESSURE MEASURMENTS AROUND A WING AS A DYNAMIC CONTROL INPUT IN SMOOTH AND TURBULENT CONDITIONS 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES OPTIMUM LOCATION OF PRESSURE MEASURMENTS AROUND A WING AS A DYNAMIC CONTROL INPUT IN SMOOTH AND TURBULENT CONDITIONS Matthew Marino*, Sridhar Ravi**,

More information

Experimental Investigation of End Plate Effects on the Vertical Axis Wind Turbine Airfoil Blade

Experimental Investigation of End Plate Effects on the Vertical Axis Wind Turbine Airfoil Blade Experimental Investigation of End Plate Effects on the Vertical Axis Wind Turbine Airfoil Blade Rikhi Ramkissoon 1, Krishpersad Manohar 2 Ph.D. Candidate, Department of Mechanical and Manufacturing Engineering,

More information

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

More information

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF VARIOUS WINGLET SHAPES ON THE TOTAL PRESSURE DISTRIBUTION BEHIND A WING

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF VARIOUS WINGLET SHAPES ON THE TOTAL PRESSURE DISTRIBUTION BEHIND A WING 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL INVESTIGATION OF THE EFFECT OF VARIOUS WINGLET SHAPES ON THE TOTAL PRESSURE DISTRIBUTION BEHIND A WING Mohammad Reza Soltani, Kaveh

More information

et al. [25], Noack et al. [26] for circular cylinder flows, Van Oudheusden [27] for square cylinder and Durgesh [28] for a flat plate model. The first two modes appear as phase-shifted versions of each

More information

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil

Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil International Journal of Materials, Mechanics and Manufacturing, Vol. 3, No., February 2 Numerical and Experimental Investigations of Lift and Drag Performances of NACA Wind Turbine Airfoil İzzet Şahin

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) Unit D-1: Aerodynamics of 3-D Wings Page 1 of 5 AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics of 3-D Wings D-: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics

More information

Keywords: dynamic stall, free stream turbulence, pitching airfoil

Keywords: dynamic stall, free stream turbulence, pitching airfoil Applied Mechanics and Materials Vol. 225 (2012) pp 103-108 Online available since 2012/Nov/29 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.225.103

More information

EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP

EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL AND NUMERICAL STUDY OF A TWO- ELEMENT WING WITH GURNEY FLAP F.M. Catalano PhD.( catalano@sc.usp.br ) *, G. L. Brand * * Aerodynamic

More information

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati

Jet Propulsion. Lecture-17. Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati Lecture-17 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph. D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lift: is used to support the weight of

More information

The Effect of Gurney Flap Height on Vortex Shedding Modes Behind Symmetric Airfoils

The Effect of Gurney Flap Height on Vortex Shedding Modes Behind Symmetric Airfoils The Effect of Gurney Flap Height on Vortex Shedding Modes Behind Symmetric Airfoils Daniel R. Troolin 1, Ellen K. Longmire 2, Wing T. Lai 3 1: TSI Incorporated, St. Paul, USA, dan.troolin@tsi.com 2: University

More information

Wind tunnel effects on wingtip vortices

Wind tunnel effects on wingtip vortices 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4-7 January 2010, Orlando, Florida AIAA 2010-325 Wind tunnel effects on wingtip vortices Xin Huang 1, Hirofumi

More information

ON THE EFFECTS OF A INSTALLED PROPELLER SLIPSTREAM ON A WING BOUNDARY LAYER

ON THE EFFECTS OF A INSTALLED PROPELLER SLIPSTREAM ON A WING BOUNDARY LAYER ICAS 2 CONGRESS ON THE EFFECTS OF A INSTALLED PROPELLER SLIPSTREAM ON A WING BOUNDARY LAYER F.M. CATALANO M.Sc Ph.D Ceng MRAeS Aircraft Laboratory EESC - University of Sao Paulo Brazil Abstract This work

More information

Computational Analysis of Cavity Effect over Aircraft Wing

Computational Analysis of Cavity Effect over Aircraft Wing World Engineering & Applied Sciences Journal 8 (): 104-110, 017 ISSN 079-04 IDOSI Publications, 017 DOI: 10.589/idosi.weasj.017.104.110 Computational Analysis of Cavity Effect over Aircraft Wing 1 P. Booma

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information

Unsteady airfoil experiments

Unsteady airfoil experiments Unsteady airfoil experiments M.F. Platzer & K.D. Jones AeroHydro Research & Technology Associates, Pebble Beach, CA, USA. Abstract This paper describes experiments that elucidate the dynamic stall phenomenon

More information

The Aerodynamic Improvement of a Flexible Flapping Wing

The Aerodynamic Improvement of a Flexible Flapping Wing The Aerodynamic Improvement of a Flexible Flapping Wing Tadateru ISHIDE 1, Kazuya NAGANUMA 1, Ryo FUJII 1 and Kazuo MAENO 1 1 Department of Mechanical Engineering, National Institute of Technology, Kisarazu

More information

Incompressible Potential Flow. Panel Methods (3)

Incompressible Potential Flow. Panel Methods (3) Incompressible Potential Flow Panel Methods (3) Outline Some Potential Theory Derivation of the Integral Equation for the Potential Classic Panel Method Program PANEL Subsonic Airfoil Aerodynamics Issues

More information

Unsteady Aerodynamic Forces: Experiments, Simulations, and Models. Steve Brunton & Clancy Rowley FAA/JUP Quarterly Meeting April 6, 2011

Unsteady Aerodynamic Forces: Experiments, Simulations, and Models. Steve Brunton & Clancy Rowley FAA/JUP Quarterly Meeting April 6, 2011 Unsteady Aerodynamic Forces: Experiments, Simulations, and Models Steve Brunton & Clancy Rowley FAA/JUP Quarterly Meeting April 6, Wednesday, March 8, Motivation Applications of Unsteady Models Conventional

More information

A Practice of Developing New Environment-friendly System by Composites

A Practice of Developing New Environment-friendly System by Composites A Practice of Developing New Environment-friendly System by Composites Yun-Hae Kim, Dong-Hun Yang, Young-Dae Jo, Seung-Jun An, Se-Ho Park, Sung-Won Yoon Department of Materials Engineering, Korea Maritime

More information

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. < Helicopters Aircraft Gliders Sails > < Keels and rudders Hydrofoils

More information

Part III: Airfoil Data. Philippe Giguère

Part III: Airfoil Data. Philippe Giguère Part III: Airfoil Data Philippe Giguère Former Graduate Research Assistant (now with GE Wind Energy) Department of Aerospace Engineering University of Illinois at Urbana-Champaign Steady-State Aerodynamics

More information

Effect of Dimple on Aerodynamic Behaviour of Airfoil

Effect of Dimple on Aerodynamic Behaviour of Airfoil Effect of Dimple on Aerodynamic Behaviour of Airfoil Amit Kumar Saraf #1, Dr. Mahendra Pratap Singh *2, Dr. Tej Singh Chouhan #3 #1 Department of Mechanical Engineering, Jagannath University Jaipur, India

More information

Aerodynamic Characteristics of a Low Aspect Ratio Wing and Propeller Interaction for a Tilt-Body MAV

Aerodynamic Characteristics of a Low Aspect Ratio Wing and Propeller Interaction for a Tilt-Body MAV Aerodynamic Characteristics of a Low Aspect Ratio Wing and Propeller Interaction for a Tilt-Body MAV Kwanchai Chinwicharnam 1, David Gomez Ariza 2, Jean-Marc Moschetta 2 and Chinnapat Thipyopas 1 1 Kasetsart

More information

Effect of Leading Edge Radius and Blending Distance from Leading Edge on the Aerodynamic Performance of Small Wind Turbine Blade Airfoils

Effect of Leading Edge Radius and Blending Distance from Leading Edge on the Aerodynamic Performance of Small Wind Turbine Blade Airfoils International Journal of Energy and Power Engineering 2015; 4(5-1): 54-58 Published online September 6, 2015 (http://www.sciencepublishinggroup.com/j/ijepe) doi: 10.11648/j.ijepe.s.2015040501.19 ISSN:

More information

Steady and unsteady aerodynamics

Steady and unsteady aerodynamics Steady and unsteady aerodynamics M.F. Platzer & K.D. Jones AeroHydro Research & Technology Associates, Pebble Beach, CA, USA. Abstract This paper discusses the major flow features encountered by conventional

More information

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine

Numerical Investigation of Multi Airfoil Effect on Performance Increase of Wind Turbine International Journal of Engineering & Applied Sciences (IJEAS) International Journal of Engineering Applied Sciences (IJEAS) Vol.9, Issue 3 (2017) 75-86 Vol.x, Issue x(201x)x-xx http://dx.doi.org/10.24107/ijeas.332075

More information

Principles of glider flight

Principles of glider flight Principles of glider flight [ Lecture 1: Lift, drag & glide performance ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher

More information

Group Project Flume Airfoil Flow

Group Project Flume Airfoil Flow Group Project Flume Airfoil Flow Alexander B. Meyer Mechanical Engineering I. Background This project was the first team assignment of our Flow Visualization course at the University of Colorado at Boulder.

More information

No Description Direction Source 1. Thrust

No Description Direction Source 1. Thrust AERODYNAMICS FORCES 1. WORKING TOGETHER Actually Lift Force is not the only force working on the aircraft, during aircraft moving through the air. There are several aerodynamics forces working together

More information

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1 Advances in Natural Science Vol. 3, No. 2, 2010, pp. 244-20 www.cscanada.net ISSN 171-7862 [PRINT] ISSN 171-7870 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Numerical

More information

Enhanced Airfoil Design Incorporating Boundary Layer Mixing Devices

Enhanced Airfoil Design Incorporating Boundary Layer Mixing Devices AIAA-2003-0211 Enhanced Airfoil Design Incorporating Boundary Layer Mixing Devices Michael Kerho and Brian Kramer Rolling Hills Research Corporation Torrance, CA 41st AIAA Aerospace Sciences Meeting &

More information

Investigation of Variable Wing-Sweep for Applications in Micro Air Vehicles

Investigation of Variable Wing-Sweep for Applications in Micro Air Vehicles Infotech Aerospace,26-29 September 2005, Arlington, Virginia AIAA2005-7171 Investigation of Variable Wing-Sweep for Applications in Micro Air Vehicles J. Hall, K. Mohseni, D. Lawrence, Research and Engineering

More information

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS

DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS DESIGN OF AN AERODYNAMIC MEASUREMENT SYSTEM FOR UNMANNED AERIAL VEHICLE AIRFOILS L. Velázquez-Araque 1 and J. Nožička 1 1 Department of Fluid Dynamics and Power Engineering, Faculty of Mechanical Engineering

More information

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces

Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces AIAA-24-5 Computational Investigation of Airfoils with Miniature Trailing Edge Control Surfaces Hak-Tae Lee, Ilan M. Kroo Stanford University, Stanford, CA 9435 Abstract Miniature trailing edge effectors

More information

Laminar Flow Sections for Proa Boards and Rudders

Laminar Flow Sections for Proa Boards and Rudders Laminar Flow Sections for Proa Boards and Rudders Thomas E. Speer, Des Moines, Washington, USA ABSTRACT Hydrofoil section designs for proa sailboats which reverse direction in a shunt when changing tacks

More information

5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) th Symposium on Integrating CFD and Experiments in Aerodynam

5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) th Symposium on Integrating CFD and Experiments in Aerodynam 5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 202) 36 Multi-objective Optimization of Airfoil of Mars Exploration Aircraft using Evolutionary Algorithm Gaku Sasaki Tomoaki

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 0, 016 ISSN (online): 31-0613 Analysis of Transonic Flow over Airfoil using CFD for Gas Turbine Blades Kushal Gendcha 1

More information

Experimental Investigation of the Aerodynamics of a Modeled Dragonfly Wing Section

Experimental Investigation of the Aerodynamics of a Modeled Dragonfly Wing Section Region I-MA Student Conference AIAA - 2005 April 8-9, 2005 / Charlottesville, Virginia Experimental Investigation of the Aerodynamics of a Modeled Dragonfly Wing Section Michelle Kwok * and Rajat Mittal

More information

Low Reynolds Number Airfoil Design Lecture Notes

Low Reynolds Number Airfoil Design Lecture Notes Low Reynolds Number Airfoil Design Lecture Notes Michael S. Selig Department of Aerospace Engineering University of Illinois at Urbana Champaign Urbana, Illinois 6181 USA VKI Lecture Series Sponsored by

More information

ANALYSIS OF TRANSONIC FLOW OVER SUPERCRITICAL AIRFOIL USING CFD FOR GAS TURBINE BLADES

ANALYSIS OF TRANSONIC FLOW OVER SUPERCRITICAL AIRFOIL USING CFD FOR GAS TURBINE BLADES ANALYSIS OF TRANSONIC FLOW OVER SUPERCRITICAL AIRFOIL USING CFD FOR GAS TURBINE BLADES Kushal Gandecha 1 and Kalpit P. Kaurase 2 Abstract 1 Department of Mechanical Engineering, School of Engineering and

More information

EXPERIMENTAL INVESTIGATION OF WAKE SURVEY OVER A CYLINDER WITH DIFFERENT SURFACE PROFILES

EXPERIMENTAL INVESTIGATION OF WAKE SURVEY OVER A CYLINDER WITH DIFFERENT SURFACE PROFILES EXPERIMENTAL INVESTIGATION OF WAKE SURVEY OVER A CYLINDER WITH DIFFERENT SURFACE PROFILES Abdul Ahad Khan 1, Abhishek M. B 2, Tresa Harsha P George 3 1 Under Graduate student, Department of Aeronautical

More information

HELICOPTER RETREATING BLADE STALL CONTROL USING SELF-SUPPLYING AIR JET VORTEX

HELICOPTER RETREATING BLADE STALL CONTROL USING SELF-SUPPLYING AIR JET VORTEX 2 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES HELICOPTER RETREATING BLADE STALL CONTROL USING SELF-SUPPLYING AIR JET VORTEX Andrzej Krzysiak Institute of Aviation, Warsaw, Poland andkrzys@ilot.edu.pl

More information

INVESTIGATION OF HIGH-LIFT, MILD-STALL WINGS

INVESTIGATION OF HIGH-LIFT, MILD-STALL WINGS ICAS2002 CONGRESS INVESTIGATION OF HIGH-LIFT, MILD-STALL WINGS F.M. Kong, J. Hua, J.W. Xiang Beijing University of Aeronautics and Astronautics, 100083 Beijing, China Z.Y. Zhang Northwestern Polytechnical

More information

Control of the Spanwise Distribution of Circulation on NACA 0012 and Flat Plate Wings

Control of the Spanwise Distribution of Circulation on NACA 0012 and Flat Plate Wings 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 2007, Reno, Nevada AIAA 2007-1121 Control of the Spanwise Distribution of Circulation on NACA 0012 and Flat Plate Wings D. Williams *, S. Doshi,

More information

Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios EPJ Web of Conferences 114, 02028 (2016) DOI: 10.1051/ epjconf/ 2016114 02028 C Owned by the authors, published by EDP Sciences, 2016 Effect of tip vortices on membrane vibration of flexible wings with

More information