Work and Machines. Work occurs when a force causes an object to move in the direction of the force.

Size: px
Start display at page:

Download "Work and Machines. Work occurs when a force causes an object to move in the direction of the force."

Transcription

1 Work and Machines Work occurs when a force causes an object to move in the direction of the force. You just finished reading and summarizing an entire chapter in your science textbook. In the scientific sense, you did NO work at all! Your dad just came home from a night out bowling with his friends. He had lots of fun and did lots of work. Applying a force to the bowling ball to make it move through a distance is WORK. Applying a force doesn t always result in work being done. Work is done on an object if two things occur: 1. The object moves as a force is applied. 2. The direction of the objects motion is the same as the direction of the force applied. Calculating Work Work is a force applied through a distance. The greater the distance through which you exert a given force, the more work you do. The greater force you exert through a given distance, the more work you do. The amount of work (W) done in moving an object can be calculated by multiplying the force (F) applied to the object by the distance (d) through which the force is applied. W = F d Remember, force is expressed in newtons, and the meter is the basic SI unit for length or distance. Therefore, the unit used to express work is the newton-meter, which is more simply called the joule (J). Power is the rate at which work is done. To calculate power (P), divide the amount of work done (W) by the time (t) it takes to do the work. P = The unit used to express power is joules per second (J/s), or the watt (W). 1. Your neighbor asks you to help push his stalled car. You push and push, but the car doesn t move. You are exhausted and sweaty. Have you done any work? 2. Work is done on a ball when a pitcher throws it. Is the pitcher still doing work on the ball as it flies through the air? 3. You lift a chair that weighs 50 N to a height of 0.5m and carry it 10m across the room. How much work did you do on the chair? 4. Explain the work/power difference between driving nails with a hammer and using a nail gun. 5. How would it feel if you were power and your enemy was work?

2 A machine is a device that helps make work easier by changing the size or direction of a force. Examples: Using a jack and tire iron to change a flat tire Using a screwdriver to pry the lid off a paint can Using a wheelbarrow to haul a load of rocks Give 3 other examples of machines that make work easier. WORK Work input is the work you do on a machine. You apply a force, called the input force, to the machine to move it through a distance. Work output is the work done by the machine. The machine applies a force, called the output force, through a distance. Work output can never be greater than work input. Machines do NOT increase the amount of work done. Climbing a Hill: If you wanted to get to point C on the illustration below you have two options: start at A and go straight up, or start at B and walk up the slope. Which is easier? Well, actually, they both take the same amount of work. The only thing you have control over is if you put forth a lot of effort over a short distance (situation A-C) or a little effort for a long distance (situation B-C). Lets exam what work really is (at least in scientific terms). Machines DO NOT save work. How is it that the path from A-C takes the same amount of work as path B-C? In A-C we have to exert a lot of force to get up the vertical side, but we don't have to go very far. Let's suppose that the force required is 100 Newtons and the distance is 4 meters, the amount of work done is 400 Joules: W=F d W=100 N 4 m W= 400 J Getting from B-C does not require near as much force as A-C, but we do have to move a considerably longer distance. In fact, the actual force and distance are 25 Newtons and 16 meters. Calculating the work gives: W=F d W= 25 N 16 m W= 400 J The Force-Distance Trade-off When a machine changes the size of the force, the distance through which the force is exerted must also change. Force or distance can increase, but not together. When one increases, the other must decrease. The work output is never greater than the work input.

3 Mechanical Advantage Some machines can increase force more than others. A machine s mechanical advantage tells you how many times the machine multiplies force. Use the following equation to find mechanical advantage: MA = Mechanical Efficiency The less work a machine has to do to overcome friction, the more efficient it is. Mechanical efficiency is a comparison of a machine s work output with the work input. Use the following equation: Mechanical Efficiency = The 100 in the equation means that mechanical efficiency is expressed as a percentage. If a machine could be made that had 100 percent mechanical efficiency, it would be called an ideal machine. Do the Math 1. You apply 200 N to a machine, and the machine applies 2,000 N to an object. What is the mechanical advantage? 2. You apply 10 N to a machine, and the machine applies 10 N to another object. What is the mechanical advantage? Can such a machine be useful? 3. Which of the following makes work easier to do? a. A machine with a mechanical advantage of 15 b. A machine to which you apply 15 N and that exerts 255 N 1. How do regular oil changes improve the mechanical efficiency of a car s engine? 2. Complete this sentence: Work is being done when 3. Why is the work output for a machine always less than the work input? 4. You and a friend together apply a force of 1,000 N to a 3,000 N automobile to make it roll 10m in 1 minute and 40 seconds. How much work did you and your friend do together? What was your combined power? 5. Mechanical Advantage is to cents as mechanical efficiency is to.

4 Types of Machines 1. Lever a. First Class Lever b. Second Class Lever c. Third Class Lever 2. Inclined Plane 3. Wedge 4. Screw 5. Wheel and Axle 6. Pulley A lever is a simple machine consisting of a bar that pivots at a fixed point, called a fulcrum. Levers are used to apply force to a load. The three classes of levers are based on the locations of the fulcrum, the load, and the input force. With a first class lever, the fulcrum is between the input force and the load. 1 st class levers change the direction of the input force. Depending on the location of the fulcrum, 1 st class levers can be used to increase force or increase distance. When the fulcrum is closer to the load than to the input force, the mechanical advantage is greater than 1. When the fulcrum is exactly in the middle, the MA is exactly 1. When the fulcrum is closer to the input force than to the load, the MA is less than 1. With a second class lever, the load is between the fulcrum and the input force. 2 nd class levers allow you to apply less force than the force exerted by the load. Because the output force is greater than the input force, you must exert the input force over a greater distance. A 2 nd class lever has a mechanical advantage of greater than 1. With a third class lever, the input force is between the fulcrum and the load. 3 rd class levers do not change the direction of the input force. 3 rd class levers do not increase the input force. The output force is always less than the input force. They increase the distance through which the output force is exerted. A 3 rd class lever has a mechanical advantage of less than A third class lever has a mechanical advantage of less than 1. Explain why it is useful for some tasks. 2. Why do you think levers usually have a greater mechanical efficiency than other simple machines do? 3. How is a hammer both a first class lever and a third class lever? 4. True or False? A large stick used to move a heavy rock is a simple machine. 5. What parts of an old-fashioned clock are levers? 6. Classify each of the following as 1 st, 2 nd, or 3 rd class levers: garden shovel, wheelbarrow, seesaw, broom, baseball bat.

5 An inclined plane is a simple machine that is a straight slanted surface. The mechanical advantage of an inclined plane can be calculated by dividing the length of the inclined plane by the height to which the load is lifted. An inclined plane allows you to apply a smaller force over a greater distance. A wedge is a double-inclined plane that moves. A wedge applies an output force that is greater than your input force. The greater the distance you move the wedge, the greater the force it applies on the object. The mechanical advantage of a wedge is determined by dividing the length of the wedge by its greatest thickness. A screw is an inclined plane that is wrapped in a spiral. When rotated, a small force is applied over the long distance along the inclined plane of the screw. The screw applies a large force through the short distance it is pushed. Screws are most commonly used as fasteners. The longer the spiral on a screw is and the closer together the threads, the greater the screw s mechanical advantage. The wheel and axle is a simple machine consisting of two circular objects of different sizes. The axle is the smaller of the two circular objects. As the wheel turns, so does the axle. Because the axle is smaller than the wheel, it rotates through a smaller distance, which makes the output force larger than the input force. The mechanical advantage of the wheel and axle can be determined by dividing the radius of the wheel by the radius of the axle. A pulley is a simple machine consisting of a grooved wheel that holds a rope or cable. A load is attached to one end of the rope, and an input force is applied to the other end. There are two kinds of pulleys: fixed and movable. When a fixed pulley and a movable pulley are used together, the pulley system is called a block and tackle. 1. Why is a set of stairs classified as an inclined plane? 2. Name and classify at least four simple machines found in a kitchen. 3. Pretend you are a simple machine reporter for the Machines Daily News. Write a short fictional account of your travels through at least two work related scenarios. 4. Assume there is a hit television show titled Machine Shop. What are the titles of five main characters that might star on the show?

6 Compound machines are made of two or more simple machines. Can you identify simple machines within a compound machine? Item Name Types of simple machines that make it up Can opener Inclined plane, wedge, wheel and axle Pencil sharpener Inclined plane, screw, wedge, wheel and axle Scissors Inclined plane, wedge, first class lever Stapler Inclined plane, wedge, second class lever Bicycle Wheel and axle, levers, pulleys, screws Block and Tackle 2 or more pulleys Mechanical Efficiency of Compound Machines In general, the more moving parts a machine has, the lower its mechanical efficiency. Most compound machines have low mechanical efficiency. An automobile is an example of a compound machine that involves MANY simple machines. Too much friction could cause heating and damage to the simple machines involved. It s important that friction be reduced through use of lubrication. 1. Identify the simple machines that make up tweezers and nail clippers. 2. The radius of the wheel of a wheel and axle is 4 times greater than the radius of the axle. What is the mechanical advantage of this machine? 3. A winding road is actually a series of inclined planes. Describe how a winding road makes it easier for vehicles to travel uphill. 4. Explain the difference between simple machine and compound machine. 5. Why do you think you would not want to reduce the friction involved in using a winding road?

7 Who is Rube Goldberg? Reuben Lucius Goldberg Born in San Francisco Graduated with engineering degree from University of California Berkeley Worked as an engineer for City of San Francisco Water and Sewer Department Convinced his father he wanted to work as an artist Got a job as an office boy in sports department of a San Francisco newspaper Kept submitting cartoons until he was published Moved to New York to draw daily cartoons for Evening Mail Founding member of National Cartoonist Society Pulitzer Prize winner National figure, often-quoted television and radio personality 60-year career Picture Snapping Machine As you sit on pneumatic cushion (A), you force air through a tube (B) which starts ice boat (C), causing lighted cigar butt (D) to explode balloon (E). Dictator (F), hearing loud report, thinks he's been shot and falls over backward on bulb (G), snapping picture! Walk on Icy Pavement When you slip on ice, your foot kicks paddle (A), lowering finger (B), snapping turtle (C) extends neck to bite finger, opening ice tongs (D) and dropping pillow (E), thus allowing you to fall on something soft.

8 Rube Goldberg machines are examples of complex machines. All complex machines are made up of combinations of simple machines. Rube Goldberg machines are usually a complicated combination of simple machines. By studying the components of Rube Goldberg machines, we learn more about simple machines. The cartoons symbolize man s capacity for exerting maximum effort to accomplish minimal results. The cartoons depict convoluted machines functioning in complex ways to perform simple tasks. Rube Goldberg has become synonymous with any complex system achieving a basic task. Thinking Ahead Draw a preliminary sketch of your Rube Goldberg invention. Don t keep it simple! You may wish to use the following items: shoe, plant, alarm clock, light switch, bowling ball, burning candle, jumping frogs, rubber bands, or water. Feel free to use any other creative items you think of. If you are not the artist, you may list the steps of your machine in the box below. Of course, you may draw and list the steps. Remember, next week everyone will have created their Rube Goldberg machines. You will be required to have the drawing, all 6 simple machines labeled, and the steps listed. Give detailed examples of the forces that cause the motions. You should have at least 10 steps!

Name: Date Due: Simple Machines. Physical Science Chapter 4

Name: Date Due: Simple Machines. Physical Science Chapter 4 Date Due: Simple Machines Physical Science Chapter 4 1 Work & Power 1. Define the following terms: a. work= b. joule= c. power= d. watt= e. horsepower= 2. When does a force do work? 3. If there is no movement,

More information

Simple Machines. Work (in) = Work (out)

Simple Machines. Work (in) = Work (out) Simple Machines Work (in) A simple machine uses a force to do work against a single load force. Ignoring friction losses, the work done on the load is equal to the work done by force Work (out) Work (in)

More information

All Work and no Play. Is that work? Work, work, work. You might head off to your job one day, sit at a computer, and type away at the keys.

All Work and no Play. Is that work? Work, work, work. You might head off to your job one day, sit at a computer, and type away at the keys. All Work and no Play Work, work, work. You might head off to your job one day, sit at a computer, and type away at the keys. Is that work? To a physicist, only parts of it are. Work is done when a force

More information

Simple Machine Quiz Study Guide. Moving something with a force, or when a force is applied through a distance or energy transfer through motion.

Simple Machine Quiz Study Guide. Moving something with a force, or when a force is applied through a distance or energy transfer through motion. Name: Work- Simple Machine Quiz Study Guide 1.) What is one of the definitions for work? Moving something with a force, or when a force is applied through a distance or energy transfer through motion.

More information

TEKS Lesson 6.8E: Machines

TEKS Lesson 6.8E: Machines 6.8E Investigate how inclined planes and pulleys can be used to change the amount of force to move an object. : Machines What is a machine? A machine is a device that allows you to do work in a way that

More information

Mechanical Advantage 1

Mechanical Advantage 1 Mechanical Advantage 1 Mechanical Advantage Another Word for Leverage Ways of Making WORK easier or more efficient. 2 Work = Work * = Work = * * * 3 Mechanical Advantage Output Input 5 8 N = 1 4 5 8 N

More information

Levers. Simple Machines: Lever 1

Levers. Simple Machines: Lever 1 Levers In the last lesson, we spent a lot of time on this strange concept called work. Work happens when something moves a distance against a force. Swell...who cares?! Well, believe it or not, this is

More information

Simple Machines. Chana Goodman, Doral Academy Preparatory School, based on a PowerPoint by M. Hunter

Simple Machines. Chana Goodman, Doral Academy Preparatory School, based on a PowerPoint by M. Hunter Simple Machines Chana Goodman, Doral Academy Preparatory School, 2011-2012 based on a PowerPoint by M. Hunter Essential Question How can mechanical advantage be calculated, and used to predict effort and

More information

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage?

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage? Simple Machines Problem Set 1. In what two ways can a machine alter an input force? 2. What does it mean to say that a machine has a certain mechanical advantage? 3. Distinguish between ideal mechanical

More information

UNIT D: MECHANICAL SYSTEMS

UNIT D: MECHANICAL SYSTEMS UNIT D: MECHANICAL SYSTEMS SCIENCE 8 SCIENCE 8 UNIT D SECTION 1.0 1 MACHINES ARE TOOLS THAT HELP HUMANS DO WORK. SECTION 1.0 SCIENCE 8 UNIT D SECTION 1.0 2 1 SIMPLE MACHINES MEETING HUMAN NEEDS TOPIC 1.1

More information

Motion, Forces, and Energy Revision (Chapters 3+4)

Motion, Forces, and Energy Revision (Chapters 3+4) Motion, Forces, and Energy Revision (Chapters 3+4) What is force? The force exerted on a surface divided by the total area over which the force is exerted. What is the link between pressure & area? Pressure

More information

LETTER TO PARENTS SCIENCE NEWS

LETTER TO PARENTS SCIENCE NEWS LETTER TO PARENTS Cut here and paste onto school letterhead before making copies. SCIENCE NEWS Dear Parents, Our class is beginning a new science unit, the FOSS Levers and Pulleys Module. We will be studying

More information

Discover Activity. classified as a machine functions. Explain each object to another student.

Discover Activity. classified as a machine functions. Explain each object to another student. Section Integrating How Machines Do Work Reading Preview Key Concepts How do machines make work easier? What is a machine's mechanical advantage? How can you calculate the efficiency of a machine? Key

More information

Here is a summary of what you will learn in this section:

Here is a summary of what you will learn in this section: Mechanical Advantage Here is a summary of what you will learn in this section: A m achine is a mechanical system that reduces the force required to accomplish work. Machines m ake work easier by increasing

More information

A) Draw the levers in your notes and use the drawings to record your results.

A) Draw the levers in your notes and use the drawings to record your results. Simple Machines Station One 1 st Class Levers This station should have 2 levers set up. One where the fulcrum is @.5m and one where it is @.65m. Don t change them in any way! You should also have Newton

More information

Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect

Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect MODULE 7 FEEL THE FORCE Key vocabulary: lever, pivot, push, pull, mechanism, machine, force, fulcrum LESSON 8: HOW CAN WE USE LEVERS TO HELP US? LESSON SUMMARY: This lesson introduces mechanisms devices

More information

Playful Machines A Facilitator s Guide to Simple Machines in the Playground

Playful Machines A Facilitator s Guide to Simple Machines in the Playground Playful Machines A Facilitator s Guide to Simple Machines in the Playground Our Vision Canadians recognize that Science 1 is intrinsic to their lives and acknowledge the fundamental importance of a quality

More information

Ship Wrecked! For background information on the Design Process, see pages 3-5.

Ship Wrecked! For background information on the Design Process, see pages 3-5. Ship Wrecked! Outcome: 5-3-14: Use the design process to construct a prototype containing a system of two or more different simple machines that move in a controlled way to perform a specific function.

More information

Simple Machines. Dr. John B. Beaver and Dr. Barbara R. Sandall

Simple Machines. Dr. John B. Beaver and Dr. Barbara R. Sandall By Dr. John B. Beaver and Dr. Barbara R. Sandall COPYRIGHT 2002 Mark Twain Media, Inc. ISBN 978-58037-864-2 Printing No. 1558-EB Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing

More information

Systems and Simple Machines Student Activity Book Answer Key

Systems and Simple Machines Student Activity Book Answer Key Answer Key Pages 3-6 Systems 1. Answers vary. Examples include: solar system, the body systems, etc. 2. Answers vary. Definitions may include the idea that the parts work together to do a job. 3. Answers

More information

Ramp B is steeper than Ramp A. Less force is needed to push boxes up Ramp A. However, you have to move the boxes over a greater distance.

Ramp B is steeper than Ramp A. Less force is needed to push boxes up Ramp A. However, you have to move the boxes over a greater distance. What is a simple machine? Would you say this bicycle is a simple machine? It is certainly simpler than a car, but it does not fit the scientific definition of simple machine. A simple machine is a device

More information

Table of Contents. Career Overview... 4

Table of Contents. Career Overview... 4 Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Activity 1 Measuring... 6 Activity 2 Accuracy and Precision.... 14 Activity 3 Measurement Devices....

More information

RIGGER CREW Instructions: (mates read aloud) Roles: Presentation Questions:

RIGGER CREW Instructions: (mates read aloud) Roles: Presentation Questions: RIGGER CREW Instructions: (mates read aloud) This crew packet contains important information for you to know aboard the Balclutha, and it will help you complete your project. First, read the part about

More information

Rube-Goldberg Device

Rube-Goldberg Device Rube-Goldberg Device The Gnar Machine Team Members Marcus Jeter Tom Cook Issac Sharp Tyson Miller Team Number: 1 EF 151 Section F2 Abstract/Overview: The main purpose of our Rube Goldberg device, The Gnar

More information

ì<(sk$m)=bdiebi< +^-Ä-U-Ä-U

ì<(sk$m)=bdiebi< +^-Ä-U-Ä-U Physical Science by Ann J. Jacobs Genre Comprehension Skill Text Features Science Content Nonfiction Summarize Captions Chart Glossary Forces in Motion Scott Foresman Science 3.12 ì

More information

First, Second, and Third Class Levers

First, Second, and Third Class Levers First, Second, and Third Class Levers Introduction: Levers, being simple machines, have only three simple parts. The load, the effort, and the fulcrum. Let s start with the load. The load is basically

More information

Student Exploration: Pulleys

Student Exploration: Pulleys Name: Date: Student Exploration: Pulleys Vocabulary: effort, load, mechanical advantage, pulley, pulley system Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. Suppose you had to haul a

More information

Basics, Types, Use and Applications

Basics, Types, Use and Applications Basics, Types, Use and Applications 2015 by Brilliant Classes 2015 by Brilliant Classes Science : Physics Unit : Friction Friction : Basics, Types, Use and Applications The following topics are included

More information

GLIDING ON AIR (1 Hour)

GLIDING ON AIR (1 Hour) GLIDING ON AIR (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: 3-5 OVERVIEW In this activity, the students will construct a simple hovercraft. They will learn how friction helps or hinders

More information

May the Forces Be With You

May the Forces Be With You Science - Year 5 Forces Block 5F May the Forces Be With You Session 3 Resource pack Original resource copyright Hamilton Trust, who give permission for it to be adapted as wished by individual users. We

More information

CHAPTER 9 PROPELLERS

CHAPTER 9 PROPELLERS CHAPTER 9 CHAPTER 9 PROPELLERS CONTENTS PAGE How Lift is Generated 02 Helix Angle 04 Blade Angle of Attack and Helix Angle Changes 06 Variable Blade Angle Mechanism 08 Blade Angles 10 Blade Twist 12 PROPELLERS

More information

In this unit, you will cover the following sections:

In this unit, you will cover the following sections: UNIT D 252 In this unit, you will cover the following sections: 1.0 Machines are tools that help humans do work. 1.1 Simple Machines Meeting Human Needs 1.2 The Complex Machine A Mechanical Team 2.0 An

More information

Activity 3: Pulleys. Background

Activity 3: Pulleys. Background Activity 3: Pulleys Background Pulleys are simple machines that consist of a grooved wheel that turns around a fixed point, similar to the fulcrum of a lever. A rope, cord, or chain runs along the groove

More information

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch 1. In the laboratory, you are asked to determine the mass of a meter stick without using a scale of any kind. In addition to the meter stick, you may use any or all of the following equipment: - a set

More information

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C Exercise 2-3 EXERCISE OBJECTIVE C C C To describe the operation of a flow control valve; To establish the relationship between flow rate and velocity; To operate meter-in, meter-out, and bypass flow control

More information

4thscience_physicalscience (4thscience_physicalscienc) 2. Which force does a friend use to make you go higher on a playground swing?

4thscience_physicalscience (4thscience_physicalscienc) 2. Which force does a friend use to make you go higher on a playground swing? Name: Date: 1. Which tool is a part of a system for making sounds louder? A. B. C. D. 2. Which force does a friend use to make you go higher on a playground swing? A. pull B. push C. lever D. pulley 3.

More information

Appendix : Categorization Task. Instructions

Appendix : Categorization Task. Instructions Appendix : Categorization Task Instructions Your task is to group the 25 problems below based upon similarity of solution into various groups on the sheet of paper provided. Problems that you consider

More information

Thanks for shopping with Improvements! 20 Reel Mower with Catcher Item #

Thanks for shopping with Improvements! 20 Reel Mower with Catcher Item # Thanks for shopping with Improvements! 20 Reel Mower with Catcher Item # 411837 To order, call 1-800-642-2112 West Chester, OH 45069 0313 If you have any questions regarding this product, call 1-800-642-2112

More information

WONDERLAB: THE EQUINOR GALLERY. The science and maths behind the exhibits 30 MIN INFORMATION. Topic FORCES. Age

WONDERLAB: THE EQUINOR GALLERY. The science and maths behind the exhibits 30 MIN INFORMATION. Topic FORCES. Age WONDERLAB: THE EQUINOR GALLERY and maths s INFORMATION Age 7 11 11 14 Topic FORCES 30 MIN Location LEVEL 3, SCIENCE MUSEUM, LONDON What s the science? What more will you wonder? and maths s Wonderlab:

More information

Mechanical systems and control: investigation

Mechanical systems and control: investigation 6 Mechanical systems and control: investigation gear ratio the number of turns of one gear compared to the other is known as gear ratio speed ratio the gear ratio of a gear train, also known as its speed

More information

Robot Arm Challenge Answer Key

Robot Arm Challenge Answer Key Youth Explore Trades Skills Fluid Power Worksheet These are some of the words and ideas that engineers use when working with fluid power. They are also used by mechanics and equipment operators when controlling

More information

Friction. Experiment 1 A Soleful Experiment

Friction. Experiment 1 A Soleful Experiment Friction Now let s talk about the other ever present force on this Earth, and that s friction. Friction is the force between one object rubbing against another object. Friction is what makes things slow

More information

Rube Goldberg Device. The Hipster. December 12, E1 Group # 4. David Grueser. Chris Anderson. Ethan Wilburn

Rube Goldberg Device. The Hipster. December 12, E1 Group # 4. David Grueser. Chris Anderson. Ethan Wilburn 1 Rube Goldberg Device The Hipster December 12, 2009 E1 Group # 4 David Grueser Chris Anderson Ethan Wilburn 2 Abstract: The objective of this project is to create a Rube Goldberg device that raises a

More information

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the A) mass of the object. B) force on the object. C) inertia

More information

Subject:Engineering Mechanics Ch 1. Simple Machines

Subject:Engineering Mechanics Ch 1. Simple Machines Shaikh Sir's Reliance Academy, Coaching Classes for Diploma Engg. Subject:Engineering Mechanics Ch 1. Simple Machines List Of Types: Definitions and theory Questions Problems on general Machines 1) Problem

More information

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should: This unit deals with the speed of objects. Speed is a basic concept used to quantify an object s movement, which can be measured by positional changes over time. It is important to express an object s

More information

3.4 Compression of Fluids

3.4 Compression of Fluids 3.4 Compression of Fluids Another useful property of some fluids is compressibility. When a force pushes on an object, the object is said to be under compression. Objects under compression tend to deform

More information

Levers and Gears. Physics.

Levers and Gears. Physics. Physics Levers and Gears A surprising number of the tools and machines we rely on every day from door handles and cricket bats to clocks and bikes can be explained in terms of a few simple ideas. The same

More information

ì<(sk$m)=bdhjhi< +^-Ä-U-Ä-U

ì<(sk$m)=bdhjhi< +^-Ä-U-Ä-U Genre Comprehension Skill Text Features Science Content Nonfiction Put Things in Order Captions Glossary Forces and Motion Scott Foresman Science 2.10 ì

More information

Names: School: 2002 UTAH SCIENCE OLYMPIAD - PHYSICS LAB SIMPLE MACHINES 1 - PART 1

Names: School: 2002 UTAH SCIENCE OLYMPIAD - PHYSICS LAB SIMPLE MACHINES 1 - PART 1 Names: School: 2002 UTAH SCIENCE OLYMPIAD - PHYSICS LAB SIMPLE MACHINES 1 - PART 1 There are two parts to the SIMPLE MACHINES 1 competition. Both parts must be completed within a time of 12 minutes. Masses:

More information

Friction: A Force That Opposes Motion

Friction: A Force That Opposes Motion Friction: A Force That Opposes Motion Station 3 Think About It: Climbing a vertical rock wall means pitting your strength and stamina against the force of gravity, which pulls you down toward the ground.

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

Welcome to Force-Land

Welcome to Force-Land Science Year 5/6B Spring 1 Forces Welcome to Force-Land Session 5 Resource Pack Original resource copyright Hamilton Trust, who give permission for it to be adapted as wished by individual users. We refer

More information

Friction occurs when surfaces slide against each other.

Friction occurs when surfaces slide against each other. Chapter 12, Section 2 Key Concept: Friction is a force that opposes motion. BEFORE, you learned Gravity is the attractive force masses exert on each other Gravity increases with greater mass and decreases

More information

An introduction to Rigging for Trail Work

An introduction to Rigging for Trail Work An introduction to Rigging for Trail Work Give me a lever long enough and a prop strong enough, I can single handed move the world. Archimedes The purpose of this seminar is to provide a hands-on introduction

More information

Team 50 Design Log Book. MEMS 0024 Design Project 2: Big Machine

Team 50 Design Log Book. MEMS 0024 Design Project 2: Big Machine Team 50 Design Log Book MEMS 0024 Design Project 2: Big Machine Table of Contents 1) Problem Statement............2 2) Idea Generation..........4 3) Input Requirements...........5 4) Output Requirements...........7

More information

Trundle Wheel Working with ratios Worm Gear 29 Compiled by : Brent Hutcheson Gear Housing and

Trundle Wheel Working with ratios Worm Gear 29 Compiled by : Brent Hutcheson Gear Housing and Mechanical Systems - Book 4 INDEX Acknowledgements While the authors get their names on the cover of books and workbooks, a book isn't the result of the efforts of only the authors - it's a team effort

More information

STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils.

STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils. Name Date Period STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils. 3. Describe the motion of the taped washer when

More information

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid?

Fluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid? CHAPTER 3 SECTION 3 States of Matter Fluids KEY IDEAS As you read this section, keep these questions in mind: How do fluids exert pressure? What causes objects to float? What happens when pressure in a

More information

Great Science Adventures

Great Science Adventures Great Science Adventures What is a class one lever? Lesson 12 Tool Concepts: Class one levers consist of a rod, fulcrum, load arm, and effort arm. The fulcrum divides the lever into two sides. One side

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Hang from a pair of gym rings and the upward support forces of the rings will always

More information

2016 WORKSHOP Mission Possible

2016 WORKSHOP Mission Possible 2016 WORKSHOP Mission Possible Diane Xu dianexu2006@gmail.com 2017 MISSION POSSIBLE EVENT DESCRIPTION CONSTRUCTION PARAMETERS DESIGN, TOOLS AND SUPPLIES SCORING EVENT DESCRIPTION: TEAM OF UP TO: 2 IMPOUND:

More information

Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary.

Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary. Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary. 1. In which situation is work not done? A) a frozen turkey is carried upstairs B)

More information

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10.

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10. Practice exam semester 1 physics Walk this Way Activity, Graph Sketching and Recognition, Sonic Ranger Lab: Use the graph to the right for q s 1-3 1. Which object(s) is (are) not moving? 2. Which change

More information

Trilogy Theory of Operation

Trilogy Theory of Operation INSTALLATION & OVERVIEW... 2 Load Height... 2 Approach Angle... 2 Footprint... 3 Protrusion... 3 Mounting the... 4 General Torque Specs... 4 OPERATION OF BIKE RACK... 5 Loading Bikes... 5 Unloading Bikes...

More information

Science 8 Chapter 9 Section 1

Science 8 Chapter 9 Section 1 Science 8 Chapter 9 Section 1 Forces and Buoyancy (pp. 334-347) Forces Force: anything that causes a change in the motion of an object; a push or pull on an object balanced forces: the condition in which

More information

2010 International Snow Science Workshop

2010 International Snow Science Workshop HOW TO TURN A KIDS BIKE INTO A BOMB TRAM FOR AVALANCHE CONTROL WORK David Immeker* Heavenly Mountain Resort Professional Ski Patrol, South Lake Tahoe, California ABSTRACT: Bomb trams have been used for

More information

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and Activityengage the best experience on this site: Update your browser Ignore Gearing Up with Robots How are gears used to change

More information

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided.

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided. NAME:.... SCHOOL: DATE:... LINEAR MOTION INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1. Two forces that act on a moving cyclist are the driving force and the resistive

More information

Activity Overview. Granny on the Ramp: Exploring Forces and Motion MO-BILITY. Activity 4B MS. Activity Objectives: Activity Description:

Activity Overview. Granny on the Ramp: Exploring Forces and Motion MO-BILITY. Activity 4B MS. Activity Objectives: Activity Description: Granny on the Ramp: Exploring Forces and Motion Activity 4B MS Activity Objectives: Using ramps, spring scales and a Pom-Pom Granny model, students will be able to: Part 1: Make observations of physics

More information

All work on this packet is my own. I have not done anything to give myself or anyone else an unfair advantage on this assignment.

All work on this packet is my own. I have not done anything to give myself or anyone else an unfair advantage on this assignment. AP Physics Summer Packet Name: Period: All work on this packet is my own. I have not done anything to give myself or anyone else an unfair advantage on this assignment. Signature: I care significantly

More information

Unit Conversion Worksheet

Unit Conversion Worksheet Name: Period Date: Unit Conversion Worksheet Conversions 1 hour = 3600 seconds 1 mile = 5280 feet 1 yard = 3 feet 1 meter = 3.28 feet 1 km = 0.62 miles 1 light second = 300,000,000 meters 1 kg = 2.2 lbs

More information

Homework (Moodle Submission by 1/13) Set 1 - Chapter 10 1, 2, 3, 5, 6, 7, 25, 26, 27, 28, 52, 53, 56, 57

Homework (Moodle Submission by 1/13) Set 1 - Chapter 10 1, 2, 3, 5, 6, 7, 25, 26, 27, 28, 52, 53, 56, 57 Homework (Moodle Submission by 1/13) Set 1 - Chapter 10 1, 2, 3, 5, 6, 7, 25, 26, 27, 28, 52, 53, 56, 57 Set 2 - Chapter 10 60, 63, 67, 70, 76, 79, 81, 83, 84, 85, 90, 93 1.Refer to Example Problem 1 to

More information

NETTUR TECHNICAL TRAINING FOUNDATION (AN ISO 9001:2008 CERTIFIED ORGANISATION) CREATIVITY OLYMPIAD THE OLYMPICS OF COMPLEXITY

NETTUR TECHNICAL TRAINING FOUNDATION (AN ISO 9001:2008 CERTIFIED ORGANISATION) CREATIVITY OLYMPIAD THE OLYMPICS OF COMPLEXITY Prelude:- CREATIVITY OLYMPIAD Inspired by the work of American and British Cartoonist Reuben Lucius Goldberg and W. Heath Robinson respectively, the spirit of their work inspires the contest's weird machines

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

JSUNIL TUTORIAL,BIHAR FORCE AND PRESSURE. Forces which act only when there is physical contact between two interacting objects are known as

JSUNIL TUTORIAL,BIHAR FORCE AND PRESSURE. Forces which act only when there is physical contact between two interacting objects are known as FORCE AND PRESSURE A force is a push or pulls acting on an object which changes or tends to change the state of the object. In the international system of units (SI System), the unit of force is Newton

More information

WARM UP: Work and Power Example Problems 1) What is work? (words and formula)

WARM UP: Work and Power Example Problems 1) What is work? (words and formula) WARM UP: Work and Power Example Problems 1) What is work? (words and formula) 2) Your mom drops off your lunch in the office and you have to go up the stairs to the office to get it. Are you doing work

More information

The Norwood Science Center 2005

The Norwood Science Center 2005 The Norwood Science Center Forces Grade BACKGROUND INFORMATION: Pulleys are wheels, just like gears. However, while the gear has teeth along the circumference the pulley has a groove. This groove is a

More information

Chapter 9. Forces and Fluids

Chapter 9. Forces and Fluids Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces

More information

AfL Playbook: 5-8 years old 12 days of active fun for kids, parents, and caregivers

AfL Playbook: 5-8 years old 12 days of active fun for kids, parents, and caregivers 12 days of active fun for kids, parents, and caregivers Ready to have fun developing movement skills? Active for Life has created a set of games and activities for you and your child to play together.

More information

Solids, Liquids, and Gases

Solids, Liquids, and Gases chapter 14 Solids, Liquids, and Gases section 3 Behavior of Gases What You ll Learn how a gas exerts pressure on its container how changing pressure, temperature, or volume affect a gas Before You Read

More information

Tree Stump, a Middle School Application PCA. Tree Stump. Middle School Application: Challenge Powerful Classroom Assessment (PCA)

Tree Stump, a Middle School Application PCA. Tree Stump. Middle School Application: Challenge Powerful Classroom Assessment (PCA) Tree Stump Middle School Application: Challenge Powerful Classroom Assessment (PCA) Published by the Science Learning Team of the Washington Office of the Superintendent of Public Instruction on December

More information

A Balancing Flamingo

A Balancing Flamingo A Balancing Flamingo as your child ever seen a flamingo or a picture of one? If not, tell your child about flamingos a bright pink bird that loves to stand on one leg! Then pretend with your child to be

More information

2.5. All games and sports have specific rules and regulations. There are rules about. Play Ball! Absolute Value Equations and Inequalities

2.5. All games and sports have specific rules and regulations. There are rules about. Play Ball! Absolute Value Equations and Inequalities Play Ball! Absolute Value Equations and Inequalities.5 LEARNING GOALS In this lesson, you will: Understand and solve absolute values. Solve linear absolute value equations. Solve and graph linear absolute

More information

Model 130M Pneumatic Controller

Model 130M Pneumatic Controller Instruction MI 017-450 May 1978 Model 130M Pneumatic Controller Installation and Operation Manual Control Unit Controller Model 130M Controller is a pneumatic, shelf-mounted instrument with a separate

More information

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h.

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h. Physics Keller Midterm exam review The midterm exam will be seventy questions selected from the following. The questions will be changed slightly, but will remain essentially the same. 1) A truck is moving

More information

7.3.9 Unbalanced forces

7.3.9 Unbalanced forces 7.3.9 Unbalanced forces 77 minutes 116 marks Page 1 of 33 Q1. The graph shows the results of a test in which a car accelerates to its maximum speed. (a) (i) Describe how the acceleration of the car changes

More information

Name: Section: Force and Motion Practice Test

Name: Section: Force and Motion Practice Test Name: Section: Force and Motion Practice Test Directions: For each of the questions or incomplete statements below, choose the best of the answer choices given and write your answer on the line. 1. Which

More information

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format. Photo Credits: Cover: Franco Origlia/Getty Images; 2 (r) John Kelly/Getty Images; 3 (tl) Jim Sugar/Corbis; 5 John Kelly/Getty Images; 6 Jim Sugar/Corbis; 10 Pete Stone/ Corbis; 11 (t) David Madison/Getty

More information

DATA EQUATIONS MATH ANSWER

DATA EQUATIONS MATH ANSWER HCP PHYSICS REVIEW SHEET MID TERM EXAM Concepts And Definitions 1. Definitions of fact, hypothesis, law, theory 2. Explain the scientific method 3. Difference between average and instantaneous speed and

More information

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should: This unit deals with the speed of objects. Speed is a basic concept used to quantify an object s movement, which can be measured by positional changes over time. It is important to express and object s

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education *0008718255* DESIGN AND TECHNOLOGY 0445/41 Paper 4 Systems and Control

More information

PHYSICS 20 Vectors and Dynamics

PHYSICS 20 Vectors and Dynamics NEWTONS 1st LAW 1. A 10.00 kg mass is tied to a string with a maximum strength of 100 N. A second string of equal strength is tied to the bottom of the mass. a) If the bottom string is pulled with a jerk

More information

Newton s Triple Play Explore

Newton s Triple Play Explore 5E Lesson: Explore Newton s Triple Play Explore Stations (80 minutes) Students will explore how forces affect the motion of objects in the following stations. Station : Baseball Forces Baseball Space to

More information

Students measure the change in pressure by varying the volume of trapped air in a syringe while:

Students measure the change in pressure by varying the volume of trapped air in a syringe while: How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students

More information

ANSWER KEY Station #1: Clothespin Lab

ANSWER KEY Station #1: Clothespin Lab ANSWER KEY Station #1: Clothespin Lab 1. Using the string, tie the ends of the clothespin so that the clothespin is open. 2. Place the cookie sheet, upside-down, on the floor. 3. Place the tied clothespin

More information

creating the best life for all children Patient name:

creating the best life for all children Patient name: creating the best life for all children Occupational Therapy Development Parent Checklist Patient name: DOB: 0-12 months old 0-4 months Holds head in alignment Tracks an object moves arms and legs when

More information

Honors Physics Semester 2 Final Exam Review

Honors Physics Semester 2 Final Exam Review Honors Physics Semester 2 Final Exam Review 1600 kg 800 kg 9 m/s A truck with mass 1600 kg collides with a car with mass 800 kg at rest. They stick together and continue to move to the right. 1. What is

More information