Reduction in neuromuscular control associated with

Size: px
Start display at page:

Download "Reduction in neuromuscular control associated with"

Transcription

1 Changes in spring-mass characteristics during treadmill running to exhaustion DARREN J. DUTTO and GERALD A. SMITH Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, Pomona, CA; and Biomechanics Laboratory, Norwegian University of Sport and Physical Education, Oslo, NORWAY ABSTRACT DUTTO, D. J., and G. A. SMITH. Changes in spring-mass characteristics during treadmill running to exhaustion. Med. Sci. Sports Exerc., Vol. 34, No. 8, pp , Purpose: To determine whether the stiffness characteristics of the leg change during a treadmill run to voluntary exhaustion. Methods: Fifteen runners performed a test run at a constant speed that elicited approximately 80% of their V O 2peak. The run was performed on a treadmill instrumented to measure vertical ground reaction forces; vertical stiffness and leg stiffness were calculated from these forces. Force data were sampled for 15 s every 5 min and immediately before the end of the test. From the force data, average stiffness characteristics were determined for each sample period. An ANOVA with repeated measures ( 0.01) was performed for the group on both vertical and leg stiffness. A single-subject, case-series analysis was also performed on each subject by using ANOVA ( 0.01). Results: Group analysis revealed significant decreases (P 0.01) in both vertical (23.9 to 23.1 kn m 1 ) and leg (9.3 to 9.0 kn m 1 ) stiffness over the run. Based on single-subject ANOVA, 14 of the 15 runners experienced significant (P 0.01) changes in k vert over the run. A significant correlation between changes in stride rate and vertical stiffness was found (r 0.85). Changes in the stiffness properties of the leg, as determined via the spring-mass model, resulted in changes in vertical displacement of the center of mass and leg length (distance from ankle to hip) during stance, as opposed to changes in peak force during ground contact. Conclusions: Observed changes in stride rate possibly result from changes in the stiffness characteristics of the leg during a run to fatigue. Key Words: BIOMECHANICS, FATIGUE, LOCOMOTION, EXERCISE PHYSIOLOGY Reduction in neuromuscular control associated with fatigue may be detrimental to runners. It has been demonstrated that fatigued runners develop a muscle imbalance between ankle dorsiflexors and plantarflexors, increasing the impact acceleration of the tibia (22). Fatigue tends to reduce or alter neuromuscular response and susceptibility of strain injury in fatigued muscles (19). During extended running, the neuromuscular system of the runner must continually respond to altered muscle and/or neural function associated with the exercise. Recent research has examined both the neurological and kinetic behavior of the leg before and after a marathon (1,18). Force generation during a sled jump was reduced after a marathon run resulting in a decreased velocity of push-off, despite increased foot contact time (1). Vertical ground reaction force has been observed to decrease with marathon running (23). It has been suggested that changes in force production were associated with decreased muscular stiffness of the soleus (1). Running kinematics of the hip, knee, and ankle did not change significantly after a marathon run (18). Observed changes in the mechanical behavior of the leg may be associated in altered stiffness of the leg system, as determined from modeling the body as a simple spring-mass system /02/ /$3.00/0 MEDICINE & SCIENCE IN SPORTS & EXERCISE Copyright 2002 by the American College of Sports Medicine Submitted for publication October Accepted for publication April The spring-mass model (Fig. 1) has been found to be appropriate to describe various locomotive parameters (3,10,16,20,21). Spring-like behavior of the leg is associated with center of mass displacement, foot contact time, and stride rate. While running at constant speed, stride rate changes proportional to the stiffness of the leg system (10). Anatomical components that determine stiffness include the muscle and connective tissue of the leg. The magnitude and timing of muscle contraction can be adjusted based on peripheral and/or central neural sources, affecting leg kinematics. Consciously changing leg kinematics (e.g., increasing the amount of stance knee flexion) during running can decrease stiffness, as seen in the case of Groucho running (21). Leg kinematics change during running to fatigue. Stride rate has been observed to increase (9), decrease (2,4,24,26,27), or remain constant (8) with fatigue. Changes in stride rate may be metabolically costly to the runner, as shifting from a preferred rate increases oxygen consumption at a given speed (6,7,15). Shifts in stride rate while running at constant speed is possibly the result of a change in stiffness with a concomitant increase in metabolic cost. If stride rate changes during constant speed running to fatigue, then the stiffness properties of the leg system may become altered as the system fatigues. In fact, decreased stride rate would be the result of a decrease in stiffness. The purpose of this study was to determine if the stiffness characteristics, as defined in the spring-mass model, change during a fatiguing run. It was hypothesized that runners would have reduced stiffness of the leg system with fatigue, resulting in reduced peak ground reaction force, greater

2 FIGURE 1 Graphic of the leg (depicted as a spring) during the stance phase of running based on the mass spring model (adapted from similar figures in McMahon and Cheng (20) and Farley and Gonzalez (10)). In the picture, the system is moving from left to right. The middle figure depicts mid-stance, and theta ( ) depicts half of the angle swept by the leg spring during stance; CM is the displacement of the center of mass, and LL is the change in leg length. TABLE 1. Subject characteristic data; leg length was measured as the distance from the superior aspect of the greater trochanter to the floor. Subject Characteristics Average SD Age (yr) Mass (kg) Leg Length (m) Test Speed (m s 1 ) Duration (min) displacement of the center of mass during stance, and decreased stride rate. METHODS Subjects. Fifteen (4 female, 11 male) healthy, welltrained runners were recruited. All subjects provided informed consent within guidelines established by the University Institutional Review Board. Average descriptive data are given in Table 1. Participants were training a minimum of 40 km wk 1 for races ranging in distance from 10 to 50 km. Subjects wore their own running shoes and clothing during the test. Additionally, subjects wore a telemetry heart rate monitor (Vantage XL, Polar Electro Inc., Woodbury, NY), so that heart rate could be recorded. Test speed determination. For the test run to exhaustion, a speed that elicited fatigue around 45 min was desired. To achieve this, the speed associated with 80% of peak oxygen consumption was chosen for the test speed (25,28). To determine the approximate speed associated with 80% of peak oxygen consumption, a maximal oxygen uptake test was performed by each subject a week before the fatiguing test run. All subjects performed five continuous, submaximal runs of increasing speed (duration of each stage was 4 min) followed immediately by a graded run to exhaustion. Oxygen consumption and heart rate were monitored during the test. The V O 2 values for the last 2 min of each submaximal stage were used to determine the oxygen cost for that speed. Oxygen consumption values from the five submaximal speeds were used to develop a linear regression equation with V O 2 as the predictor of speed, so that the speed associated with 80% of peak oxygen consumption could be determined for each subject. Testing apparatus. A treadmill (Quinton Q55, Quinton Inc., Bothell, WA) instrumented to measure vertical ground reaction force was used for the test run. Vertical ground reaction force was determined via six uniaxial force transducers (PCB Electronics 208A03 and 208AO2, PCB Piezotronics, Depew, NY) spaced evenly beneath the bed of the treadmill. The instrumented treadmill s has been determined to be both valid and reliable for measuring both static and dynamic loads (13). A microcomputer equipped with an analog-to-digital conversion board (Metrabyte DAS-16, Keithley Instruments Inc., Cleveland, OH) was used for all data sampling. Force data were collected at a sampling rate of 1000 Hz. Constant running speed was maintained throughout the test. To assure constant speed, treadmill belt speed was monitored periodically by the investigator with a handheld, digital tachometer (Model 21C13, Kernco Instruments Co., El Paso, TX), and adjusted as necessary (few instances of treadmill speed drift were observed during testing). Experimental calculations. Experimental calculations involved determining the spring properties of the leg and the body s vertical motion. Calculations used in this study are similar to those described elsewhere (10,16,20). Vertical stiffness is estimated as the ratio of the peak vertical force (maximum force during the active phase of ground contact time) and the maximum center of mass displacement during stance. Leg stiffness is a ratio of the peak vertical force and the change in leg length during stance. Double integration in the time domain of the acceleration-time function (acceleration-time curve generated from the ground reaction force) provided an estimate for the displacement of the center of mass during ground contact (5). It was assumed that the vertical velocity of the center of mass was 0 at the time of peak force. Vertical velocity would be zero if the slope of the vertical position-time curve equaled zero, which would occur at the point of peak displacement of the center of mass during ground contact. Thus, it is assumed that the peak center of mass displacement coincides with the peak vertical force. Change in leg length was determine with the equation (20): L y cm L 0 1 cos, where L 0 is the resting leg length and was the angle of the leg at initial contact relative to vertical ( sin 1 (ut c /2 L 0 ), where u is the horizontal velocity and t c is the foot contact time [time from initial contact to toe-off]). Procedures for test run to fatigue. After a brief warm-up, each subject performed a run to exhaustion at a speed eliciting approximately 80% of peak V O 2. Continuation of the test run was based on the runner s evaluation of their capacity to maintain test speed. Each subject attempted to inform the investigator 1 2 min before ending the test to allow for a final data collection. To provide a measure of SPRING PROPERTIES DURING A RUN TO EXHAUSTION Medicine & Science in Sports & Exercise 1325

3 TABLE 2. Temporal characteristics during the beginning and end of the test run; percent change in stride rate and foot contact time are also included. Stride Rate (Hz) Foot Contact (s) Subject Beg End %Change Beg End %Change * * * * * * * * * * * * * * * * * * * * * Group * indicates difference at P effort, heart rate and rating of perceived exertion were monitored throughout the run. Vertical force data were collected for 15 s every 5 min throughout the test and just before test cessation. From each 15 s of force data, steps were identified by locating heel-strike and toe-off. For two subjects (nos. 8 and 10), only steps were measured due to experimenter error (5-s data collection periods rather than 15 s). For each of the steps, the variables of interest were determined. Right and left leg data were merged in subsequent analysis, as there was no difference in measured variables. Data analysis. Data analyzed for this investigation represent stiffness characteristics from each collection period during the test run. A group analysis was performed on vertical stiffness and leg stiffness to determine whether changes occurred over the test run. Repeated measures ANOVA ( 0.01) was used to ascertain whether stiffness changed. Because runners fatigued at varying time periods, variables from the relative time points of beginning, 25%, 50%, 75%, and end of each subject s test were included in this analysis. In addition to the group analysis, a single-subject, caseseries analysis was performed. Given that individual variations and responses tend to be lost in a group design, single-subject, case-series analysis allows individual reactions to be investigated. A single-factor analysis of variance (ANOVA) was used to determine whether vertical stiffness changes over time. An eta squared ( 2 ) was used to determine the strength of association between vertical stiffness changes over time. Pair-wise post hoc analysis (Tukey HSD) was used to determine which time periods significantly changed from time 0. Due to the number of statistical analyses conducted, the test-wise alpha level was set at 0.01 to control for the inflation of the family-wise alpha level. RESULTS Duration of test run. Run times for the 15 subjects ranged from 31 to 90 min in length (Table 1). Working at 80% of V O 2peak, exhaustion might be expected to occur between 30 and 60 min, although some runners have been observed to continue up to 90 min or longer at this workload (17,25,28). From the duration of some subjects test runs, some subjects might have been running below 80% of V O 2peak or were better trained to run at higher intensities. Twelve subjects ran to perceived exhaustion, whereas three subjects (nos. 6, 11, and 13) stopped early (these three runners stopped for reasons other than exhaustion, including equipment malfunction [1 runner] and excessive test duration [2 runners]). All three expressed that they were close to exhaustion at the time the decision was made to end the run. Because of this, data for these three subjects were included in this study. It was observed from the heart rate data that runners achieved an average of 95% (90 102%) of their maximum heart rate at the end of the exhaustive test run. Temporal characteristics. Ten of the 15 runners experienced statistically significant changes in stride rate (Table 2). The degree of change from initial stride rate ranged from 3.7 to 4.4%. Though small, these changes represent deviation from preferred stride rate at the test speed. Statistically different foot contact times (FC time) were observed for nine of the subjects (Table 2) at the end of the run. The observed changes ranged from 3.9 to 8.7% of the average foot contact time of the first sample (obtained 5 min into the test run). Force-displacement of spring-mass system. In general, the leg does not behave precisely as might be predicted from a simple spring-mass model. Representative force-displacement curves for the beginning and end of test runs are shown in Figure 2. As can be seen in Figure 2, the relationship of force and center of mass displacement is slightly different during the time from foot contact to peak force than it is after peak force. Group analysis of stiffness measures. As a group, both vertical and leg stiffness decreased over the test run (Table 3). Leg stiffness decreased initially (from the beginning to 25%) but then remained essentially the same. Vertical stiffness continued to decline over the test run. Vertical stiffness. Significant changes in vertical stiffness were observed in 14 subjects (Table 4). Between 6 and 39% of the variance in vertical stiffness can be explained by the fatiguing run. Twelve runners decreased ( Official Journal of the American College of Sports Medicine

4 TABLE 3. Group results (mean sd) from all 15 subjects for vertical and leg stiffness (kn m 1 ) from relative time points corresponding to the beginning, 25%, 50%, 75%, and end of the test run; results from repeated measures analysis are reported. Time Beginning 25% 50% 75% 100% F p Vertical stiffness Leg stiffness ANOVA indicate significant changes in vertical stiffness for some subjects, though this may not be readily apparent from examining Figure 3, a and b. Nonlinear vertical stiffness data were observed for some subjects, as determined from post hoc analysis. Changes in vertical stiffness were primarily associated with changes in the displacement of the center of mass (r 0.78, P 0.01), as opposed to changes in the peak vertical force (r 0.22, P 0.01)(Fig. 4), with decreased vertical stiffness related to increased displacement of the center of mass during stance. Changes in vertical stiffness were found to be fairly proportional (r 0.85, P 0.01) to changes in stride rate (Fig. 5). Leg stiffness. Leg stiffness was found to change with exhaustion for many of the runners (Fig. 6). Most of the observed changes in leg stiffness were associated (inversely proportional) with altered leg displacement during stance (r 0.81, P 0.01) as opposed to differences in peak vertical force (r 0.43, P 0.01) (Fig. 7). FIGURE 2 Force displacement curves for three runners from the beginning (left curves) and end (right curves, darker). Each curve represents an ensemble average of all strides for that time period. significantly) vertical stiffness (up to 8.7%) and two runners increased vertical stiffness (up to 6%). The magnitude of the stiffness values and the degree of change in stiffness varied between subjects, as would be expected with the different test speeds (Fig. 3, a and b). The results of the DISCUSSION For the spring-mass model to describe the movement characteristics of the body, the relationship of force produced and displacement of the center of mass must be similar to that predicted by a spring-mass model. The forcedisplacement curves generated for these runners show a somewhat imperfect shape. This is due primarily to hysteresis present, which is not present in basic spring-mass models. Measured force-displacement relationships (Fig. 2) indicate that perhaps the leg behaves in a spring-like (as TABLE 4. Results from ANOVA for k vert. Subject Result F 2 (%) Significance Post hoc Analysis 1 No change Decrease Linear 3 Decrease Decrease after 50% 4 Decrease No change after 25% 5 Decrease Up and down 6 Increase Linear 7 Decrease Decrease to 50%, Increase to end 8 Decrease Linear 9 Increase Linear 10 Increase Increase after 75% 11 Decrease Linear 12 Decrease Linear 13 Decrease Linear 14 Decrease Linear 15 Decrease Increase to 75%, Decrease to end The column titled Result indicates whether vertical stiffness increased or decreased over the test run. Results of the post-hoc analysis are somewhat varied. The term Linear refers to a trend of change over the run, otherwise the relative time points of change and direction are given. SPRING PROPERTIES DURING A RUN TO EXHAUSTION Medicine & Science in Sports & Exercise 1327

5 FIGURE 3 Vertical stiffness (kn m 1 ) at time points corresponding to the beginning, 25%, 50%, 75%, and 100% of the run duration. Nine runners tended to consistently decrease vertical stiffness (decreases in vertical stiffness for subject 1 are not significant) over the run (A), whereas the rest tended to remain fairly constant (subjects 5, 7, and 15 actually decreased significantly, but the pattern of change was not monotonic) or increased (B) (*P < 0.01 and linear) determined with a spring-mass model) manner during the first part of stance (initial contact to maximum displacement of the center of mass), and some additional element changing the generation of force during the second phase of stance. It is unclear why this relationship was observed, but perhaps it may be due to the interaction of the runner and the treadmill. By calculating vertical stiffness as the ratio of peak force to peak center of mass displacement, the stiffness of the leg during initial stance was determined. Thus, observed results apply primarily to the initial part of stance. If the premise is accepted that the mechanical behavior of the leg can be modeled as a spring-mass system, stride rate shifts may be related to changes in the modeled stiffness properties of the leg. Stride rate and stiffness have been shown to be linearly related, with a strong relationship between stride rate and vertical stiffness (10). The relationship of stride rate to the stiffness parameters is fairly important, as stride rate is a basic measure of running performance. Across all runners in this study, there is a strong relationship between the percent change in stride rate and percent change in vertical stiffness (Fig. 5). Vertical stiffness was computed as the ratio of peak vertical force and maximum center of mass displacement during stance. Evidence has been presented indicating that observed changes in vertical stiffness properties of the leg result in changes in displacement of the center of the mass and not necessarily to peak vertical force (10). In this study, a similar relationship between vertical stiffness and displacement of the center of mass was observed. The relationship between change in vertical stiffness and change in peak vertical force is very weak. Observed changes in vertical stiffness and stride rate with exhaustion exhibit a similar relationship to changes in vertical stiffness due to unfatigued stride rate manipulation (10). Changes in stiffness 1328 Official Journal of the American College of Sports Medicine

6 FIGURE 4 Change in vertical stiffness and the change in displacement of the center of mass (squares) and the change in the peak active force (open circles). properties of the leg were related primarily to changes in the amount of leg displacement and not to changes in the peak vertical force. Runners in this study tended to maintain peak vertical force during a fatiguing run, but this has not been observed in previous studies of exercise to fatigue (1,14,23). In these studies, typically the time that force is applied is increased with the decrease in peak force. The result is typically a lower take-off velocity. Runners in this study maintained peak force and slightly (on average) increased time of force application resulting in an increased center of mass displacement during stance. This resulted in decreased modeled stiffness parameters for the leg. This corresponds to observations of Avela and Komi (1), who found that the stiffness in the soleus muscle was reduced after a marathon run. If this were true for other muscles, then the overall stiffness of the leg would be decreased. Generally, a runner will adopt a stride rate that minimizes or nearly minimizes oxygen cost at a given running speed (6,15). This is the optimal stride rate for the runner because it minimizes the metabolic cost for the runner. Changes in observed stride rate may represent a shift away from optimal, although these changes were small (up to 6%). It may be that that the optimal stride rate at a given speed (in terms FIGURE 5 Change in stride rate and change in vertical stiffness. FIGURE 6 Leg stiffness (kn m 1 ) at time points corresponding to the beginning, 25%, 50%, 75%, and 100% of the run duration. of metabolic cost) changes with fatigue. Decreased stiffness was accompanied by a decrease in stride rate. However, during exercise to exhaustion, these shifts may prove to be increasingly significant to the runner. Further testing is needed to confirm this. Changes in stiffness of the leg are also small (up to 8.7% for vertical and 13.1% for leg stiffness). Perhaps it is the inability of the system to maintain leg stiffness that eventually drives exhaustion when running at a constant speed. Modeled stiffness is probably driven by physiologic factors relating to muscle activation of the lower limb. The stiffness of the leg can be controlled in response to external perturbations. For example, adjustment of leg stiffness based on the running surface has been observed so that the combination of the surface and leg stiffness remains at a constant value (11,12). Under fatigued conditions, the question remains whether leg stiffness is consciously adjusted or SPRING PROPERTIES DURING A RUN TO EXHAUSTION Medicine & Science in Sports & Exercise 1329

7 FIGURE 7 Change in leg stiffness and the change in the leg length (squares) and in the peak active force (open circles). affected by the physiologic ramifications of continued exercise. It has been suggested that runners might consciously change running kinematics with fatigue (24). In particular, consciously increasing stride length (thereby decreasing stride rate for a given speed) was cited as a possible reaction of a runner to maintain running speed. Stride length would increase as a result of decreasing leg stiffness as was observed in this study. If continually working muscles are unable, either from local (metabolic or neural) or central (metabolic or neural) factors, to maintain contraction patterns necessary to maintain leg kinematics, a shift in leg stiffness may occur. Monotonic changes in vertical stiffness (as observed in 8 of the runners in this study) may be indicative of a continually changing physiological environment in the working musculature over the course of the exhaustive run. Whether these shifts are made consciously or are subconsciously driven cannot be determined from the results of this study, but it is plausible that the changes are unconscious in nature. Increases in stride length with fatigue have been consistently observed under a number of conditions (2,24,27). This lends further plausibility to changes in stride length stemming from leg stiffness changes rather than a conscious change by a runner with exhaustion. Tibial accelerations increase with decreased leg stiffness while performing Groucho running at a constant speed (21). It may be that, with constant speed, running while REFERENCES 1. AVELA, J., and P. V. KOMI. Reduced stretch reflex sensitivity and muscle stiffness after long-lasting stretch-shortening cycle exercise in humans. Eur. J. Appl. Physiol. 78: , BATES, B. T., L. R. OSTERNIG, and S. L. JAMES. Fatigue effects in running. J. Mot. Behav. 9: , BLICKHAN, R. The spring-mass model for running and hopping. J. Biomech. 22: , CANDAU, R., A. BELLI, G.Y.MILLET, D.GEORGES, B.BARDIER, and J. D. ROUILLON. Energy cost of running mechanics during a treadmill run to voluntary exhaustion in humans. Eur. J. Appl. Physiol. 77: , CAVAGNA, G. A. Force platforms as ergometers. J. Appl. Physiol. 39: , fatigued tibial accelerations may increase from decreased leg stiffness, increasing the possibility injury. This inference may be plausible from the Groucho running results in that the tibial to head acceleration ratio decreased despite increased peak tibial accelerations (21). Between the passive (skeleton and connective tissue) and active elements (muscle), the load on the system probably increases due to the effort of attenuating the increased accelerations, increasing the likelihood of injury. Tibial accelerations have been observed to increase and stride rate decrease with fatigue (26). Runners decreasing stride rate during an exhaustive run may increase tibial accelerations and the shock on the body. However, changes in tibial shank accelerations might be due to the speed constraint imposed by performing on a treadmill (26). This may be true in several other running studies that had runners perform to exhaustion (24,27). Runners performing overground without the speed constraint imposed by a treadmill may be inclined to reduce speed, thus minimizing changes in observed parameters (tibial accelerations (26) and leg stiffness in this study). Changing speed would probably allow the runner to continue for a longer time. Vertical stiffness is related to speed and, in particular, lower vertical stiffness values are associated with lower running speeds (16,20). Perhaps if runners in the current study were permitted to reduce treadmill speed, they may have regained mechanical equilibrium allowing them to increase the duration of the run. In summary, modeled stiffness parameters of the leg changed over the course of the run to exhaustion for most runners, accompanied by stride rate changes. Although the mechanisms of stiffness change are unknown, the effects of changing stiffness are clear in terms of the accompanying changes in vertical motion of the center of mass and changes in leg length with exhaustion. It remains to be determined if shifts in stiffness are advantageous and part of an optimization process, or are disadvantageous with any relationship to injury mechanism in running. Address for correspondence: Darren J. Dutto, Ph.D., Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768; ddutto@csupomona.edu. 6. CAVANAGH, P. R., and K. R. WILLIAMS. The effect of stride length variation on oxygen uptake during distance running. Med. Sci. Sports Exerc. 14:30 35, CAVANAGH, P. R., and R. KRAM. Mechanical and muscular factors affecting the efficiency of human movement. Med. Sci. Sports Exerc. 17: , ELLIOT, B. C., and T. ACKLAND. Biomechanical effects of fatigue on 10,000 meter running techniques. Res. Q. Exerc. Sport. 52: , ELLIOT, B. C., and A. D. ROBERTS. A biomechanical evaluation of the role of fatigue in middle-distance running. Can. J. Appl. Sport Sci. 5: , FARLEY, C. T., and O. GONZALEZ. Leg stiffness and stride frequency in human running. J. Biomech. 29: , Official Journal of the American College of Sports Medicine

8 11. FERRIS, D. P., and C. T. FARLEY. Interaction of leg stiffness and surface stiffness during human hopping. J. Appl. Physiol. 82:15 22, FERRIS, D. P., M. LOUIE, and C. T. FARLEY. Running in the real world: adjustments in leg stiffness for different locomotion surfaces. Proc. R. Soc. Lond. B Biol. Sci. 265: , FEWSTER, J. B. The role of musculoskeletal forces in the human walk-run transition. Microform Publications, University of Oregon, GOLLHOFER, A., P. V. KOMI, M. MIYASHITA, and O. AURA. Fatigue during stretch-shortening cycle exercises: changes in mechanical performance of human skeletal muscle. Int. J. Sports Med. 8:71 78, HAMILL, J., T. R. DERRICK, and K. G. HOLT. Shock attenuation and stride frequency during running. Hum. Mov. Sci. 14:45 60, HE, J., R. KRAM, and T. A. MCMAHON. Mechanics of running under simulated low gravity. J. Appl. Physiol. 71: , KOLKORST, F. W., J. N. MACTAGGART, and M. R. HANSEN. Effect of a sports food bar on fat utilisation and exercise duration. Can. J. Appl. Physiol. 23: , KYROLAINEN, H., T. PULLINEN, R. CANDAU, J. AVELA, P. HUTTUNEN, and P. V. KOMI. Effects of marathon running on running economy and kinematics. Eur. J. Appl. Physiol. 82: , MAIR, S. D., A. V. SEABAR, R.R.GLISSON, and W. E. GARRET, JR. The role of fatigue in susceptibility to acute muscle strain injury. Am. J. Sports Med. 24: , MCMAHON, T. A., and G. C. CHENG. The mechanics of running: how does stiffness couple with speed? J. Biomech. 23:65 78, MCMAHON, T. A., G. VALIANT, and E. C. FREDERICK. Groucho running. J. Appl. Physiol. 62: , MIZRAHI, J., O. VERBITSKY, and E. ISAKOV. Fatigue-related loading imbalance on the shank in running: a possible factor in stress fractures. Ann. Biomed. Eng. 28: , NICOL, C., P. V. KOMI, and P. MARCONNET. Fatigue effects of marathon running on neuromuscular performance. Scand. J. Med. Sci. Sports. 1:10 17, SILER, W. L., and P. E. MARTIN. Changes in running pattern during a treadmill run to volitional exhaustion: fast versus slow runners. Int. J. Sport Biomech. 7:12 28, SPROULE, J. Running economy deteriorates following 60 minutes of exercise at 80% VO 2 max. Eur. J. Appl. Physiol. 77: , VERBITSKY, O., J. MIZRAHI, A. VOLOSHIN, J. TREIGER, and E. ISAKOV. Shock transmission and fatigue in human running. J. Appl. Biomech. 14: , WILLIAMS, K. R., R. SNOW, and C. ARGUSS. Changes in distance running kinematics with fatigue. Int. J. Sport Biomech. 7: , XU, F., and D. L. MONGOMERY. Effect of prolonged exercise at 65 and 80 percent of VO2max on running economy. Int. J. Sports Med. 16: , SPRING PROPERTIES DURING A RUN TO EXHAUSTION Medicine & Science in Sports & Exercise 1331

A New Approach to Modeling Vertical Stiffness in Heel-Toe Distance Runners

A New Approach to Modeling Vertical Stiffness in Heel-Toe Distance Runners Brigham Young University BYU ScholarsArchive All Faculty Publications 2003-12-01 A New Approach to Modeling Vertical Stiffness in Heel-Toe Distance Runners Iain Hunter iain_hunter@byu.edu Follow this and

More information

ASSISTED AND RESISTED METHODS FOR SPEED DEVELOPMENT (PART 1)

ASSISTED AND RESISTED METHODS FOR SPEED DEVELOPMENT (PART 1) ASSISTED AND RESISTED METHODS FOR SPEED DEVELOPMENT (PART 1) By Adrian Faccioni Adrian Faccioni, a lecturer at the Centre of Sports Studies, University of Canberra, Australia, presents a detailed evaluation

More information

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING Joseph P. Hunter 1, Robert N. Marshall 1,, and Peter J. McNair 3 1 Department of Sport and Exercise Science, The University of Auckland, Auckland,

More information

The Optimal Downhill Slope for Acute Overspeed Running

The Optimal Downhill Slope for Acute Overspeed Running International Journal of Sports Physiology and Performance, 2008, 3, 88-93 2008 Human Kinetics, Inc. The Optimal Downhill Slope for Acute Overspeed Running William P. Ebben Purpose: This study evaluated

More information

GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF

GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF Sara Gharabaghli, Rebecca Krogstad, Sara Lynch, Sofia Saavedra, and Tamara Wright California State University, San Marcos, San Marcos,

More information

Running Form Modification: When Self-selected is Not Preferred

Running Form Modification: When Self-selected is Not Preferred Running Form Modification: When Self-selected is Not Preferred Bryan Heiderscheit, PT, PhD Department of Orthopedics and Rehabilitation Department of Biomedical Engineering University of Wisconsin-Madison

More information

-Elastic strain energy (duty factor decreases at higher speeds). Higher forces act on feet. More tendon stretch. More energy stored in tendon.

-Elastic strain energy (duty factor decreases at higher speeds). Higher forces act on feet. More tendon stretch. More energy stored in tendon. As velocity increases ( ) (i.e. increasing Froude number v 2 / gl) the component of the energy cost of transport associated with: -Internal kinetic energy (limbs accelerated to higher angular velocity).

More information

Myths and Science in Cycling

Myths and Science in Cycling Myths and Science in Cycling John McDaniel, PhD Kent State University Jim Martin, PhD - U of Utah Steve Elmer, PhD- Michigan Tech Who am I PhD in Exercise Physiology under Dr. Jim Martin at the University

More information

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system K. OBERG and H. LANSHAMMAR* Amputee Training and Research Unit, University Hospital, Fack,

More information

Stride Frequency, Body Fat Percentage, and the Amount of Knee Flexion Affect the Race Time of Male Cross Country Runners

Stride Frequency, Body Fat Percentage, and the Amount of Knee Flexion Affect the Race Time of Male Cross Country Runners Stride Frequency, Body Fat Percentage, and the Amount of Knee Flexion Affect the Race Time of Male Cross Country Runners Vineel Mallavarapu 1 and Kevin Finn 2 1 Cedar Falls High School, Cedar Falls, IA

More information

Steeplechase Hurdle Economy, Mechanics, and Performance

Steeplechase Hurdle Economy, Mechanics, and Performance Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2013-06-27 Steeplechase Hurdle Economy, Mechanics, and Performance Sarah Ingebretsen Brigham Young University - Provo Follow this

More information

Assessment of an International Breaststroke Swimmer Using a Race Readiness Test

Assessment of an International Breaststroke Swimmer Using a Race Readiness Test International Journal of Sports Physiology and Performance, 2009, 4, 139-143 2009 Human Kinetics, Inc. Assessment of an International Breaststroke Swimmer Using a Race Readiness Test Kevin G. Thompson

More information

Simulation-based design to reduce metabolic cost

Simulation-based design to reduce metabolic cost Simulation-based design to reduce metabolic cost Overview: Lecture + Hands On Exercise 1. Generating and evaluating a muscledriven simulation of walking 2. Metabolics 101 3. Designing and evaluating devices

More information

Outline. Newton's laws of motion What is speed? The technical and physical demands of speed Speed training parameters Rugby specific speed training

Outline. Newton's laws of motion What is speed? The technical and physical demands of speed Speed training parameters Rugby specific speed training Linear speed Outline Newton's laws of motion What is speed? The technical and physical demands of speed Speed training parameters Rugby specific speed training Outline Session structure Teaching guidelines

More information

A Re-Examination of Running Energetics in Average and Elite Distance Runners

A Re-Examination of Running Energetics in Average and Elite Distance Runners University of Colorado, Boulder CU Scholar Integrative Physiology Graduate Theses & Dissertations Integrative Physiology Spring 1-1-2013 A Re-Examination of Running Energetics in Average and Elite Distance

More information

The effects of a suspended-load backpack on gait

The effects of a suspended-load backpack on gait Industrial and Manufacturing Systems Engineering Publications Industrial and Manufacturing Systems Engineering 2009 The effects of a suspended-load backpack on gait Xu Xu North Carolina State University

More information

RESEARCH ARTICLE Energetically optimal stride frequency in running: the effects of incline and decline

RESEARCH ARTICLE Energetically optimal stride frequency in running: the effects of incline and decline 289 The Journal of Experimental Biology 214, 289-295 211. Published by The Company of Biologists Ltd doi:1.1242/jeb.53157 RESEARCH ARTICLE Energetically optimal stride frequency in running: the effects

More information

Acute Effects of a Tempo Run on Different Surfaces

Acute Effects of a Tempo Run on Different Surfaces Archives of Physical Health and Sports Medicine Volume 1, Issue 1, 2018, PP: 8-13 Acute Effects of a Tempo Run on Different Surfaces Jason Wicke 1 *, Ismael Flores-Marti 1, Andrew Burd 1 1 Department of

More information

Steffen Willwacher, Katina Fischer, Gert Peter Brüggemann Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany

Steffen Willwacher, Katina Fischer, Gert Peter Brüggemann Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany P01-3 ID126 SURFACE STIFFNESS AFFECTS JOINT LOADING IN RUNNING Steffen Willwacher, Katina Fischer, Gert Peter Brüggemann Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany

More information

CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT

CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT 39 CHAPTER IV FINITE ELEMENT ANALYSIS OF THE KNEE JOINT WITHOUT A MEDICAL IMPLANT 4.1 Modeling in Biomechanics The human body, apart of all its other functions is a mechanical mechanism and a structure,

More information

Variations in Running Form Among Female Sprinters, Middle, and Distance Runners

Variations in Running Form Among Female Sprinters, Middle, and Distance Runners Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2009-08-05 Variations in Running Form Among Female Sprinters, Middle, and Distance Runners Ruthann Cunningham Brigham Young University

More information

Arch Height and Running Shoes: The Best Advice to Give Patients

Arch Height and Running Shoes: The Best Advice to Give Patients Arch Height and Running Shoes: The Best Advice to Give Patients by Thomas C. Michaud, DC Published May 1, 2014 by Dynamic Chiropractic Magazine Because runners with different arch heights are prone to

More information

Define terms and compute basic physics problems related to sprinting

Define terms and compute basic physics problems related to sprinting LINEAR SPEED AN INTRODUCTION TO ACCELERATION LEARNING OBJECTIVES Define terms and compute basic physics problems related to sprinting Identify and explain how specific kinematic and kinetic elements relate

More information

RUNNING SHOE STIFFNESS: THE EFFECT ON WALKING GAIT

RUNNING SHOE STIFFNESS: THE EFFECT ON WALKING GAIT RUNNING SHOE STIFFNESS: THE EFFECT ON WALKING GAIT Stephen N Stanley, Peter J M c Nair, Angela G Walker, & Robert N Marshall Auckland Institute of Technology, Auckland, New Zealand University of Auckland,

More information

Anaerobic and aerobic contributions to 800 m and 8 km season bests

Anaerobic and aerobic contributions to 800 m and 8 km season bests Short Communication Anaerobic and aerobic contributions to 8 m and 8 km season bests Julia C. Blumkaitis, Christopher L. Sandefur, Christopher A. Fahs, Lindy M. Rossow Objective: Both anaerobic and aerobic

More information

Rugby Strength Coach. Speed development guide

Rugby Strength Coach. Speed development guide Rugby Strength Coach Speed development guide Outline Why do Newton's laws of motion matter? What is speed? The technique and physical demands of speed Speed training parameters Rugby specific speed training

More information

Rehabilitation of Non-operative Hamstring Injuries

Rehabilitation of Non-operative Hamstring Injuries Rehabilitation of Non-operative Hamstring Injuries 12 th Annual Colorado University Sports Medicine Fall Symposium Robert A. Panariello MS, PT, ATC, CSCS Founding Partner, Chief Clinical Officer Professional

More information

Mechanical energy fluctuations during hill walking: the effects of slope on inverted pendulum exchange

Mechanical energy fluctuations during hill walking: the effects of slope on inverted pendulum exchange 4895 The Journal of Experimental Biology 209, 4895-4900 Published by The Company of Biologists 2006 doi:10.1242/jeb.02584 Mechanical energy fluctuations during hill walking: the effects of slope on inverted

More information

Sample Solution for Problem 1.a

Sample Solution for Problem 1.a Sample Solution for Problem 1.a 1 Inverted Pendulum Model (IPM) 1.1 Equations of Motion and Ground Reaction Forces Figure 1: Scheme of the Inverted Pendulum Model (IPM). The equations of motion of this

More information

Effects of fatigue on center-of-mass acceleration during a prolonged overground run

Effects of fatigue on center-of-mass acceleration during a prolonged overground run Research Article http://www.alliedacademies.org/journal-physical-therapy-sports-medicine/ Effects of fatigue on center-of-mass acceleration during a prolonged overground run Scott Evans 1*, Sara Winter

More information

REPORT. A comparative study of the mechanical and biomechanical behaviour of natural turf and hybrid turf for the practise of sports

REPORT. A comparative study of the mechanical and biomechanical behaviour of natural turf and hybrid turf for the practise of sports REPORT A comparative study of the mechanical and biomechanical behaviour of natural turf and hybrid turf for the practise of sports Addressed to: PSF - PALAU TURF Date: May 2015 Table of Contents SHEET

More information

Gait. Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa

Gait. Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa Gait Kinesiology RHS 341 Lecture 12 Dr. Einas Al-Eisa Definitions Locomotion = the act of moving from one place to the other Gait = the manner of walking Definitions Walking = a smooth, highly coordinated,

More information

THE EFFECT OF BINDING POSITION ON KINETIC VARIABLES IN ALPINE SKIING

THE EFFECT OF BINDING POSITION ON KINETIC VARIABLES IN ALPINE SKIING THE EFFECT OF BINDING POSITION ON KINETIC VARIABLES IN ALPINE SKIING H. SCHWAMEDER 1, B. M. NIGG 2, V. v. TSCHARNER 2, D. STEFANYSHYN 2 1 Institute of Sports Sciences, University of Salzburg 2 Human Performance

More information

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg 1 Introduction Relationship between Spring Constant and Length of Bungee Cord In this experiment, we aimed to model the behavior of the bungee cord that will be used in the Bungee Challenge. Specifically,

More information

Gender Differences and Biomechanics in the 3000m Steeplechase Water Jump

Gender Differences and Biomechanics in the 3000m Steeplechase Water Jump Brigham Young University BYU ScholarsArchive All Faculty Publications 2008-06-01 Gender Differences and Biomechanics in the 3000m Steeplechase Water Jump Kassi R. Andersen Bryan K. Lindsay See next page

More information

Identify and explain how specific kinematic and kinetic elements relate to the absolute speed technical model

Identify and explain how specific kinematic and kinetic elements relate to the absolute speed technical model LINEAR SPEED: ABSOLUTE SPEED THEORY AND APPLICATION LEARNING OBJECTIVES Identify and explain how specific kinematic and kinetic elements relate to the absolute speed technical model Recognize the coaching

More information

Walking and Running BACKGROUND REVIEW. Planar Pendulum. BIO-39 October 30, From Oct. 25, Equation of motion (for small θ) Solution is

Walking and Running BACKGROUND REVIEW. Planar Pendulum. BIO-39 October 30, From Oct. 25, Equation of motion (for small θ) Solution is Walking and Running BIO-39 October 30, 2018 BACKGROUND REVIEW From Oct. 25, 2018 Planar Pendulum Equation of motion (for small θ) 2 d g 0 2 dt Solution is Where: g is acceleration due to gravity l is pendulum

More information

RUNNING SPRINGS: SPEED AND ANIMAL SIZE

RUNNING SPRINGS: SPEED AND ANIMAL SIZE J. exp. Biol. 185, 71 86 (1993) Printed in Great Britain The Company of Biologists Limited 1993 71 RUNNING SPRINGS: SPEED AND ANIMAL SIZE CLAIRE T. FARLEY 1, *, JAMES GLASHEEN 2 AND THOMAS A. MCMAHON 3

More information

KICKBIKE Your key to optimum sports performance

KICKBIKE Your key to optimum sports performance KICKBIKE Your key to optimum sports performance Efficient Running is essential to optimum performance of most sports we play. Whether we want to maximize our speed, maximize our endurance, or both, an

More information

BODY FORM INFLUENCES ON THE DRAG EXPERIENCED BY JUNIOR SWIMMERS. Australia, Perth, Australia

BODY FORM INFLUENCES ON THE DRAG EXPERIENCED BY JUNIOR SWIMMERS. Australia, Perth, Australia 1 BODY FORM INFLUENCES ON THE DRAG EXPERIENCED BY JUNIOR SWIMMERS Andrew Lyttle 1, Nat Benjanuvatra 2, Brian A Blanksby 2, Bruce C Elliott 2 1 Western Australian Institute of Sport, Perth, Australia 2

More information

Megan E. Krause, BSBSE, Young Hui Chang, Ph.D. Comparative Neuromechanics Laboratory. Georgia Institute of Technology

Megan E. Krause, BSBSE, Young Hui Chang, Ph.D. Comparative Neuromechanics Laboratory. Georgia Institute of Technology Megan E. Krause, BSBSE, Young Hui Chang, Ph.D. Comparative Neuromechanics Laboratory Sh School of Applied Physiology Georgia Institute of Technology 1 Variety of ankle constraints during locomotion: Fashion

More information

JEPonline Journal of Exercise Physiologyonline

JEPonline Journal of Exercise Physiologyonline Walking Technique and Estimated VO 2 max Values 21 JEPonline Journal of Exercise Physiologyonline Official Journal of The American Society of Exercise Physiologists (ASEP) ISSN 1097-9751 An International

More information

Journal of Exercise Physiologyonline (JEPonline)

Journal of Exercise Physiologyonline (JEPonline) Running Economy 26 Journal of Exercise Physiologyonline (JEPonline) Volume 11 Number 3 June 2008 Managing Editor Tommy Boone, Ph.D. Editor-in-Chief Jon K. Linderman, Ph.D. Review Board Todd Astorino, Ph.D.

More information

Applying Hooke s Law to Multiple Bungee Cords. Introduction

Applying Hooke s Law to Multiple Bungee Cords. Introduction Applying Hooke s Law to Multiple Bungee Cords Introduction Hooke s Law declares that the force exerted on a spring is proportional to the amount of stretch or compression on the spring, is always directed

More information

Biomechanical analysis of the medalists in the 10,000 metres at the 2007 World Championships in Athletics

Biomechanical analysis of the medalists in the 10,000 metres at the 2007 World Championships in Athletics STUDY Biomechanical analysis of the medalists in the 10,000 metres at the 2007 World Championships in Athletics by IAAF 23:3; 61-66, 2008 By Yasushi Enomoto, Hirosuke Kadono, Yuta Suzuki, Tetsu Chiba,

More information

Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF

Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF George Chen May 17, 2002 Stanford Neuromuscular Biomechanics Lab Group Muscle contribution

More information

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion Problems: 1. Once you have recorded the calibration frame for a data collection, why is it important to make sure the camera does not shut off? hat happens if the camera automatically shuts off after being

More information

2015, Vol. 27, No. 1, ISSN (Print) Eirik Haukali & Leif Inge Tjelta* University of Stavanger, Norway. Abstract

2015, Vol. 27, No. 1, ISSN (Print) Eirik Haukali & Leif Inge Tjelta* University of Stavanger, Norway. Abstract International Journal of Applied Sports Sciences ISSN 2233-7946 (Online) 2015, Vol. 27, No. 1, 26-32. ISSN 1598-2939 (Print) c Korea Institute of Sport Science http://www.sports.re.kr/eng/05publication/callforpaper.jsp

More information

The popularity of running has increased dramatically

The popularity of running has increased dramatically RUNNING KINEMATICS AND SHOCK ABSORPTION DO NOT CHANGE AFTER BRIEF EXHAUSTIVE RUNNING JOHN P. ABT, 1 TIMOTHY C. SELL, 1 YUNGCHIEN CHU, 1 MITA LOVALEKAR, 1 RAY G. BURDETT, 2 AND SCOTT M. LEPHART 1 1 Neuromuscular

More information

HPW Biomechanics

HPW Biomechanics HPW Biomechanics hpw@mail.com www.hpwbiomechanics.com ~ via e-mail ~ January 31, 213 To: Attn: From: Subject: I-Roc Debbie Chapman Janet S. Dufek, Ph.D. Research Scientist Additional Footwear Evaluation

More information

Running from injury 2

Running from injury 2 Created as a free resource by Clinical Edge Based on Physio Edge podcast 049 with Dr Rich Willy Get your free trial of online Physio education by clicking here Running injuries & assessment Running assessment

More information

A Description of Variability of Pacing in Marathon Distance Running

A Description of Variability of Pacing in Marathon Distance Running Original Research A Description of Variability of Pacing in Marathon Distance Running THOMAS A. HANEY JR. and JOHN A. MERCER Department of Kinesiology and Nutrition Sciences, University of Nevada, Las

More information

Artifacts Due to Filtering Mismatch in Drop Landing Moment Data

Artifacts Due to Filtering Mismatch in Drop Landing Moment Data Camenga et al. UW-L Journal of Undergraduate Research XVI (213) Artifacts Due to Filtering Mismatch in Drop Landing Moment Data Elizabeth T. Camenga, Casey J. Rutten, Brendan D. Gould, Jillian T. Asmus,

More information

Walking Simulator Mechanism

Walking Simulator Mechanism The Downtown Review Volume 2 Issue 2 Article 4 2015 Walking Simulator Mechanism Titus Lungu Cleveland State University Igor Tachynskyy Cleveland State University Omri Tayyara Cleveland State University

More information

Human hoppers compensate for simultaneous changes in surface compression and damping

Human hoppers compensate for simultaneous changes in surface compression and damping Journal of Biomechanics 39 (2006) 1030 1038 www.elsevier.com/locate/jbiomech www.jbiomech.com Human hoppers compensate for simultaneous changes in surface compression and damping Chet T. Moritz a,b,, Claire

More information

The Influence of Load Carrying Modes on Gait variables of Healthy Indian Women

The Influence of Load Carrying Modes on Gait variables of Healthy Indian Women The Influence of Load Carrying Modes on Gait variables of Healthy Indian Women *Guha Thakurta A, Iqbal R and De A National Institute of Industrial Engineering, Powai, Vihar Lake, Mumbai-400087, India,

More information

Monitoring of performance an training in rowers

Monitoring of performance an training in rowers Monitoring of performance an training in rowers Jaak Jürimäe Demands of the Sport High maximal oxygen consumption (VO 2max ); Ability to perform at a high percentage of VO 2max for the duration of event;

More information

Toward a Human-like Biped Robot with Compliant Legs

Toward a Human-like Biped Robot with Compliant Legs Book Title Book Editors IOS Press, 2003 1 Toward a Human-like Biped Robot with Compliant Legs Fumiya Iida a,b,1, Yohei Minekawa a Juergen Rummel a and Andre Seyfarth a a Locomotion Laboratory, University

More information

Gait Changes During Exhaustive Running

Gait Changes During Exhaustive Running University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses 2016 Gait Changes During Exhaustive Running Nathaniel I. Smith University of Massachusetts Amherst

More information

Normal and Abnormal Gait

Normal and Abnormal Gait Normal and Abnormal Gait Adrielle Fry, MD EvergreenHealth, Division of Sport and Spine University of Washington Board Review Course March 6, 2017 What are we going to cover? Definitions and key concepts

More information

THE ANKLE-HIP TRANSVERSE PLANE COUPLING DURING THE STANCE PHASE OF NORMAL WALKING

THE ANKLE-HIP TRANSVERSE PLANE COUPLING DURING THE STANCE PHASE OF NORMAL WALKING THE ANKLE-HIP TRANSVERSE PLANE COUPLING DURING THE STANCE PHASE OF NORMAL WALKING Thales R. Souza, Rafael Z. Pinto, Renato G. Trede, Nadja C. Pereira, Renata N. Kirkwood and Sérgio T. Fonseca. Movement

More information

Differences in Maximal Speed Running Between Baseball Players and Sprinters

Differences in Maximal Speed Running Between Baseball Players and Sprinters Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2005-03-17 Differences in Maximal Speed Running Between Baseball Players and Sprinters Erin Kathleen Robinson Brigham Young University

More information

Posture influences ground reaction force: implications for crouch gait

Posture influences ground reaction force: implications for crouch gait University of Tennessee, Knoxville From the SelectedWorks of Jeffrey A. Reinbolt July 14, 2010 Posture influences ground reaction force: implications for crouch gait H. X. Hoang Jeffrey A. Reinbolt, University

More information

Effects of independently altering body weight and body mass on the metabolic cost of running

Effects of independently altering body weight and body mass on the metabolic cost of running 4418 The Journal of Experimental Biology 210, 4418-4427 Published by The Company of Biologists 2007 doi:10.1242/jeb.004481 Effects of independently altering body weight and body mass on the metabolic cost

More information

Joint Torque Evaluation of Lower Limbs in Bicycle Pedaling

Joint Torque Evaluation of Lower Limbs in Bicycle Pedaling 11th conference of the International Sports Engineering Association, ISEA 216 Delft University of Technology; July 12 th Joint Torque Evaluation of Lower Limbs in Bicycle Pedaling Hiroki Yamazaki Akihiro

More information

Assessments SIMPLY GAIT. Posture and Gait. Observing Posture and Gait. Postural Assessment. Postural Assessment 6/28/2016

Assessments SIMPLY GAIT. Posture and Gait. Observing Posture and Gait. Postural Assessment. Postural Assessment 6/28/2016 Assessments 2 SIMPLY GAIT Understanding movement Evaluations of factors that help therapist form professional judgments Include health, palpatory, range of motion, postural, and gait assessments Assessments

More information

Coaching the Hurdles

Coaching the Hurdles Coaching the Hurdles Monica Gary, Sprints & Hurdles Coach Purdue University Important components to consider in hurdle training: a. Rhythm for the hurdler is the primary concern for the coach -short rhythm

More information

KINEMATIC PARAMETERS OF BASKETBALL JUMP SHOTS PROJECTED FROM VARYING DISTANCES. M. N. Satern. Kansas State University Manhattan, Kansas, USA

KINEMATIC PARAMETERS OF BASKETBALL JUMP SHOTS PROJECTED FROM VARYING DISTANCES. M. N. Satern. Kansas State University Manhattan, Kansas, USA 313 KINEMATIC PARAMETERS OF BASKETBALL JUMP SHOTS PROJECTED FROM VARYING DISTANCES M. N. Satern Kansas State University Manhattan, Kansas, USA INTRODUCTION The ability to score points is critical to a

More information

EFFECTS OF SPEED AND INCLINE ON LOWER EXTREMITY KINEMATICS DURING TREADMILL JOGGING IN HEALTHY SUBJECTS

EFFECTS OF SPEED AND INCLINE ON LOWER EXTREMITY KINEMATICS DURING TREADMILL JOGGING IN HEALTHY SUBJECTS BIOMEDICAL ENGINEERING- EFFECTS OF SPEED AND INCLINE ON LOWER EXTREMITY KINEMATICS DURING TREADMILL JOGGING IN HEALTHY SUBJECTS 73 LAN-YUEN GUO 1, FONG-CHIN SU 2, CHICH-HAUNG YANG 3, SHU-HUI WANG 3, JYH-JONG

More information

A bit of background. Session Schedule 3:00-3:10: Introduction & session overview. Overarching research theme: CPTA

A bit of background. Session Schedule 3:00-3:10: Introduction & session overview. Overarching research theme: CPTA A Cognitive-Biomechanical Perspective for the Management of Common Chronic Musculoskeletal Conditions Skulpan Asavasopon, PT, PhD Loma Linda University Christopher M. Powers, PT, PhD, FAPTA University

More information

Breaking Down the Approach

Breaking Down the Approach Breaking Down the Approach Written by Andre Christopher Gonzalez Sunday, July 31, 2005 One of the biggest weaknesses of the two-legged approach is the inability of the athlete to transfer horizontal momentum

More information

Positive running posture sums up the right technique for top speed

Positive running posture sums up the right technique for top speed Positive running, a model for high speed running Frans Bosch positive running posture sums up the right technique for top speed building blocks in running: Pelvic rotation for- and backward and hamstring

More information

that, as a means of progression, walking is suitable for lower speeds

that, as a means of progression, walking is suitable for lower speeds 2 6I2 744.22 ENERGY EXPENDITURE IN WALKING AND RUNNING. BY M. OGASAWARA. (From the Department of Industrial Physiology, London School of Hygiene and Tropical Medicine.) (Received February 28, 1934.) IT

More information

Can Asymmetric Running Patterns Be Predicted By Assessment of Asymmetric Standing Posture? A Case Study in Elite College Runners

Can Asymmetric Running Patterns Be Predicted By Assessment of Asymmetric Standing Posture? A Case Study in Elite College Runners REVIEW ARTICLE Can Asymmetric Running Patterns Be Predicted By Assessment of Asymmetric Standing Posture? A Case Study in Elite College Runners Paige E. Skorseth; Patrick T. Knott, PhD, PA-C Abstract Objective:

More information

COMPARISON STUDY BETWEEN THE EFFICIENY OF THE START TECHNIQUES IN THE ROMANIAN COMPETITIVE SWIMMING

COMPARISON STUDY BETWEEN THE EFFICIENY OF THE START TECHNIQUES IN THE ROMANIAN COMPETITIVE SWIMMING Bulletin of the Transilvania University of Braşov Series IX: Sciences of Human Kinetics Vol. 6 (55) No. 1 2013 COMPARISON STUDY BETWEEN THE EFFICIENY OF THE START TECHNIQUES IN THE ROMANIAN COMPETITIVE

More information

HOW DO WE ACCELERATE WHILE RUNNING? Daniel J. Schuster. April 2015

HOW DO WE ACCELERATE WHILE RUNNING? Daniel J. Schuster. April 2015 HOW DO WE ACCELERATE WHILE RUNNING? by Daniel J. Schuster April 2015 Director of Thesis: Dr. Paul DeVita Major Department: Kinesiology Running biomechanics are well established in terms of lower extremity

More information

superior in performance in the 100 m dash. If these

superior in performance in the 100 m dash. If these H. Kunz Brit J. Sports Mod.- Vol. 15, No. 3, September 1981, pp. 177-181 ANNOTATION. A. Kaufmann BIOMECHANICAL ANALYSIS OF SPRINTING: DECATHLETES VERSUS CHAMPIONS H. KUNZ, DiplArbeit, and D. A. KAUFMANN,

More information

Muscular activity characteristics associated with preparation for gait transition

Muscular activity characteristics associated with preparation for gait transition Available online at www.sciencedirect.com Journal of Sport and Health Science 1 (2012) 27e35 Original article Muscular activity characteristics associated with preparation for gait transition Li Li*, Lorna

More information

A Novel Gear-shifting Strategy Used on Smart Bicycles

A Novel Gear-shifting Strategy Used on Smart Bicycles 2012 International Conference on Industrial and Intelligent Information (ICIII 2012) IPCSIT vol.31 (2012) (2012) IACSIT Press, Singapore A Novel Gear-shifting Strategy Used on Smart Bicycles Tsung-Yin

More information

Ankle biomechanics demonstrates excessive and prolonged time to peak rearfoot eversion (see Foot Complex graph). We would not necessarily expect

Ankle biomechanics demonstrates excessive and prolonged time to peak rearfoot eversion (see Foot Complex graph). We would not necessarily expect Case Study #1 The first case study is a runner presenting with bilateral shin splints with pain and tenderness along the medial aspect of the tibia. The symptoms have increased significantly over the last

More information

Practical aspects of tapering for competition in athletics. Iñigo Mujika

Practical aspects of tapering for competition in athletics. Iñigo Mujika Practical aspects of tapering for competition in athletics Iñigo Mujika Contents Effects of manipulating training variables during the taper Effects of tapering on performance: a meta-analysis Tapering

More information

Ground Reaction Force Alterations Due to Experimentally-induced Anterior Knee Pain During Walking

Ground Reaction Force Alterations Due to Experimentally-induced Anterior Knee Pain During Walking Ground Reaction Force Alterations Due to Experimentally-induced Anterior Knee Pain During Walking Matthew K. Seeley, A. Wayne Johnson, Jihong Park, Daniel King, and J. Ty Hopkins Human Performance Research

More information

Journal of Human Sport and Exercise E-ISSN: Universidad de Alicante España

Journal of Human Sport and Exercise E-ISSN: Universidad de Alicante España Journal of Human Sport and Exercise E-ISSN: 1988-5202 jhse@ua.es Universidad de Alicante España KALINA, TOMAS; CACEK, JAN; KMETOVA, LINDA The running economy difference between running barefoot and running

More information

APPROACH RUN VELOCITIES OF FEMALE POLE VAULTERS

APPROACH RUN VELOCITIES OF FEMALE POLE VAULTERS APPROACH RUN VELOCITIES OF FEMALE POLE VAULTERS Peter M. McGinnis, Physical Education Department, SUNY College at Cortland, Cortland, New York INTRODUCTION Running speed is an important determinant of

More information

2) Jensen, R. Comparison of ground-reaction forces while kicking a stationary and non-stationary soccer ball

2) Jensen, R. Comparison of ground-reaction forces while kicking a stationary and non-stationary soccer ball Northern Michigan University The Commons Conference Papers in Published Proceedings 2001 2) Jensen, R. Comparison of ground-reaction forces while kicking a stationary and non-stationary soccer ball Randall

More information

Normal Gait and Dynamic Function purpose of the foot in ambulation. Normal Gait and Dynamic Function purpose of the foot in ambulation

Normal Gait and Dynamic Function purpose of the foot in ambulation. Normal Gait and Dynamic Function purpose of the foot in ambulation Normal Gait and Dynamic Function purpose of the foot in ambulation Edward P. Mulligan, PT, DPT, OCS, SCS, ATC Assistant Professor; Residency Chair UT Southwestern School of Health Professions Department

More information

Available online at Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models

Available online at  Prediction of energy efficient pedal forces in cycling using musculoskeletal simulation models Available online at www.sciencedirect.com Engineering 2 00 (2010) (2009) 3211 3215 000 000 Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering Association

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Neurorehabil Neural Repair Oct 23. [Epub ahead of print]

Neurorehabil Neural Repair Oct 23. [Epub ahead of print] APPENDICE Neurorehabil Neural Repair. 2009 Oct 23. [Epub ahead of print] Segmental Muscle Vibration Improves Walking in Chronic Stroke Patients With Foot Drop: A Randomized Controlled Trial. Paoloni M,

More information

Colin Jackson's Hurdle Clearance Technique

Colin Jackson's Hurdle Clearance Technique Colin Jackson's Hurdle Clearance Technique By Milan Čoh, Biomechanical Laboratory, Faculty of Sport, University of Ljubljana, Slovenia INTRODUCTION Colin Jackson is, uncontestedly, one of the greatest

More information

DEVELOPING COMBINED EVENT ATHLETES IN THE COLLEGIATE SYSTEM. Nate Davis Assistant Coach Combined Events, PV & HJ University of Wisconsin

DEVELOPING COMBINED EVENT ATHLETES IN THE COLLEGIATE SYSTEM. Nate Davis Assistant Coach Combined Events, PV & HJ University of Wisconsin DEVELOPING COMBINED EVENT ATHLETES IN THE COLLEGIATE SYSTEM Nate Davis Assistant Coach Combined Events, PV & HJ University of Wisconsin Collegiate System Challenges Traditional development of Combined

More information

The Block Start and Accerlartion. Loren Seagrave Director of Track & Field and Cross Country Director of Speed and Movement

The Block Start and Accerlartion. Loren Seagrave Director of Track & Field and Cross Country Director of Speed and Movement The Block Start and Accerlartion Loren Seagrave Director of Track & Field and Cross Country Director of Speed and Movement Phases of Acceleration (Linear) The Start Greatest Rate of Acceleration Pure Acceleration

More information

As a physiotherapist I see many runners in my practice,

As a physiotherapist I see many runners in my practice, When rubber meets road Mark Richardson reveals the story that our running shoes can tell us, and how it can help you avoid running injury at a glance This article: Shows you how to analyse the sole of

More information

Walk or Waddle? Caroline Jiang Hayley Shen Biol/ Phys 438 April 8, 2003

Walk or Waddle? Caroline Jiang Hayley Shen Biol/ Phys 438 April 8, 2003 Walk or Waddle? Caroline Jiang - 78744992 Hayley Shen 77486001 Biol/ Phys 438 April 8, 2003 INTRODUCTION Griffin and Kram (2000) found that penguins waddle because it is more energetically efficient than

More information

Rules of Hurdling. Distance Between Hurdles

Rules of Hurdling. Distance Between Hurdles The Hurdle Events Introduction Brief discussion of rules, safety practices, and talent demands for the hurdles. Examine technical and training considerations for the hurdle events. 100 Meter Hurdles for

More information

Biomechanics and Models of Locomotion

Biomechanics and Models of Locomotion Physics-Based Models for People Tracking: Biomechanics and Models of Locomotion Marcus Brubaker 1 Leonid Sigal 1,2 David J Fleet 1 1 University of Toronto 2 Disney Research, Pittsburgh Biomechanics Biomechanics

More information

Kinematic and kinetic parameters associated with running in different shoes

Kinematic and kinetic parameters associated with running in different shoes Br J Sp Med 1994; 28(4) Kinematic and kinetic parameters associated with running in different shoes Peter J. McNair Ph and Robert N. Marshall* Ph Faculty of Health Studies, Auckland Technical Institute,

More information

Does Footfall Pattern in Forefoot Runners Change Over a Prolonged Run?

Does Footfall Pattern in Forefoot Runners Change Over a Prolonged Run? University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses 2014 Does Footfall Pattern in Forefoot Runners Change Over a Prolonged Run? Carl W. Jewell University

More information

USA Track & Field Heptathlon Summit- November

USA Track & Field Heptathlon Summit- November USA Track & Field Heptathlon Summit- November 1994 1 I. Technical considerations in the sprint hurdles Practical Biomechanics For the 100m Hurdles By Gary Winckler University of Illinois A. General flow

More information

SIMULTANEOUS RECORDINGS OF VELOCITY AND VIDEO DURING SWIMMING

SIMULTANEOUS RECORDINGS OF VELOCITY AND VIDEO DURING SWIMMING Portuguese Journal of Sport Sciences. 6:supl. 2, 32-35, 2006 SIMULTANEOUS RECORDINGS OF VELOCITY AND VIDEO DURING SWIMMING Albert B. Craig 1, Budd Termin2, and David R. Pendergast 2 1University of Rochester,

More information