Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Size: px
Start display at page:

Download "Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM"

Transcription

1 Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit of mass in the mks system is the milligram gram kilogram decigram 4. The diameter of a United States penny is closest to 10 0 m 10 1 m 10 2 m 10 3 m 5. The length of a dollar bill is approximately m m m m 6. The mass of a high school football player is approximately 10 0 kg 10 1 kg 10 2 kg 10 3 kg 7. Which object weighs approximately 1 Newton? dime paper clip physics student golf ball 8. The area of a page in a test booklet is closest to 0.6 cm 2 6 cm 2 60 cm cm 2 9. A baseball player runs 27.4 meters from the batter's box to first base, overruns first base by 3.0 meters, and then returns to first base. Compared to the total distance traveled by the player, the magnitude of the player's total displacement from the batter's box is 3.0 m shorter 6.0 m shorter 3.0 m longer 6.0 m longer 10. A student on an amusement park ride moves in a circular path with a radius of 3.5 meters once every 8.9 seconds. The student moves at an average speed of 0.39 m/s 1.2 m/s 2.5 m/s 4.3 m/s 11. Which graph best represents the motion of a block accelerating uniformly down an inclined plane?

2 12. Which pair of graphs represent the same motion? 13. Which two graphs best represent the motion of an object falling freely from rest near Earth's surface? 15. A softball is thrown straight up, reaching a maximum height of 20 meters. Neglecting air resistance, what is the ball's approximate vertical speed when it hits the ground? 10 m/sec 20 m/sec 15 m/sec 40 m/sec 16. An astronaut standing on a platform on the Moon drops a hammer. If the hammer falls 6.0 meters vertically in 2.7 seconds, what is its acceleration? 1.6 m/s m/s m/s m/s A student throws a baseball vertically upward and then catches it. If vertically upward is considered to be the positive direction, which graph best represents the relationship between velocity and time for the baseball? [Neglect friction.] 14. A 4.0-kilogram rock and a 1.0-kilogram stone fall freely from rest from a height of 100 meters. After they fall for 2.0 seconds, the ratio of the rock's speed to the stone's speed is 1:1 1:2 2:1 4:1 18. A skier starting from rest skis straight down a slope 50. meters long in 5.0 seconds. What is the magnitude of the acceleration of the skier? 20. m/s m/s m/s m/s 2

3 19. A car, initially traveling east with a speed of 5.0 meters per second, is accelerated uniformly at 2.0 meters per second 2 east for 10. seconds along a straight line. During this 10.-second interval the car travels a total distance of 50. m 60. m m m 20. A rocket initially at rest on the ground lifts off vertically with a constant acceleration of meters per second 2. How long will it take the rocket to reach an altitude of meters? s s s s 21. A child riding a bicycle at 15 meters per second accelerates at -3.0 meters per second 2 for 4.0 seconds. What is the child s speed at the end of this 4.0-second interval? 12 m/s 27 m/s 3.0 m/s 7.0 m/s 22. Which graph best represents the relationship between velocity and time for an object which accelerates uniformly for 2 seconds, then moves at a constant velocity for 1 second, and finally decelerates for 3 seconds?

4 23. Which graph best represents an object in equilibrium moving in a straight line? 24. Cars A and B both start from rest at the same location at the same time. Compared to the speed of car B at 6 seconds, the speed of car A at 6 seconds is less greater the same

5 25. Base your answer to the following question on the graph below which represents the relationship between speed and time for an object in motion along a straight line. During what time period was the car decelerating as it was moving right 0 to 1 s and 3 s to 4 s 1 s to 3 s and 5 s to 6 s 6 s to 10 s None of the above, it decelerates but is moving to the left 26. The graph below shows the velocity of a race car moving along a straight line as a function of time. What is the magnitude of the displacement of the car from t = 2.0 seconds to t = 4.0 seconds? 20. m 40. m 60. m 80. m

6 27. Base your answer to the following question on the information and diagram below. A student standing on a knoll throws a snowball horizontally 4.5 meters above the level ground toward a smokestack 15 meters away. The snowball hits the smokestack 0.65 second after being released. [Neglect air resistance.] At the instant the snowball is released, the horizontal component of its velocity is approximately 6.9 m/s 9.8 m/s 17 m/s 23 m/s Base your answers to questions 28 and 29 on the information and diagram below. 30. The graph below represents the relationship between speed and time for a car moving in a straight line. A child kicks a ball with an initial velocity of 8.5 meters per second at an angle of 35 with the horizontal, as shown. The ball has an initial vertical velocity of 4.9 meters per second and a total time of flight of 1.0 second. [Neglect air resistance.] 28. The horizontal component of the ball's initial velocity is approximately 3.6 m/s 7.0 m/s 4.9 m/s 13 m/s 29. The maximum height reached by the ball is approximately 1.2 m 2.5 m 4.9 m 8.5 m The magnitude of the car's acceleration is 1.0 m/s m/s 2 10 m/s m/s 2

7 Base your answers to questions 31 through 34 on the following information. In the diagram below, a 10.-kilogram sphere, A, is projected horizontally with a velocity of 30. meters per second due east from a height of 20. meters above level ground. At the same instant, a 20.-kilogram sphere, B, is projected horizontally with a velocity of 10. meters per second due west from a height of 80. meters above level ground. [Neglect air friction.] 35. Note that the question below only has three choices. The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction. 31. Initially, the spheres are separated by a horizontal distance of 100. meters. What is the horizontal separation of the spheres at the end of 1.5 seconds? 15 m 30 m 40. m 45 m 32. Compared to the vertical acceleration of sphere A, the vertical acceleration of sphere B is the same twice as great one-half as great four times as great 33. The magnitude of the horizontal acceleration of sphere A is 0.0 m/s m/s m/s 2 15 m/s Initially, the spheres are separated by a horizontal distance of 100. meters. What is the horizontal separation of the spheres at the end of 1.5 seconds? 15 m 30 m 40. m 45 m Compared to the horizontal component of the car's velocity at point A, the horizontal component of the car's velocity at point B is smaller greater the same 36. Two spheres, A and B, are simultaneously projected horizontally from the top of a tower. Sphere A has a horizontal speed of 40. meters per second and sphere B has a horizontal speed of 20. meters per second. Which statement best describes the time required for the spheres to reach the ground and the horizontal distance they travel? [Neglect friction and assume the ground is level.] Both spheres hit the ground at the same time and at the same distance from the base of the tower. Both spheres hit the ground at the same time, but sphere A lands twice as far as sphere B from the base of the tower. Both spheres hit the ground at the same time, but sphere B lands twice as far as sphere A from the base of the tower. Sphere A hits the ground before sphere B, and sphere A lands twice as far as sphere B from the base of the tower

8 37. The diagram represents a bicycle and rider traveling to the right at a constant speed. A ball is dropped from the hand of the cyclist. 40. Base your answer to the following question on the information and diagram below A golf ball leaves a golf club with an initial velocity of 40.0 meters per second at an angle of 40º with the horizontal. Which set of graphs best represents the horizontal motion of the ball relative to the ground? [Neglect air resistance.] 38. A ball is thrown horizontally from the top of a building with an initial velocity of 15 meters per second. At the same instant, a second ball is dropped from the top of the building. The two balls have the same path as they fall final velocity as they reach the ground initial horizontal velocity initial vertical velocity 39. A projectile is launched at an angle above the ground. The horizontal component of the projectile's velocity. vx, is initially 40. meters per second. The vertical component of the projectile's velocity, vy, is initially 30. meters per second. What are the components of the projectile's velocity after 2.0 seconds of flight? [Neglect friction.] vx = 40. m/s and vy = 10. m/s vx = 40. m/s and vy = 30. m/s vx = 20. m/s and vy = 10. m/s vx = 20. m/s and vy = 30. m/s What is the vertical component of the golf ball s initial velocity? 25.7 m/s 30.6 m/s 40.0 m/s 61.3 m/s 41. Four projectiles, A, B, C, and D, were launched from, and returned to, level ground. The data table below show the initial horizontal speed, initial vertical speed, and time of flight for each projectile. Which projectile traveled the greatest horizontal distance? [Neglect friction.] A B C D

9 Base your answers to questions 42 through 45 on the diagram and information below. A machine launches a tennis ball at an angle of 45 with the horizontal, as shown. The ball has an initial vertical velocity of 9.0 meters per second and an initial horizontal velocity of 9.0 meters per second. The ball reaches its maximum height 0.92 second after its launch. [Neglect air resistance and assume the ball lands at the same height above the ground from which it was launched.] 42. The speed at which the launcher fires tennis balls is constant, but the angle between the launcher and the horizontal can be varied. As the angle is decreased from 45 to 30., the range of the tennis balls decreases increases remains the same 43. The speed of the tennis ball as it leaves the launcher is approximately 4.5 m/s 8.3 m/s 13 m/s 18 m/s 44. The total horizontal distance traveled by the tennis ball during the entire time it is in the air is approximately 23 m 17 m 8.3 m 4.1 m 45. The speed at which the launcher fires tennis balls is constant, but the angle between the launcher and the horizontal can be varied. As the angle is decreased from 45 to 30., the range of the tennis balls decreases increases remains the same

10 46. Base your answer to the following question on the information and diagram below. A 60.-kilogram adult and a 30.-kilogram child are passengers on a rotor ride at an amusement park. When the rotating hollow cylinder reaches a certain constant speed, v, the floor moves downward. Both passengers stay "pinned" against the wall of the rotor, as shown in the diagram below. 48. Which graph best represents the relationship between the magnitude of the centripetal acceleration and the speed of an object moving in a circle of constant radius? Compared to the magnitude of the acceleration of the adult, the magnitude of the acceleration of the child is less greater the same 47. A 60.-kilogram adult and a 30.-kilogram child are passengers on a rotor ride at an amusement park. When the rotating hollow cylinder reaches a certain constant speed, v, the floor moves downward. Both passengers stay "pinned" against the wall of the rotor, as shown in the diagram below. Compared to the magnitude of the force acting on the adult, the magnitude of the force acting on the child is less greater the same

11 49. In the diagram below, S is a point on a car tire rotating at a constant rate. Which graph best represents the magnitude of the centripetal acceleration of point S as a function of time? Base your answers to questions 51 and 52 on the information and diagram below. The diagram shows a student seated on a rotating circular platform, holding a 2.0-kilogram block with a spring scale. The block is 1.2 meters from the center of the platform. The block has a constant speed of 8.0 meters per second. [Frictional forces on the block are negligible.] 50. An amusement park ride moves a rider at a constant speed of 14 meters per second in a horizontal circular path of radius 10. meters. What is the rider's centripetal acceleration in terms of g, the acceleration due to gravity? 1g 2g 3g 0g 51. Which statement best describes the block s movement as the platform rotates? Its velocity is directed tangent to the circular path, with an inward acceleration. Its velocity is directed tangent to the circular path, with an outward acceleration. Its velocity is directed perpendicular to the circular path, with an inward acceleration. Its velocity is directed perpendicular to the circular path, with an outward acceleration. 52. The reading on the spring scale is approximately 20. N 53 N 110 N 130 N

12 53. A car rounds a horizontal curve of constant radius at a constant speed. Which diagram best represents the directions of both the car s velocity, v, and acceleration, a? 54. The diagram below represents a ball undergoing uniform circular motion as it travels clockwise on a string. At the moment shown in the diagram, what are the correct directions of both the velocity and centripetal acceleration of the ball? 55. A rock dropped off a bridge takes 5 seconds to hit the water. Approximately what was the rock's velocity just before impact? 0 m/s 2 m/s 50 m/s 125 m/s 56. Two unequal masses falling freely from the same point above the earth's surface would experience the same acceleration decrease in potential energy increase in kinetic energy increase in momentum 57. If the mass of an object were doubled, its acceleration due to gravity would be halved doubled unchanged quadrupled 58. A -kilogram car travels at a constant speed of 20. meters per second around a horizontal circular track. The diameter of the track is meters. The magnitude of the car's centripetal acceleration is 59. A ball of mass M at the end of a string is swinging in a horizontal circular path of radius R at constant speed V. Which combination of changes would require the greatest increase in the centripetal force acting on the ball? doubling V and doubling R doubling V and halving R halving V and doubling R halving V and halving R Base your answers to questions 60 and 61 on the diagram below which shows a 2.0-kilogram cart traveling at a constant speed in a horizontal circle of radius 3.0 meters. The magnitude of the centripetal force of the cart is 24 Newtons. 60. In the position shown, the acceleration of the cart is 8.0 m/s 2 directed toward point A 8.0 m/s 2 directed toward point D 12 m/s 2 directed toward point A 12 m/s 2 directed toward point D 61. What is the speed of the cart? 6.0 m/s 16 m/s 36 m/s 4.0 m/s

13 Base your answers to questions 62 through 67 on the information and graph below. A machine fired several projectiles at the same angle,, above the horizontal. Each projectile was fired with a different initial velocity, vi. The graph below represents the relationship between the magnitude of the initial vertical velocity, viy, and the magnitude of the corresponding initial velocity, vi, of these projectiles 62. Determine the magnitude of the initial vertical velocity of the projectile, viy, when the magnitude of its initial velocity, vi, was 40. meters per second. 63. Determine the angle,, above the horizontal at which the projectiles were fired. 64. Determine the magnitude of the initial vertical velocity of the projectile, viy, when the magnitude of its initial velocity, vi, was 40. meters per second. [1] 65. Determine the angle,, above the horizontal at which the projectiles were fired. [1] 66. Calculate the magnitude of the initial horizontal velocity of the projectile, vix, when the magnitude of its initial velocity, vi, was 40. meters per second. [Show all work, including the equation and substitution with units.] [1] work [1] units 67. Calculate the magnitude of the initial horizontal velocity of the projectile, vix, when the magnitude of its initial velocity, vi, was 40. meters per second. [Show all work, including the equation and substitution with units.]

Unit 2 Review: Projectile Motion

Unit 2 Review: Projectile Motion Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

More information

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction.

The diagram below represents the path of a stunt car that is driven off a cliff, neglecting friction. 1. A baseball is thrown at an angle of 40.0 above the horizontal. The horizontal component of the baseball s initial velocity is 12.0 meters per second. What is the magnitude of the ball s initial velocity?

More information

Kinematics-Projectiles

Kinematics-Projectiles 1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest

More information

REVIEW : KINEMATICS

REVIEW : KINEMATICS 1 REVIEW 5-4-16: KINEMATICS Kinematics-Defining Motion 1 A student on her way to school walks four blocks east, three blocks north, and another four blocks east, as shown in the diagram. Compared to the

More information

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10-kilogram object at rest at point A. The object accelerates uniformly from point A to point B in

More information

1. downward 3. westward 2. upward 4. eastward

1. downward 3. westward 2. upward 4. eastward projectile review 1 Name 11-DEC-03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical

More information

TEACHER ANSWER KEY December 10, Projectile Review 1

TEACHER ANSWER KEY December 10, Projectile Review 1 Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]

More information

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec

D) 83 m D) Acceleration remains the same and speed increases. C) 216 m B) 6.0 m shorter A) 4.5 s A) 15 km/hr C) 47 m C) 20 m/sec B) 20 m/sec 1. A truck, initially traveling at a speed of 22 meters per second, increases speed at a constant rate of 2.4 meters per second 2 for 3.2 seconds. What is the total distance traveled by the truck during

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m Page 1 of 5 Sub work 10-10-02 Name 12-OCT-03 1. A car travels a distance of 98 meters in 10. seconds. What is the average speed of the car during this 10.-second interval? 1. 4.9 m/s 3. 49 m/s/ 2. 9.8

More information

Motion, Vectors, and Projectiles Review. Honors Physics

Motion, Vectors, and Projectiles Review. Honors Physics Motion, Vectors, and Projectiles Review Honors Physics The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. The shaded area under the

More information

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart Kinematics 1 Name: Date: 1. 4. A cart moving across a level surface accelerates uniformly at 1.0 meter per second 2 for 2.0 seconds. What additional information is required to determine the distance traveled

More information

Practice Test: Vectors and Projectile Motion

Practice Test: Vectors and Projectile Motion ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

More information

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds?

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds? Name: Date: 1. Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.9 s, what is the magnitude

More information

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on

More information

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

Physics Acceleration and Projectile Review Guide

Physics Acceleration and Projectile Review Guide Physics Acceleration and Projectile Review Guide Name: Major Concepts 1-D motion on the horizontal 1-D motion on the vertical Relationship between velocity and acceleration https://www.khanacademy.org/science/physics/one-dimensional-motion/acceleration-tutorial/a/acceleratio

More information

A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity.

A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity. 1991 Q31 A tennis player hits a ball at a height of 2.4 m. The ball has an initial horizontal velocity. The ball just passes over the net which is 0.6 m high and 6 m away from her. (Neglect air friction.)

More information

LINEAR MOTION. General Review

LINEAR MOTION. General Review LINEAR MOTION General Review 1. Velocity is to speed as displacement is to A. acceleration B. momentum C. time D. distance 1. Velocity is to speed as displacement is to A. acceleration B. momentum C. time

More information

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement

1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 1. Which one of the following is a vector quantity? A. time B. speed C. energy D. displacement 2. A car is travelling at a constant speed of 26.0 m/s down a slope which is 12.0 to the horizontal. What

More information

Angle Projectiles Class:

Angle Projectiles Class: Angle Projectiles Class: Name: Date: 1. The diagram here represents a ball being kicked by a foot and rising at an angle of 30 from the horizontal. The ball has an initial velocity of 5.0 meters per second.

More information

PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1

PYP 001 First Major Exam Code: Term: 161 Thursday, October 27, 2016 Page: 1 Term: 161 Thursday, October 27, 2016 Page: 1 *Read the following (20) questions and choose the best answer: 1 The motion of a swimmer during 30.0 minutes workout is represented by the graph below. What

More information

Physics Final Exam Review Fall 2013

Physics Final Exam Review Fall 2013 Physics Final Exam Review Fall 2013 The lines on the graph represent displacement vectors for the route along which a person moves. Use the figure to answer problems 1 2. 1. What is the total distance

More information

time v (vertical) time

time v (vertical) time NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

More information

7 O^^rMx^, 136. Note that the question below only has three choices.

7 O^^rMx^, 136. Note that the question below only has three choices. 136. Note that the question below only has three choices. 138. The diagram below shows a student throwing a baseball horizontally at 25 metei's per second from a dtff 4^ m^fers above il^e. level ground.

More information

AP Physics 1 - Test 04 - Projectile Motion

AP Physics 1 - Test 04 - Projectile Motion P Physics 1 - Test 04 - Projectile Motion Score: 1. stone thrown from the top of a tall building follows a path that is circular made of two straight line segments hyperbolic parabolic a straight line

More information

TWO DIMENSIONAL KINEMATICS

TWO DIMENSIONAL KINEMATICS PHYSICS HOMEWORK #11 TWO DIMENSIONAL [Remember that ALL vectors must be described by BOTH magnitude and direction!] 1. You walk 250. steps North and then 400. steps East. What is your displacement? (Distance

More information

Appendix : Categorization Task. Instructions

Appendix : Categorization Task. Instructions Appendix : Categorization Task Instructions Your task is to group the 25 problems below based upon similarity of solution into various groups on the sheet of paper provided. Problems that you consider

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms

More information

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.

5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following. Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.

More information

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

More information

Name: SOLUTIONS MIDTERM 2, Spring 2019

Name: SOLUTIONS MIDTERM 2, Spring 2019 Name: SOLUTIONS MIDTERM 2, Spring 2019 Solutions in bold. Print your name clearly above, and write and bubble in your student 800 number on the provided scantron. There are 20 equally-weighted problems

More information

Two dimensional kinematics. Projectile Motion

Two dimensional kinematics. Projectile Motion Two dimensional kinematics Projectile Motion 1. You throw a ball straight upwards with a velocity of 40m/s. How long before it returns to your hand? A. 2s B. 4s C. 6s D. 8s E. 10s 1.You throw a ball straight

More information

AP Physics B Fall Final Exam Review

AP Physics B Fall Final Exam Review Name: Date: AP Physics B Fall Final Exam Review 1. The first 10 meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 3 Kinematics in Two Dimensions Interactive Lecture Questions 3.1.1. A truck drives due south for 1.2 km in 1.5 minutes. Then, the truck

More information

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s

CHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for

More information

Review - Kinematic Equations

Review - Kinematic Equations Review - Kinematic Equations 1. In an emergency braking exercise, a student driver stops a car travelling at 83 km/h [W] in a time of 4.0 s. What is the car s acceleration during this time? (The answer

More information

b. What is the x-distance from the foot of the cliff to the point of impact in the lake?

b. What is the x-distance from the foot of the cliff to the point of impact in the lake? PROJECTILE MOTION An object launched into space without motive power of its own is called a projectile. If we neglect air resistance, the only force acting on a projectile is its weight, which causes its

More information

Biomechanics Sample Problems

Biomechanics Sample Problems Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does

More information

Higher Projectile Motion Questions

Higher Projectile Motion Questions Higher Projectile Motion Questions 1. a) Name the two components of motion in projectiles. b) What is the acceleration on Earth for each of these two components. 2. A pencil case is dropped vertically

More information

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?

1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g = +9.8ms

More information

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h.

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h. Physics Keller Midterm exam review The midterm exam will be seventy questions selected from the following. The questions will be changed slightly, but will remain essentially the same. 1) A truck is moving

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 20, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10.

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10. Practice exam semester 1 physics Walk this Way Activity, Graph Sketching and Recognition, Sonic Ranger Lab: Use the graph to the right for q s 1-3 1. Which object(s) is (are) not moving? 2. Which change

More information

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Monday 16 January 2017 Afternoon Time allowed: 1 hour 30 minutes You must have: the

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 12

BROCK UNIVERSITY. Name: Student #: Page 1 of 12 Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: July 2016 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 104 Examination date: 9 July 2016 Number of hours:

More information

WebAssign Ch. 8 Regular Physics (Homework)

WebAssign Ch. 8 Regular Physics (Homework) WebAssign Ch. 8 Regular Physics (Homework) Current Score : 23.85 / 40 ue : Monday, October 3 2011 11:00 PM MT THOMAS FOWLR Physics, section T1_P5_Carlson, Instructor: Sarah Carlson 1. /1.9 points GPhys09

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Hang from a pair of gym rings and the upward support forces of the rings will always

More information

Honors/AP Physics 1 Homework Packet #2

Honors/AP Physics 1 Homework Packet #2 Section 3: Falling Objects Honors/AP Physics 1 Homework Packet #2 1. A ball is dropped from a window 10 m above the sidewalk. Determine the time it takes for the ball to fall to the sidewalk. 2. A camera

More information

(2) An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s.

(2) An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s. 1. Linear motion Define the term acceleration. An object has an initial speed u and an acceleration a. After time t, its speed is v and it has moved through a distance s. The motion of the object may be

More information

Advanced Subsidiary / Advanced Level

Advanced Subsidiary / Advanced Level GCE Examinations Mechanics Module M1 Advanced Subsidiary / Advanced Level Paper K Time: 1 hour 30 minutes Instructions and Information Candidates may use any calculator except those with a facility for

More information

Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

Chapter : Linear Motion 2

Chapter : Linear Motion 2 Text: Chapter 2.5-2.9 Think and Explain: 4-8 Think and Solve: 2-4 Chapter 2.5-2.9: Linear Motion 2 NAME: Vocabulary: constant acceleration, acceleration due to gravity, free fall Equations: s = d t v =

More information

Circular Motion - Horizontal

Circular Motion - Horizontal Circular Motion - Horizontal Outcome(s): explain and apply the concepts of centripetal acceleration and centripetal force, as applied to uniform horizontal circular motion. A bucket being swung around

More information

Vector Practice Problems

Vector Practice Problems Vector Practice Problems Name: Use the diagram below to answer Questions #1-3. Each square on the diagram represents a 20-meter x 20- meter area. 1. If a person walks from D to H to G to C, then the direction

More information

Big Ideas 3 & 4: Kinematics 1 AP Physics 1

Big Ideas 3 & 4: Kinematics 1 AP Physics 1 Big Ideas 3 & 4: Kinematics 1 AP Physics 1 1. A ball is thrown vertically upward from the ground. Which pair of graphs best describes the motion of the ball as a function of time while it is in the air?

More information

Chapter 4: 2-D Kinematics

Chapter 4: 2-D Kinematics PHY 5 Ch 4. Solution Dr. Hael Shehadeh. Chapter 4: -D Kinematics Answers to Conceptual Questions. The component of velocit is first positive and then negative in a smmetric fashion. As a result, the average

More information

CHAPTER 3 TEST REVIEW

CHAPTER 3 TEST REVIEW AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Unit 2: Kinematics in 1-D Exam Preparation

Unit 2: Kinematics in 1-D Exam Preparation Unit 2: Kinematics in 1-D Exam Preparation 1. 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A mosquito flying at 3 m/s that encounters a breeze blowing at 3 m/s in the same direction

More information

Projectile Motion. Regardless of its path, a projectile will always follow these rules:

Projectile Motion. Regardless of its path, a projectile will always follow these rules: Projectile Motion What is a projectile? Regardless of its path, a projectile will always follow these rules: 1. A horizontally launched projectile moves both horizontally and vertically and traces out

More information

1. Determine his speed when he reaches the photo radar car.

1. Determine his speed when he reaches the photo radar car. Physics Unit Review 5 Use the following information to answer the next two questions. Mr. Buffi is cruising at 18.9 m/s when he sees a suspicious car (perhaps a photo radar car?) parked on the side of

More information

Section 1 Projectile Motion: Practice Problems 1. You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high.

Section 1 Projectile Motion: Practice Problems 1. You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high. Section 1 Projectile Motion: Practice Problems 1. You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high. How long does it take the stone to reach the bottom of

More information

Motion in 1 Dimension

Motion in 1 Dimension A.P. Physics 1 LCHS A. Rice Unit 1 Displacement, Velocity, & Acceleration: Motion in 1 Dimension In-Class Example Problems and Lecture Notes 1. Freddy the cat started at the 3 meter position. He then walked

More information

(i) Write down equations for x and y in terms of t. (iii) Find the range of the golf ball.

(i) Write down equations for x and y in terms of t. (iii) Find the range of the golf ball. 1 A golf ball is hit at an angle of 60 to the horizontal from a point, O, on level horizontal ground. Its initial speed is 20 m s 1. The standard projectile model, in which air resistance is neglected,

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds. b. Determine the sprinters velocity after 2 seconds have elapsed.

a. Determine the sprinter's constant acceleration during the first 2 seconds. b. Determine the sprinters velocity after 2 seconds have elapsed. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

PHYSICS 218 EXAM 1 Thursday, September 24, 2009

PHYSICS 218 EXAM 1 Thursday, September 24, 2009 PHYSICS 218 EXAM 1 Thursday, September 24, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:10-10:00 526 Recitation Wed 11:30-12:20 527 Recitation Wed 1:50-2:40 528 Recitation Mon 11:30-12:20

More information

Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a).

Calculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a). Ch3 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch3 Supplemental Due: 6:59pm on Monday, February 13, 2017 To understand how points are awarded, read the Grading

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

(a) Calculate the speed of the sphere as it passes through the lowest point of its path.

(a) Calculate the speed of the sphere as it passes through the lowest point of its path. 1991 Q33 A sphere of mass 3 kg on the end of a wire is released from rest and swings through a vertical distance of 0.4 m. (Neglect air friction.) (a) Calculate the speed of the sphere as it passes through

More information

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components

October 09, Ch04 2Dmotion.notebook. Honors Physics Chapter 4. Scalar Vector Resultant. Components Honors Physics Chapter 4 Scalar Vector Resultant Components 1 When we take two vectors and ADD them, the thing we get is called the RESULTANT, or VECTOR SUM. It is also possible to take a single vector

More information

Physics for Scientist and Engineers third edition Kinematics 2-D

Physics for Scientist and Engineers third edition Kinematics 2-D Kinematics 2-D A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction to the next town. She then drives in a direction sixty degrees south of east for 47.0 km to another

More information

Physics for Scientist and Engineers third edition Kinematics 2-D

Physics for Scientist and Engineers third edition Kinematics 2-D Kinematics 2-D A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction to the next town. She then drives in a direction sixty degrees south of east for 47.0 km to another

More information

Eg.#1 A diver steps off a 10. m. high diving board with an initial vertical velocity of zero and experiences an average acceleration 2

Eg.#1 A diver steps off a 10. m. high diving board with an initial vertical velocity of zero and experiences an average acceleration 2 1.3.1 Acceleration due to Gravity Defined as: For many years, it was thought that higher mass objects fall towards the Earth more quickly than lower mass objects. This idea was introduced in approximately

More information

General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey

General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey Name (print): I hereby declare upon my word of honor that I have neither given nor received unauthorized help on this work. Signature:

More information

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE

5. The magnitude of a vector cannot be smaller than the magnitude of any of its components. TRUE FALSE Physics 1 Exam 2 Practice S14 Name: Show work for ANY credit. Box answers. Assume 3 significant figures! Ignore air resistance. NEATNESS COUNTS. Conceptual Questions. (2 points each) 1. A 100 g ball rolls

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 26, 2002 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter.

6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. 6 Motion in Two Dimensions BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in

More information

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures.

Calculate the average acceleration during the 4.6 s time interval. Give your answer to an appropriate number of significant figures. Q1.The diagram below shows an electric two-wheeled vehicle and driver. (a) The vehicle accelerates horizontally from rest to 27.8 m s 1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram.

Calculate the size of the force(s) acting on Sarah just after the take- off, in position 2 in the above diagram. MECHANICS: MOTION QUESTIONS High Jump (2017;2) Sarah, a 55.0 kg athlete, is competing in the high jump where she needs to get her body over the crossbar successfully without hitting it. Where she lands,

More information

DATA EQUATIONS MATH ANSWER

DATA EQUATIONS MATH ANSWER HCP PHYSICS REVIEW SHEET MID TERM EXAM Concepts And Definitions 1. Definitions of fact, hypothesis, law, theory 2. Explain the scientific method 3. Difference between average and instantaneous speed and

More information

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase.

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase. HONORS PHYSICS PROBLEM SET NEWTON S LAWS & FORCES ONE DIMENSIONAL FORCES 1. The net external force on the propeller of a 0.75 kg model airplane is 17 N forward. What is the acceleration of the airplane?

More information

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion Chapter 2: Linear Motion Chapter 3: Curvilinear Motion Linear Motion Horizontal Motion - motion along x-axis Vertical Motion (Free-Falling Bodies) motion along y-axis Equation for Uniformly Accelerated

More information

Name: Section: Force and Motion Practice Test

Name: Section: Force and Motion Practice Test Name: Section: Force and Motion Practice Test Directions: For each of the questions or incomplete statements below, choose the best of the answer choices given and write your answer on the line. 1. Which

More information

Review Problems for Physics A Final

Review Problems for Physics A Final Review Problems for Physics A Final 1. The fastest helicopter, the Westland Lynx, can travel 3.33 km in the forward direction in just 30.0 s.what is the average velocity of this helicopter? Express your

More information

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM PHYSICS REVIEW SHEET 2010 MID-TERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed

More information

1D Kinematics Answer Section

1D Kinematics Answer Section 1D Kinematics 1. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s. What is the average velocity? a. 1.7 m/s c. 3.4 m/s b. 2.5 m/s d. zero 2. A truck moves 70

More information

Exam Unit 5: Motion and Forces

Exam Unit 5: Motion and Forces Exam Unit 5: Motion and Forces 1. Aleshia is moving forward at constant speed of 2 m/s. Which statement correctly describes Aleshia s movement? A. Her speed is increasing by 2 m/s every second. B. She

More information

VECTORS Important Questions from CBSE point of view

VECTORS Important Questions from CBSE point of view VECTORS Important Questions from CBSE point of view LEVEL-1 1. Two forces have their resultant equal to either. At what angle are they inclined? 2. Add a velocity of 30 m/s eastwards to a velocity of 40

More information

Linear Motion Worksheet (p. 1) Honors Physical Science Show K-U-E-S on your own paper where necessary. Otherwise answer completely on your own paper.

Linear Motion Worksheet (p. 1) Honors Physical Science Show K-U-E-S on your own paper where necessary. Otherwise answer completely on your own paper. Linear Motion Worksheet (p. 1) 1. A driver travels the Pennsylvania Turnpike (576 km) in 6.67 hours. What is her average speed in (a) km/h? (b) m/s? (c) mi/h? 86.3 km/h 24.0 m/s 53.5 mi/h 2. Light from

More information

EF 151 Final Exam - Spring, 2017 Page 3 Copy 223

EF 151 Final Exam - Spring, 2017 Page 3 Copy 223 EF 151 Final Exam - Spring, 2017 Page 3 Copy 223 Name: Section: 1. Enter your EXAM ID from your seating label. If you don t know your exam ID, enter 000. 0 1 2 3 4 5 6 7 8 9 Digit #1 Digit #2 Digit #3

More information

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch 1. In the laboratory, you are asked to determine the mass of a meter stick without using a scale of any kind. In addition to the meter stick, you may use any or all of the following equipment: - a set

More information

Midterm Exam: Making a Study Guide

Midterm Exam: Making a Study Guide Name: Class: Physics Teacher: Mr. Szopiak Date: Midterm Exam: Making a Study Guide This worksheet will help you and your classmates put together a pretty comprehensive guide to your midterm studying. Your

More information

Exercise on Projectile Motion (Unit-III)

Exercise on Projectile Motion (Unit-III) Engineering Mechanics Exercise on Projectile Motion (Unit-III) 1 A projectile is fired with velocity 620 m/s at an angle of 40 with horizontal ground. Find the range, time of flight, maximum height attained

More information

PHYSICS 218 EXAM 1 Monday, September 24, 2007

PHYSICS 218 EXAM 1 Monday, September 24, 2007 PHYSICS 218 EXAM 1 Monday, September 24, 2007 NAME: SECTION: 525 526 527 528 529 530 531 532 Note: 525 Recitation Thurs 2:20 529 Recitation Tues 9:35 526 Recitation Thurs 3:55 530 Recitation Tues 12:45

More information

BIOMECHANICAL MOVEMENT

BIOMECHANICAL MOVEMENT SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions - text book pages 169-172 1) For which of the following is the athlete s centre of mass most likely to lie outside of

More information

Secondary Physics: The Compass Rose, Cars and Tracks

Secondary Physics: The Compass Rose, Cars and Tracks Secondary Physics: The Compass Rose, Cars and Tracks Secondary Physics at the NASCAR Hall of Fame The Great Hall and Glory Road Focus object or destination in the Hall: Compass Rose, 18 compass lines,

More information