December 6, SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation.

Size: px
Start display at page:

Download "December 6, SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation."

Transcription

1 December 6, 2016 Aims: SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation. Agenda 1. Do Now 2. Class Practice 3. Independent Practice 4. Practicing our AIMS: Homework: M.6 Graphing Velocity How will you help our class earn all of our S.T.R.I.V.E. Points? 100% HW Club: You in? 1

2 Aim Check: 2

3 SCIENCE 8 Graphing Velocity M.6 Name: Date: Homeroom: Motion We like to MOVE IT, MOVE IT! OBJECTIVES: By the end of class, students will be able to SWBAT explain a position v time graph. SWBAT create a position v time graph for a situation. DO NOW A student records the position of a car every second for a period of time and plots the following distance v time graph. Illustrated below is the change in position of a car every second. 1. What is the car s motion relative to the starting point at time = 8 minutes? A. at rest at the starting point B. in motion at the starting point C. moving toward the starting point D. moving away from the starting point A student records the position of another car every second for a period of time and plots the following displacement v time graph. Illustrated below is the change in position of the car every second. 2. Which observation of an object moving from left to right did the student record? A. B. C. D. 3

4 4

5 DRAW ME A STORY! Nehemiah walked Ellis to a friend s house. They set off slowly and then Nehemiah increased his pace. After dropping Ellis off, Nehemiah turned around and walked slowly back home. Beyoncé rode her bike east from her home up a steep hill. After a while the slope eased up. At the top, she raced down the other side. Si Nai went for a jog to get ready for soccer season. At the end of the trail, he bumped into Marquis and stopped to talk. When Si Nai said good-bye to Marquis, he walked quickly back home. 5

6 MATH + REAL WORLD = SCIENCE **True Story ok, not really** CLASS PRACTICE There once was a speedy hare who bragged about how fast he could run. Tired of hearing him boast, Slow and Steady, the tortoise, challenged him to a race. All the animals in the forest gathered to watch. Hare ran down the road for five minutes and then paused to rest. He looked back at Slow and Steady and cried out, "How do you expect to win this race when you are walking along at your slow, slow pace?" Hare stretched himself out alongside the road and fell asleep, thinking, "There is plenty of time to relax." Slow and Steady walked and walked. He never, ever stopped until he came to the finish line another 10 minutes later. The animals who were watching cheered so loudly for Tortoise, they woke up Hare. Hare stretched and yawned and began to run again, but it was too late. Tortoise was over the line! After that, Hare always reminded himself, "Don't brag about your lightning pace, for Slow and Steady won the race!" DRAW THE STORY! Who traveled farther, the tortoise or the hare? Who traveled faster, the tortoise or the hare? 6

7 Position v Time Graphs Note 1: This type of graph displays how an object s position has changed with time. Note 2: The steeper the slope, the faster the position is changing. Note 3: A horizontal means the object is not changing position it is AT REST Note 4: A downward slope means the object is returning to the starting position. Example 1: A caterpillar climbs 10 cm up a flower in 5 minutes, and then climbs down 3 cm in 3 minutes to eat a leaf. It stops for 5 minutes to eat the leaf. Motion 1: Motion 2: Motion 3: Example 2: A relay race runner goes forwards 8 meters in 4 seconds, and then realizes she forgot the baton! She takes another 4 seconds to travel back 8 meters to pick it up, and then sprints forward 5 meters in 5 seconds before falling down for the rest of the race(from being so dizzy). Motion 1: Motion 2: Motion 3: Motion 4: 7

8 CHECK YO SELF Challenge your understanding of Position vs. Time graphs, by explaining what is going on in the graphs below. You don t need to write a creative story just explain the movement. #1 #2 #3 #4 8

9 INDEPENDENT PRACTICE Directions: Read and ANNOTATE the information before you solve the problem. 9

10 1. Jen left her home and drove to school in the morning, as shown in the accompanying graph. On her drive to school she realized that she forgot her bookbag and had to return home before driving back to school for a 3 hour ACT prep class. Explain what is happening during each part of the graph. AB : BC : CD : DE : 10

11 Show your work, circle your answer, and include the units. No work, no circle, no units? NO CREDIT No stories this time just graphs! Find the velocity of each graph. 90 m 75 m 60 m 45 m 30 m 15 m Displacement vs. Time Step 1: given: needed: Step 2: Plug into the formula Step 3: Solve 0 m 0 s 1 s 2 s 3 s 4 s 5 s 6 s Step 4: Check your work Displacement vs. Time Step 1: 90 m 75 m Step 2: 60 m 45 m Step 3: 30 m 15 m 0 m 0 s 2 s 4 s 6 s 8 s 10 s Step 4: Displacement vs. Time Step 1: 90 m 75 m Step 2: 60 m 45 m 30 m 15 m 0 m 0 s 2 s 4 s 6 s 8 s 10 s Step 3: Step 4: 11

12 12

13 BEAST MODE Ms. Bumpus is in running club. She graphed her movement at the beginning of running on Tuesday. At what speeds was she running? What was her average speed? 6 m 5 m 4 m 3 m 2 m Displacement vs. Time C B A Think of this as three separate graphs, put together. STEP 1: Understand What s going on in part A? What s going on in Part B? 1 m 0 m 0 s 2 s 4 s 6 s 8 s 10 s What s going on in Part C? STEP 2: Calculate the distance and time. Part A Part B Part C Total Distance Total Distance Time Total Time STEP 3: Use the formula to figure out the speeds (slope) for each those sections Part A: Part B: Part C: STEP 4: What is the overall average speed? Use the TOTALS 13

14 Remember: Horizontal line means no motion. 50 km Displacement vs. Time 1. What is the speed at Point A (5 minutes)? Distance: 40 km B C Time: 30 km Formula and Solve: 20 km 10 km A 0 km 0 min 5 min 10 min 15 min 20 min 25 min 30 min 2. What is happening at Point B (between 10 minutes and 25 minutes)? 3. What is the speed after Point C (25 minutes)? CAREFUL! You need the CHANGE in position and time! Distance: Time: Formula and Solve: 4. What is average speed over the entire time (0 30 minutes)? Part 1 Part 2 Part 3 TOTAL Average Speed Distance Time Speed XXXXXXXXXX 5. At what part is the object moving the fastest? 14

15 Science 8 Name: SKILL SNAPSHOT Date: M.6: Graphing Velocity Homeroom: Quick Notes: Like A Scholar? Directions: Read and ANNOTATE the information before you solve the problem. Yes No Redo? Yes No 1. An airplane is descending to land at the airport. During its decent it had to hover until the landing was cleared of other planes. Explain what is occurring during each of the segments. AB : BC : CD : The accompanying graph shows Marie s distance from home (A) to work (F) at various times during her drive. 2. Identify the point on the graph that represents when she turned back around to go home for her briefcase. Explain how you arrived at your conclusion. 15

16 Show your work, circle your answer, and include the units. No work, no circle, no units? NO CREDIT 3. What is the average speed of the objects in each of these graphs? Displacement vs. Time Displacement vs. Time 90 m 75 m 60 m 45 m 30 m 15 m 0 m 0 s 2 s 4 s 6 s 8 s 10 s 90 m 75 m 60 m 45 m 30 m 15 m 0 m 0 s 2 s 4 s 6 s 8 s 10 s 16

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers.

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Motion Graphs 6 The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers. Descriptions: 1. The car is stopped. 2. The car is traveling

More information

Homework: Turn in Tortoise & the Hare

Homework: Turn in Tortoise & the Hare Your Learning Goal: After students experienced speed in the Runner s Speed Lab, they will be able to describe how different speeds look like on a graph with 100% accuracy. Table of Contents: Notes: Graphs

More information

Motion. 1 Describing Motion CHAPTER 2

Motion. 1 Describing Motion CHAPTER 2 CHAPTER 2 Motion What You ll Learn the difference between displacement and distance how to calculate an object s speed how to graph motion 1 Describing Motion 2(D), 4(A), 4(B) Before You Read Have you

More information

Motion Graphing Packet

Motion Graphing Packet Name: Motion Graphing Packet This packet covers two types of motion graphs Distance vs. Time Graphs Velocity vs. Time Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes

More information

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour.

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. Speed How are instantaneous speed and average speed different? Average

More information

x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m

x 2 = (60 m) 2 + (60 m) 2 x 2 = 3600 m m 2 x = m 3.1 Track Question a) Distance Traveled is 1600 m. This is length of the path that the person took. The displacement is 0 m. The person begins and ends their journey at the same position. They did not

More information

Physical Science You will need a calculator today!!

Physical Science You will need a calculator today!! Physical Science 11.3 You will need a calculator today!! Physical Science 11.3 Speed and Velocity Speed and Velocity Speed The ratio of the distance an object moves to the amount of time the object moves

More information

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing.

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Distance vs. Time Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Plotting distance against time can tell you a lot about

More information

Unit 1 Uniform Velocity & Position-Time Graphs

Unit 1 Uniform Velocity & Position-Time Graphs Name: Unit 1 Uniform Velocity & Position-Time Graphs Hr: Grading: Show all work, keeping it neat and organized. Show equations used and include units in all work. Vocabulary Distance: how far something

More information

Distance-time graphs

Distance-time graphs Distance-time graphs Name & Set 1 Someone runs a race at a steady speed. The runner s motion is plotted as a distance-time graph below. distance /m 100 80 60 40 20 0 0 2 4 6 8 10 12 time /s (i) Over what

More information

Chapter 11 Motion. Displacement-. Always includes Shorter than distance

Chapter 11 Motion. Displacement-. Always includes Shorter than distance Chapter 11 Motion Section 1 - an object s change in position relative to a reference point. Observe objects in to other objects. international unit for. Frame of Reference Frame of reference- a system

More information

Vocabulary. Page 1. Distance. Displacement. Position. Average Speed. Average Velocity. Instantaneous Speed. Acceleration

Vocabulary. Page 1. Distance. Displacement. Position. Average Speed. Average Velocity. Instantaneous Speed. Acceleration Vocabulary Term Definition Distance Displacement Position Average Speed Average Velocity Instantaneous Speed Acceleration Page 1 Homer walked as follows: Starting at the 0,0 coordinate, he walked 12 meters

More information

Chapter 11 Motion. Section 1

Chapter 11 Motion. Section 1 Chapter 11 Motion Objectives: Section 1 Use a frame of reference to describe motion Differentiate between Speed and Velocity Calculate the speed of an object Use graphs to describe speed 1 Observing Motion

More information

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Exam 1 Please write your CID Colton 2-3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Compare the scalar of speed and the vector of velocity.

Compare the scalar of speed and the vector of velocity. Review Video QOD 2/14/12: Compare the scalar of speed and the vector of velocity. What are the equations for each? Feb 14 6:51 AM 1 Imagine that you are a race car driver. You push on the accelerator.

More information

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables

Last First Date Per SETTLE LAB: Speed AND Velocity (pp for help) SPEED. Variables. Variables DISTANCE Last First Date Per SETTLE LAB: Speed AND Velocity (pp108-111 for help) Pre-Activity NOTES 1. What is speed? SPEED 5-4 - 3-2 - 1 2. What is the formula used to calculate average speed? 3. Calculate

More information

D/T = S. Motion Math pages 6 & 7 in your little book. Chp 5 Little Book, Motion Math & Work Sheet Answers:

D/T = S. Motion Math pages 6 & 7 in your little book. Chp 5 Little Book, Motion Math & Work Sheet Answers: Chp 5 Little Book, Motion Math & Work Sheet Answers: Be sure to show YOUR work and the formulas for credit! Motion Math pages 6 & 7 in your little book Solve the following problems. Show all your work

More information

Section 1. Objectives:

Section 1. Objectives: Chapter 2 Motion Objectives: Section 1 Use a frame of reference to describe motion Differentiate between Speed and Velocity Calculate the speed of an object Use graphs to describe speed Observing Motion

More information

Homework Helpers Sampler

Homework Helpers Sampler Homework Helpers Sampler This sampler includes s for Algebra I, Lessons 1-3. To order a full-year set of s visit >>> http://eurmath.link/homework-helpers Published by the non-profit Great Minds. Copyright

More information

CHANGES IN FORCE AND MOTION

CHANGES IN FORCE AND MOTION reflect CRACK! That s the sound of a bat hitting a baseball. The ball fl ies through the air and lands over the fence for a home run. The motion of a batted ball seems simple enough. Yet, many forces act

More information

Student Exploration: Distance-Time Graphs

Student Exploration: Distance-Time Graphs Name: Date: Student Exploration: Distance-Time Graphs Vocabulary: speed, y-intercept Prior Knowledge Questions (Do these BEFORE using the Gizmo.) Max ran 50 meters in 10 seconds. Molly ran 30 meters in

More information

HONORS PHYSICS One Dimensional Kinematics

HONORS PHYSICS One Dimensional Kinematics HONORS PHYSICS One Dimensional Kinematics LESSON OBJECTIVES Be able to... 1. use appropriate metric units and significant figures for given measurements 2. identify aspects of motion such as position,

More information

Math 10 Lesson 3-3 Interpreting and Sketching Graphs

Math 10 Lesson 3-3 Interpreting and Sketching Graphs number of cards Math 10 Lesson 3-3 Interpreting and Sketching Graphs I. Lesson Objectives: 1) Graphs communicate how two things are related to one another. Straight, sloped lines indicate a constant change

More information

2. On a position-time graph such as Figure 2-18, what represents the velocity?

2. On a position-time graph such as Figure 2-18, what represents the velocity? HONORS PHYSICS PROBLEM SET ONE DIMENSIONAL MOTION DISPLACEMENT AND VELOCITY 1. On the graph in Figure 2-18, what is the total distance traveled during the recorded time interval? What is the displacement?

More information

Name: Date Due: Motion. Physical Science Chapter 2

Name: Date Due: Motion. Physical Science Chapter 2 Name: Date Due: Motion Physical Science Chapter 2 What is Motion? 1. Define the following terms: a. motion= a. frame of reference= b. distance= c. vector= d. displacement= 2. Why is it important to have

More information

Add this important safety precaution to your normal laboratory procedures:

Add this important safety precaution to your normal laboratory procedures: Student Activity Worksheet Speed and Velocity Are You Speeding? Driving Question What is speed and how is it related to velocity? Materials and Equipment For each student or group: Data collection system

More information

Speed and Acceleration. Measuring motion

Speed and Acceleration. Measuring motion Speed and Acceleration Measuring motion Measuring Distance Meter international unit for measuring distance. 1 mm = 50 m Calculating Speed Speed (S) = distance traveled (d) / the amount of time it took

More information

Distance, Displacement, speed, velocity, acceleration

Distance, Displacement, speed, velocity, acceleration Problem 1 Distance, Displacement, speed, velocity, acceleration In the 2008 Olympics, Jamaican sprinter Usain Bolt shocked the world as he ran the 100-meter dash in 9.69 seconds. Determine Usain's average

More information

Representing the relation between quantities

Representing the relation between quantities Test: Niklas gets on his bike and starts a ride from his home. Then he rides along the street with constant speed before it carves up a hill. On top of the hill, he pauses for a few minutes to enjoy the

More information

Grade 4. Practice Test. The Hare and the Tortoise The Choppers and the Wrecks

Grade 4. Practice Test. The Hare and the Tortoise The Choppers and the Wrecks Name Date The Hare and the Tortoise The Choppers and the Wrecks Today you will read two passages. Read these sources carefully to gather information to answer questions and write an essay. Aesop s The

More information

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation?

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation? J Hart Interactive Algebra 1 Classwork Exploratory Challenge 1. Watch the first 1:08 minutes of the video below and describe in words the motion of the man. Elevation vs. Time #2 [http://www.mrmeyer.com/graphingstories1/graphingstories2.mov.

More information

1.6 Sketching a Piecewise Function

1.6 Sketching a Piecewise Function 1.6 Sketching a Piecewise Function Now that we understand qualitative descriptions of graphs, we can use that information to sketch graphs of a function or give a verbal description of an already sketched

More information

Shedding Light on Motion Episode 4: Graphing Motion

Shedding Light on Motion Episode 4: Graphing Motion Shedding Light on Motion Episode 4: Graphing Motion In a 100-metre sprint, when do athletes reach their highest speed? When do they accelerate at the highest rate and at what point, if any, do they stop

More information

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?

1. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit? Chapter Problems Motion at Constant Speed Class Work. A rabbit can cover a distance of 80 m in 5 s. What is the speed of the rabbit?. During the first 50 s a truck traveled at constant speed of 5 m/s.

More information

Physics 11 Honours Lesson 3 Distance and Displacement

Physics 11 Honours Lesson 3 Distance and Displacement Name: Block: Physics 11 Honours Lesson 3 Distance and Displacement In physics, every measured quantity is either a or a. Scalars: For example: Vectors: For example: Note: Vectors are either written in

More information

Do Now 10 Minutes Topic Speed and Velocity

Do Now 10 Minutes Topic Speed and Velocity Do Now 10 Minutes Topic Speed and Velocity Clear off everything from your desk, except for a calculator and something to write with. We re taking a pop quiz. Homework Complete the Distance vs. Displacement

More information

Introduction to solving acceleration problems

Introduction to solving acceleration problems Introduction to solving acceleration problems We learned previously that speed is a function of distance and time: s = d t We also learned that velocity is a nearly identical formula. The difference is

More information

Exam 1 Kinematics September 17, 2010

Exam 1 Kinematics September 17, 2010 Physics 16 Name KEY Exam 1 Kinematics September 17, 21 This is a closed book examination. You may use a 3x5 index card that you have made with any information on it that you would like. You must have your

More information

2 Motion BIGIDEA Write the Big Idea for this chapter.

2 Motion BIGIDEA Write the Big Idea for this chapter. 2 Motion BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in the What I Want to

More information

Speed Reading. Forces Cause Change. The force of a bat hitting a baseball causes the baseball to change direction.

Speed Reading. Forces Cause Change. The force of a bat hitting a baseball causes the baseball to change direction. Speed Reading Forces Cause Change The force of a bat hitting a baseball causes the baseball to change direction. The force of the wind blowing can cause a sailboat to change position as the sail is pushed.

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. THE DISTANCE-TIME RELATIONSHIP Q1. A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between

More information

Physics for Scientist and Engineers third edition Kinematics 1-D

Physics for Scientist and Engineers third edition Kinematics 1-D Kinematics 1-D The position of a runner as a function of time is plotted along the x axis of a coordinate system. During a 3.00 s time interval, the runner s position changes from x1=50.0 m to x2= 30.5

More information

1.67 m/s m/s. 4 m/s

1.67 m/s m/s. 4 m/s Physics Problem Set 2 Week 2 (5620108) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1. Question Details OSColPhys1 2.P.043.WA. [2707255] An athlete is training on a 100 m long linear track. His

More information

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation?

3. Answer the following questions with your group. How high do you think he was at the top of the stairs? How did you estimate that elevation? Classwork Exploratory Challenge 1. Watch the first 1:08 minutes of the video below and describe in words the motion of the man. Elevation vs. Time #2 [http://www.mrmeyer.com/graphingstories1/graphingstories2.mov.

More information

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the

SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the SPEED, VELOCITY, ACCELERATION, & NEWTON STUDY GUIDE - Answer Sheet 1) The acceleration of an object would increase if there was an increase in the A) mass of the object. B) force on the object. C) inertia

More information

Table of Contents STANDARD 1.F.

Table of Contents STANDARD 1.F. Table of Contents TC Assignments Page # 7. Textbook scavenger hunt 8. Bubble gum lab 9. Averages. Scientific method quiz. Averages handout. Motion Position notes. Speed and Graphing STANDARD.F. Students

More information

JR. GENIUS EDUCATIONAL SERVICES INC.

JR. GENIUS EDUCATIONAL SERVICES INC. 1 Name: 1. Multiple Choice: 25 marks Copy to Scantron Card after finding the answer on the sheet. Fill in the Scantron card in the last 5 min. of the test. Do Short section first. 1. You are riding your

More information

Practice Problem. How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2?

Practice Problem. How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2? Practice Problem How long will it take a car going from 10 m/s to 50 m/s if the acceleration is 4 m/s2? Practice Problem If a car slams on its breaks and comes to a complete stop, after driving for 20

More information

You should know how to find the gradient of a straight line from a diagram or graph. This next section is just for revision.

You should know how to find the gradient of a straight line from a diagram or graph. This next section is just for revision. R1 INTERPRET THE GRADIENT OF A STRAIGHT LINE GRAPH AS A RATE OF CHANGE; RECOGNISE AND INTERPRET GRAPHS THAT ILLUSTRATE DIRECT AND INVERSE PROPORTION (foundation and higher tier) You should know how to

More information

time v (vertical) time

time v (vertical) time NT4E-QRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released

More information

2. A homemade car is capable of accelerating from rest to 100 km hr 1 in just 3.5 s. Assuming constant acceleration, find:

2. A homemade car is capable of accelerating from rest to 100 km hr 1 in just 3.5 s. Assuming constant acceleration, find: Preliminary Work 1. A motorcycle accelerates uniformly from rest to a speed of 100 km hr 1 in 5 s. Find: (a) its acceleration (b) the distance travelled in that time. [ Answer: (i) a = 5.56 ms 2 (ii) x

More information

Teacher's Manual. First Printing: September Master Books P.O. Box 726 Green Forest, AR Printed in the United States of America

Teacher's Manual. First Printing: September Master Books P.O. Box 726 Green Forest, AR Printed in the United States of America Teacher's Manual First Printing: September 2008 First Printing: February 2009 Copyright 2009 by Tom DeRosa and Carolyn Reeves. All rights reserved. No part of this book may be reproduced in any manner

More information

8.6B SS - differentiate between speed, velocity, and acceleration

8.6B SS - differentiate between speed, velocity, and acceleration 8.6B SS - differentiate between speed, velocity, and acceleration What is the difference between speed, acceleration and velocity? How is speed calculated? How do we know if something is moving quickly

More information

Movement and Position

Movement and Position Movement and Position Book pg 1-4 Syllabus 1.2, 1.3 and 1.6 Milhouse Remember what you see! Mo Mr. Burns Sideshow Bob Groundkeeper Willy Net Flanders Questions Which hand is Ned Flanders waving? - left

More information

4 days a week least 45min of a sprinting/interval routine (10min warm least 30 min of sprinting/intervals, 5 min cool down)

4 days a week least 45min of a sprinting/interval routine (10min warm least 30 min of sprinting/intervals, 5 min cool down) RUNNING SCHEDULE 2 days a week = @ least a 3 mile run 4 days a week = @ least 45min of a sprinting/interval routine (10min warm up, @ least 30 min of sprinting/intervals, 5 min cool down) RUNNING LEVEL

More information

How should each run feel?

How should each run feel? How should each feel? There are a number of different paces that you should aim to master that will make up your : Easy fully conversational at the speed of chat and about 6/10 effort. Steady conversational,

More information

PHYSICS 105. Assignment #3 Due by 10 pm September 29, DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am

PHYSICS 105. Assignment #3 Due by 10 pm September 29, DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am PHYSICS 105 Assignment #3 Due by 10 pm September 9, 009 NAME: DISCUSSION SECTION: [ ] D7 W 9 am [ ] D8 W 10 am [ ] HS W 10 am [ ] D9 W 11 am [ ] F 1 W 1 pm [ ] F W pm [ ] F3 W 3 pm [ ] F4 W 4 pm [ ] F5

More information

REAL LIFE GRAPHS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

REAL LIFE GRAPHS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier Mathematics Revision Guides Real Life Graphs Page 1 of 19 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier REAL LIFE GRAPHS Version: 2.1 Date: 20-10-2015 Mathematics Revision Guides

More information

Lesson 5.3 Interpreting and Sketching Graphs Exercises (pages )

Lesson 5.3 Interpreting and Sketching Graphs Exercises (pages ) Lesson 5.3 Interpreting and Sketching Graphs Exercises (pages 281 283) A 3. a) Bear F has the greatest mass because it is represented by the point on the graph farthest to the right and the horizontal

More information

Chapter : Linear Motion 2

Chapter : Linear Motion 2 Text: Chapter 2.5-2.9 Think and Explain: 4-8 Think and Solve: 2-4 Chapter 2.5-2.9: Linear Motion 2 NAME: Vocabulary: constant acceleration, acceleration due to gravity, free fall Equations: s = d t v =

More information

Supplemental Problems

Supplemental Problems REPRESENTING MOTION 1. An airplane traels at a constant speed, relatie to the ground, of 900.0 km/h. a. How far has the airplane traeled after 2.0 h in the air? x t (900.0 km/h)(2.0 h) 1800 km b. How long

More information

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds?

2. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.0 m/s 2. How far will the car travel in 12 seconds? Name: Date: 1. Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.9 s, what is the magnitude

More information

(Lab Interface BLM) Acceleration

(Lab Interface BLM) Acceleration Purpose In this activity, you will study the concepts of acceleration and velocity. To carry out this investigation, you will use a motion sensor and a cart on a track (or a ball on a track, if a cart

More information

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m

Kinematics Review. What distance did the object travel in moving from point A to point B? A) 2.5 m B) 10. m C) 20. m D) 100 m Kinematics Review 1. Base your answer to the following question on the diagram below which represents a 10-kilogram object at rest at point A. The object accelerates uniformly from point A to point B in

More information

Where are you right now? How fast are you moving? To answer these questions precisely, you

Where are you right now? How fast are you moving? To answer these questions precisely, you 4.1 Position, Speed, and Velocity Where are you right now? How fast are you moving? To answer these questions precisely, you need to use the concepts of position, speed, and velocity. These ideas apply

More information

Unit 1: Uniform Motion

Unit 1: Uniform Motion Unit 1: Uniform Motion Name Speed and Velocity Problems. Show every step and report all answers with appropriate units. 1. What is the average speed of a cheetah that sprints 100 m in 4 s? 2. How about

More information

Due Next Class: U1.HW1.Dist/Disp & P-t Graphs All (problems 1-3) Do Now: 1. Walk in silently.

Due Next Class: U1.HW1.Dist/Disp & P-t Graphs All (problems 1-3) Do Now: 1. Walk in silently. Do Now: 1. Walk in silently. Due Next Class: U1.HW1.Dist/Disp & P-t Graphs All (problems 1-3) 2. Grab a calculator and any papers for today. 3. Put your homework on the corner of your desk. 4. Usain Bolt

More information

Unit 3 ~ Learning Guide Name:

Unit 3 ~ Learning Guide Name: Unit 3 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

University of Colorado-Boulder MATH 1300 Homework 1

University of Colorado-Boulder MATH 1300 Homework 1 Turn in the following problems: 1. Consider the following mathematical statements. Determine if the statements are always true, sometimes true, or never true. (a) (x + 2) 4 = x 4 + 16 (b) x 4 + 8x 2 +

More information

Broughton High School of Wake County

Broughton High School of Wake County 1 2 Physical Science Notebook Table of Contents Chapter 2 Motion: Speed & Acceleration Pg. # Date Description Turned In 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Received Back 3

More information

General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey

General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey General Physics Physics 101 Test #1 Fall 2018 Friday 9/21/18 Prof. Bob Ekey Name (print): I hereby declare upon my word of honor that I have neither given nor received unauthorized help on this work. Signature:

More information

Motion in 1 Dimension

Motion in 1 Dimension A.P. Physics 1 LCHS A. Rice Unit 1 Displacement, Velocity, & Acceleration: Motion in 1 Dimension In-Class Example Problems and Lecture Notes 1. Freddy the cat started at the 3 meter position. He then walked

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 3 Kinematics in Two Dimensions Interactive Lecture Questions 3.1.1. A truck drives due south for 1.2 km in 1.5 minutes. Then, the truck

More information

Jeddah Knowledge International School. Science Revision Pack Answer Key Quarter 3 Grade 10

Jeddah Knowledge International School. Science Revision Pack Answer Key Quarter 3 Grade 10 Jeddah Knowledge International School Science Revision Pack Answer Key 2016-2017 Quarter 3 Grade 10 Name: Section: ANSWER KEY- SCIENCE GRADE 10, QUARTER 3 1 1. What are the units for mass? A Kilograms

More information

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion Problems: 1. Once you have recorded the calibration frame for a data collection, why is it important to make sure the camera does not shut off? hat happens if the camera automatically shuts off after being

More information

Warm up # 20. Table of Contents TC1

Warm up # 20. Table of Contents TC1 Warm up # 20 Try and describe where something is located in class. Table of Contents TC1 Assignments Page # 7. Textbook scavenger hunt 8. Bubble gum lab 9. Averages 10. Scientific method quiz 11. Motion

More information

Photo Credits L = left, TL = top left, Bl = bottom left, R = right,

Photo Credits L = left, TL = top left, Bl = bottom left, R = right, First Printing: February 2009 Copyright 2009 by Tom DeRosa and Carolyn Reeves. All rights reserved. No part of this book may be reproduced in any manner whatsoever without written permission of the publisher

More information

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should: This unit deals with the speed of objects. Speed is a basic concept used to quantify an object s movement, which can be measured by positional changes over time. It is important to express and object s

More information

QUICK WARM UP: Thursday 3/9

QUICK WARM UP: Thursday 3/9 Name: pd: Unit 6, QUICK WARM UP: Thursday 3/9 1) The slope of a distance vs. time graph shows an object s. 2) The slope of a position vs. time graph shows an object s. 3) Can an object have a constant

More information

4.7 Uniform Motion (work).notebook November 15, UNIFORM MOTION

4.7 Uniform Motion (work).notebook November 15, UNIFORM MOTION 4.7 UNIFORM MOTION When an object moves at a constant speed, or rate, it is said to be in uniform motion. The formula d = rt is used to solve uniform motion problems. Example 1 An airplane flies 1000 miles

More information

Ch. 2 & 3 Velocity & Acceleration

Ch. 2 & 3 Velocity & Acceleration Ch. 2 & 3 Velocity & Acceleration Objective: Student will be able to Compare Velocity to Speed Identify what is acceleration Calculate velocity and acceleration from an equation and from slope of a graph.

More information

Movement and Position

Movement and Position Movement and Position Syllabus points: 1.2 plot and interpret distance-time graphs 1.3 know and use the relationship between average speed, distance moved and 1.4 describe experiments to investigate the

More information

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart

Kinematics 1. A. coefficient of friction between the cart and the surface. B. mass of the cart. C. net force acting on the cart Kinematics 1 Name: Date: 1. 4. A cart moving across a level surface accelerates uniformly at 1.0 meter per second 2 for 2.0 seconds. What additional information is required to determine the distance traveled

More information

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion

Chapter 2: Linear Motion. Chapter 3: Curvilinear Motion Chapter 2: Linear Motion Chapter 3: Curvilinear Motion Linear Motion Horizontal Motion - motion along x-axis Vertical Motion (Free-Falling Bodies) motion along y-axis Equation for Uniformly Accelerated

More information

TRAINING PLAN. Half Marathon Training Plan - Beginner

TRAINING PLAN. Half Marathon Training Plan - Beginner TRAINING PLAN Half Marathon Training Plan - Beginner THIS TRAINING PLAN, PUT TOGETHER BY OUR COACHING PARTNERS RUNNINGWITHUS, IS DESIGNED TO GET YOU TO THE START LINE OF THE HALF MARATHON FEELING PREPARED

More information

HALF MARATHON - GO THE DISTANCE PROGRAM

HALF MARATHON - GO THE DISTANCE PROGRAM HALF MARATHON - GO THE DISTANCE PROGRAM If you have questions regarding any of the training programs feel free to contact Bruce Deacon by email at CoachBruce@runvictoriamarathon.com. As you read through

More information

HALF IRONMAN TRAINING PROGRAMME

HALF IRONMAN TRAINING PROGRAMME HALF IRONMAN TRAINING PROGRAMME Here is a basic Half Ironman programme you can take the lead from. It is a 15 week programme which means you count back 15 weeks and then you start the programme. Until

More information

1 An object moves at a constant speed of 6 m/s. This means that the object:

1 An object moves at a constant speed of 6 m/s. This means that the object: Slide 1 / 57 1 n object moves at a constant speed of 6 m/s. This means that the object: Increases its speed by 6 m/s every second ecreases its speed by 6 m/s every second oesn t move Has a positive acceleration

More information

AP Physics B Summer Homework (Show work)

AP Physics B Summer Homework (Show work) #1 NAME: AP Physics B Summer Homework (Show work) #2 Fill in the radian conversion of each angle and the trigonometric value at each angle on the chart. Degree 0 o 30 o 45 o 60 o 90 o 180 o 270 o 360 o

More information

The Math and Science of Bowling

The Math and Science of Bowling The Report (100 : The Math and Science of Bowling 1. For this project, you will need to collect some data at the bowling alley. You will be on a team with one other student. Each student will bowl a minimum

More information

4 WEEK HALF IRONMAN TRIATHLON TRAINING PROGRAM 4 WEEKS: The training sessions will be as follows per week:

4 WEEK HALF IRONMAN TRIATHLON TRAINING PROGRAM 4 WEEKS: The training sessions will be as follows per week: 4 WEEK HALF IRONMAN TRIATHLON TRAINING PROGRAM 4 WEEKS: The training sessions will be as follows per week: 6 swim sessions 6 bike sessions 6 run sessions Week 1 and 2 (combined): Day 1 (Monday): Bike:

More information

Potential and Kinetic Energy: The Roller Coaster Lab Student Version

Potential and Kinetic Energy: The Roller Coaster Lab Student Version Potential and Kinetic Energy: The Roller Coaster Lab Student Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential Energy is the energy

More information

PHYSICS 12 NAME: Kinematics and Projectiles Review

PHYSICS 12 NAME: Kinematics and Projectiles Review NAME: Kinematics and Projectiles Review (1-3) A ball is thrown into the air, following the path shown in the diagram. At 1, the ball has just left the thrower s hand. At 5, the ball is at its original

More information

2017 Training Program and Running Tips. Created by Robert de Castella and this year's race beneficiary, the Indigenous Marathon Foundation

2017 Training Program and Running Tips. Created by Robert de Castella and this year's race beneficiary, the Indigenous Marathon Foundation 2017 Training Program and Running Tips Created by Robert de Castella and this year's race beneficiary, the Indigenous Marathon Foundation Beginners This program is designed for those who are healthy but

More information

Physics 2048 Test 1 Name: Dr. Jeff Saul

Physics 2048 Test 1 Name: Dr. Jeff Saul Physics 248 Test 1 Name: Dr. Jeff Saul Group: Spring 22 Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted, but

More information

Remeber this? You still need to know this!!!

Remeber this? You still need to know this!!! Remeber this? You still need to know this!!! Motion: Speed: Measure of how fast something is moving Speed = Distance Time Speed is a rate: something divided by time SI units for Speed: (m/s) Instantaneous

More information

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions

Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors. Conceptual Questions Physics: Principles and Applications, 6e Giancoli Chapter 3 Kinematics in Two Dimensions; Vectors Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) distance B) velocity

More information

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is

Chapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A) - 340 J B) 0 J C) + 35 J D) + 340

More information

Honors/AP Physics 1 Homework Packet #2

Honors/AP Physics 1 Homework Packet #2 Section 3: Falling Objects Honors/AP Physics 1 Homework Packet #2 1. A ball is dropped from a window 10 m above the sidewalk. Determine the time it takes for the ball to fall to the sidewalk. 2. A camera

More information

Saucony Cambridge Half Marathon: Improver Plan

Saucony Cambridge Half Marathon: Improver Plan Saucony Cambridge Half Marathon: Improver Plan If you re taking part in the 2019 Saucony Cambridge Half Marathon and are not sure how to train for this 13.1-mile, look no further as Running With Us in

More information