WindProspector TM Lockheed Martin Corporation

Size: px
Start display at page:

Download "WindProspector TM Lockheed Martin Corporation"

Transcription

1 WindProspector TM Lockheed Martin Corporation

2 WindProspector Unparalleled Wind Resource Assessment Industry Challenge Wind resource assessment meteorologists have traditionally relied on met towers and simple models to estimate the annual wind energy production of a prospective region. They rely on short records from a handful of towers to extrapolate in the horizontal for the installation of tens and even hundreds of wind generators. The prospecting towers reach hub-height at best, and are typically lower than the wind turbine hubs. The estimates of winds across the blade swept area are made using empirical rules of thumb. Together, these factors have led to wind farms under-performing against original energy yield forecasts by an average of 7 to 9 percent. In response to these deficits, wind farm developers now have added sodars, vertically pointing lidars, and additional met towers to optimize wind turbine placement. KNOW THE WIND While the gap between the actual and the predicted energy production has narrowed, many wind energy experts believe there has been little progress made toward achieving accurate wind resource assessments. The industry has merely become more conservative. Atmospheric flow is complex and fickle by nature, and varies dramatically in response to even small terrain and land-use features across short distances. To capture these variations, a fundamentally different approach is needed. Integrating data from WindTracer Doppler lidar, WindProspector delivers superior wind resource assessments for wind farm developers. With a radial range of more than 15 km, a single WindTracer system paints a high resolution picture of the wind field across an area of 700 to 1000 km2 and through a vertical depth of 3 km or more. The next advancement in wind resource assessment will harness the power of WindTracer to anchor development decisions in observational data as opposed to educated guesswork. 1 2

3 WINDPROSPECTOR SOLUTION Offered as a turnkey solution, WindProspector provides wind resource assessment information, including terrain following 3D wind maps, and vertical wind shear information, time series measurements and wind frequency distributions from hundreds of virtual met towers. WindProspector is used to optimize wind turbine placement and selection, predict future farm performance, and lower assessment uncertainties. These in turn can improve financing terms and ROI. WindTracer Terrain-Following Wind Speed Map: Month-Long Average, Wind Speed at Nominal Hub Height (80m) 3D Wind maps The uncertainty in the potential production of a wind farm is largely driven by the ability to resolve wind spatial variability, both horizontally and vertically, and the long-term representativeness of site climatology associated with the assessment measurement period. While average wind data at a given tower is usually somewhat correlated with averages at nearby potential generator locations, small differences can easily sway the viability of a wind project. WindTracer lidar provides observations amounting to tens of thousands of tall met towers, measuring the wind at a granularity of about 100 m in the horizontal. This level of detail, utilizing traditional met towers, sodars, or vertical lidars, is neither operationally nor economically practical. Conventional models working at this resolution typically produce questionable results. Corbis 3 4

4 WindProspector Data Products Optimized Farm Design and Project Financing Correlation with Trusted Sources To validate measurement accuracy, WindProspector determines the correlation between measurements made with WindTracer and other instruments, such as met towers, sodars, and vertical lidars. Comparisons performed in the field show strong correlation between single point data sources and the equivalent sub-sample from WindTracer. Wind & Power Statistics WindProspector data provides a precise estimate of aggregate wind speed and expected annual energy production across a region. WindProspector generates frequency histograms at any number of prospective turbine locations to determine optimal turbine placement and total lifetime energy output. Vertical Wind Shear WindProspector provides a complete picture of the vertical wind profile. Unlike the traditional met tower approach, where wind is measured at just two or three levels and then extrapolated using a shear coefficient, WindTracer lidar measures the wind across the entire blade swept area. In fact, vertical profiles are available well beyond the height accessible to sodars and vertically pointing lidars. Vertical profiles are also available at regular horizontal spacing throughout the entire prospective site. This removes the guesswork from micrositing. Highly accurate statistics can be produced for any point in the wind park and can be compared with other less versatile observations, or can be used to answer specific site suitability questions. WindProsepctor data across the blade swept area is also very useful for assessing the stresses the wind regime will place on wind project assets built at the site. Return On Investment A wind farm project can be financed through any number of combinations of equity and debt. In the case of debt, a project is secured based on the Debt Service Coverage Ratio (DSCR); or times Gross Revenues less Operating Expenses or EBITDA. Revenues are typically based on an exceedence ratio of P50/P90, which is highly dependent on the inherent uncertainty of a project. As the complexity of the terrain increases, so does the level of uncertainty and the spread of the production output distribution. This drives up the cost of capital and reduces the amount of debt financing available to the project, requiring a larger sum of up-front cash from equity holders. Furthermore, a higher risk profile for equity holders can significantly impact forecasted Net Present Value (NPV) and Internal Rate of Return (IRR) from the onset. A higher fidelity and more accurate characterization of the wind resource can reduce the forecasted riskiness of the project, increase lifetime farm revenues and associated tax credit benefits, and reduce capital costs through appropriate selection of wind turbines for a resource. 5 6

5 Additional Benefits WindProspector provides the spatial resolution necessary to validate Computational Fluid Dynamics (CFD) and Numerical Weather Prediction models (NWP) that are often used to refine resource assessment estimates. Such validation allows these models to be better tuned, and opens up the possibility of initializing the models using the WindTracer data, which could bring a new level of fidelity to estimates of spatial and temporal variability, further reducing uncertainty and risk. The high resolution of the WindTracer data opens the door to other resource assessment and operational metrics that currently lack sufficient attention. For example, the reserves required by regional balancing authorities can be calculated through hourly forecasts to depict the future variability of the farm output. In addition, WindTracer operates at a very high spatial and temporal resolution, sufficient enough to resolve wind farm wakes during farm construction and installation Corbis

6 WindTracer LONGEST RANGE COMMERCIALLY AVAILABLE LIDAR IN THE WORLD With 100 years of experience driving innovation and solving our customer s most complex technological challenges, Lockheed Martin now looks to apply its vast portfolio of proven capabilities to drive energy sustainability and security. Utilizing WindTracer, the world s most powerful long-range Doppler lidar system, Lockheed Martin is committed to aiding wind power developers and investors to capitalize on wind energy resources. WindTracer Specifications* Measurement Typical Range Maximum Range Radial Wind Velocity Range Minimum Range Resolution Average Wind Speed Accuracy Scanner Azimuth Range Elevation Range Resolution Pointing Accuracy Optical Clear Aperture Transceiver Laser Wavelength Pulse Energy Pulse Duration Pulse Repetition Frequency Beam Diameter Shelter Environment Weight Dimensions Power Specifications *Specifications subject to change 400 m to 18 km 33 km ±38 m/s 100 m 0.2 m/s 0 to 360 degrees -5 to 185 degrees degrees ±0.1 degrees 12 cm 1617 nm 2.5 mj ± 0.5 mj 300 nsec ± 150 sec 750 Hz 9.6 cm (e -1 intensity width) All weather 2600 kg 197x244x329(H) cm VAC single phase, 50 or 60 Hz (specified at time of purchase), 50A service required 59 10

Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign

Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign Increased Project Bankability : Thailand's First Ground-Based LiDAR Wind Measurement Campaign Authors: Velmurugan. k, Durga Bhavani, Ram kumar. B, Karim Fahssis As wind turbines size continue to grow with

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics A better understanding of wind conditions across the whole turbine rotor INTRODUCTION If you are involved in onshore wind you have probably come across the term CFD before

More information

Wind Project Siting & Resource Assessment

Wind Project Siting & Resource Assessment Wind Project Siting & Resource Assessment David DeLuca, Project Manager AWS Truewind, LLC 463 New Karner Road Albany, NY 12205 ddeluca@awstruewind.com www.awstruewind.com AWS Truewind - Overview Industry

More information

The Wind Resource: Prospecting for Good Sites

The Wind Resource: Prospecting for Good Sites The Wind Resource: Prospecting for Good Sites Bruce Bailey, President AWS Truewind, LLC 255 Fuller Road Albany, NY 12203 bbailey@awstruewind.com Talk Topics Causes of Wind Resource Impacts on Project Viability

More information

REMOTE SENSING APPLICATION in WIND ENERGY

REMOTE SENSING APPLICATION in WIND ENERGY REMOTE SENSING APPLICATION in WIND ENERGY Siraj Ahmed Professor & Head Department of Mechanical Engineering Maulana Azad National Iinstitute of Technology Bhopal, India sirajahmed@manit.ac.in Contents

More information

Executive Summary of Accuracy for WINDCUBE 200S

Executive Summary of Accuracy for WINDCUBE 200S Executive Summary of Accuracy for WINDCUBE 200S The potential of offshore wind energy has gained significant interest due to consistent and strong winds, resulting in very high capacity factors compared

More information

Validation of Measurements from a ZephIR Lidar

Validation of Measurements from a ZephIR Lidar Validation of Measurements from a ZephIR Lidar Peter Argyle, Simon Watson CREST, Loughborough University, Loughborough, United Kingdom p.argyle@lboro.ac.uk INTRODUCTION Wind farm construction projects

More information

Offshore Wind Turbine Wake Characterization using Scanning Doppler Lidar

Offshore Wind Turbine Wake Characterization using Scanning Doppler Lidar Offshore Wind Turbine Wake Characterization using Scanning Doppler Lidar R. Krishnamurthy a, J. Reuder b, B. Svardal c, H.J.S. Fernando a, J. B. Jakobsen d a University of Notre-Dame, Notre-Dame, Indiana

More information

3D Nacelle Mounted Lidar in Complex Terrain

3D Nacelle Mounted Lidar in Complex Terrain ENERGY 3D Nacelle Mounted Lidar in Complex Terrain PCWG Hamburg, Germany Paul Lawson 25.03.2015 1 DNV GL 125.03.2015 SAFER, SMARTER, GREENER Agenda Introduction and Project Background Lidar Specifications

More information

Windar Photonics Wind Sensor. Great at Control

Windar Photonics Wind Sensor. Great at Control Windar Photonics Wind Sensor Version 1.0 2012 Contents Imagine Being Able to Predict the Wind 5-6 Wind Sensors in a New Light 7-8 You Harvest the Wind Better from the Top 9-10 Result of a Bright Idea 11-12

More information

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences.

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences. Innovative and Robust Design by VL Offshore With Full Extension of Offshore Engineering and Design Experiences www.vloffshore.com Y Wind Semi Designed by VL Offshore The Y Wind Semi platform (foundation)

More information

PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS?

PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS? Title Authors: Organisation PROJECT CYCLOPS: THE WAY FORWARD IN POWER CURVE MEASUREMENTS? Simon Feeney(1), Alan Derrick(1), Alastair Oram(1), Iain Campbell(1), Gail Hutton(1), Greg Powles(1), Chris Slinger(2),

More information

Remote sensing standards: their current status and significance for offshore projects

Remote sensing standards: their current status and significance for offshore projects Remote sensing standards: their current status and significance for offshore projects Peter J M Clive Technical Development Consultant SgurrEnergy Ltd 225 Bath Street Glasgow G2 4GZ E: peter.clive@sgurrenergy.com

More information

EMPOWERING OFFSHORE WINDFARMS BY RELIABLE MEASUREMENTS

EMPOWERING OFFSHORE WINDFARMS BY RELIABLE MEASUREMENTS EMPOWERING OFFSHORE WINDFARMS BY RELIABLE MEASUREMENTS Joerg Bendfeld University of Paderborn Fakultät Elektrotechnik, Mathematik und Informatik Lehrstuhl für Elektrische Energietechnik Pohlweg 55 D-33014

More information

Predicting climate conditions for turbine performance

Predicting climate conditions for turbine performance Predicting climate conditions for turbine performance Mark Žagar, Vinay Belathur Krishna, Alvaro Matesanz Gil Vestas Data Engineering & Analytics / Advanced Plant Modelling Resource assessment, power curve,

More information

Bankable Wind Resource Assessment

Bankable Wind Resource Assessment Bankable Wind Resource Assessment Bankable Wind Resource Assessment 1.800.580.3765 WWW.TTECI.COM Pramod Jain, Ph.D. Presented to: DFCC Bank and RERED Consortia Members January 25 27, 2011 Colombo, Sri

More information

M. Mikkonen.

M. Mikkonen. Wind study by using mobile sodar technology M. Mikkonen Oulu University of Applied Sciences, School of Engineering, Oulu, Finland t3mimi00@students.oamk.com Abstract In this paper is presented a concept

More information

Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared by: Mia Devine

Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared by: Mia Devine 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.aidea.org/wind.htm Wind Resource Assessment for FALSE PASS, ALASKA Site # 2399 Date last modified: 7/20/2005 Prepared

More information

LES* IS MORE! * L ARGE E DDY S IMULATIONS BY VORTEX. WindEnergy Hamburg 2016

LES* IS MORE! * L ARGE E DDY S IMULATIONS BY VORTEX. WindEnergy Hamburg 2016 LES* IS MORE! * L ARGE E DDY S IMULATIONS BY VORTEX WindEnergy Hamburg 2016 OUTLINE MOTIVATION Pep Moreno. CEO, BASIS Alex Montornés. Modelling Specialist, VALIDATION Mark Žagar. Modelling Specialist,

More information

Wind Flow Validation Summary

Wind Flow Validation Summary IBHS Research Center Validation of Wind Capabilities The Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test facility provides opportunities to simulate natural wind conditions

More information

Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D

Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D Global Flow Solutions Mark Zagar, Cheng Hu-Hu, Yavor Hristov, Søren Holm Mogensen, Line Gulstad Vestas Wind & Site Competence Centre, Technology R&D vestas.com Outline The atmospheric modeling capabilities

More information

Airborne Coherent Wind Lidar measurements of vertical and horizontal wind speeds for the investigation of gravity waves

Airborne Coherent Wind Lidar measurements of vertical and horizontal wind speeds for the investigation of gravity waves Airborne Coherent Wind Lidar measurements of vertical and horizontal wind speeds for the investigation of gravity waves 18 th Coherent Laser Radar Conference, Boulder, CO, USA 27 June to 1 July 2016 Benjamin

More information

LiDAR Application to resource assessment and turbine control

LiDAR Application to resource assessment and turbine control ENERGY LiDAR Application to resource assessment and turbine control Dr. Avishek Kumar The New Zealand Wind Energy Conference 13 th April 2016 1 SAFER, SMARTER, GREENER Agenda What is LiDAR? Remote Sensing

More information

Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management

Energy Output. Outline. Characterizing Wind Variability. Characterizing Wind Variability 3/7/2015. for Wind Power Management Energy Output for Wind Power Management Spring 215 Variability in wind Distribution plotting Mean power of the wind Betz' law Power density Power curves The power coefficient Calculator guide The power

More information

Wind Farm Blockage: Searching for Suitable Validation Data

Wind Farm Blockage: Searching for Suitable Validation Data ENERGY Wind Farm Blockage: Searching for Suitable Validation Data James Bleeg, Mark Purcell, Renzo Ruisi, and Elizabeth Traiger 09 April 2018 1 DNV GL 2014 09 April 2018 SAFER, SMARTER, GREENER Wind turbine

More information

J7.6 LIDAR MEASUREMENTS AS AN ALTERNATIVE TO TRADITIONAL ANEMOMETRY IN WIND ENERGY RESEARCH. Golden, CO, U.S.A.

J7.6 LIDAR MEASUREMENTS AS AN ALTERNATIVE TO TRADITIONAL ANEMOMETRY IN WIND ENERGY RESEARCH. Golden, CO, U.S.A. J7.6 LIDAR MEASUREMENTS AS AN ALTERNATIVE TO TRADITIONAL ANEMOMETRY IN WIND ENERGY RESEARCH Pichugina Y. L. 1,2, R. M. Hardesty 2, R. M. Banta 2, W. A. Brewer 2, S. P. Sandberg 2, and 3 N. D. Kelley 3

More information

Comparison of flow models

Comparison of flow models Comparison of flow models Rémi Gandoin (remga@dongenergy.dk) March 21st, 2011 Agenda 1. Presentation of DONG Energy 2. Today's presentation 1. Introduction 2. Purpose 3. Methods 4. Results 3. Discussion

More information

V MW. Exceptional performance and reliability at high-wind-speed sites. vestas.com

V MW. Exceptional performance and reliability at high-wind-speed sites. vestas.com V90-3.0 MW Exceptional performance and reliability at high-wind-speed sites vestas.com We deliver on the promise of wind power SUPERIOR YIELD AT HIGH-WIND-SPEED SITES High standards for weight and performance

More information

Testing and Validation of the Triton Sodar

Testing and Validation of the Triton Sodar Testing and Validation of the Triton Sodar September 24, 2008 AWEA Resource Assessment Workshop Ron Nierenberg, Consulting Meteorologist Liz Walls, Second Wind Inc. Ron Consulting Nierenberg Meteorologist

More information

Windcube FCR measurements

Windcube FCR measurements Windcube FCR measurements Principles, performance and recommendations for use of the Flow Complexity Recognition (FCR) algorithm for the Windcube ground-based Lidar Summary: As with any remote sensor,

More information

WP5 South African Extreme Wind Atlas (WASA)

WP5 South African Extreme Wind Atlas (WASA) WP5 South African Extreme Wind Atlas (WASA) A Kruger South African Weather Service X Larsén DTU Wind Energy 1 Wind Atlas for South Africa project Why do we need extreme wind statistics? Origins of strong

More information

Fuga. - Validating a wake model for offshore wind farms. Søren Ott, Morten Nielsen & Kurt Shaldemose Hansen

Fuga. - Validating a wake model for offshore wind farms. Søren Ott, Morten Nielsen & Kurt Shaldemose Hansen Fuga - Validating a wake model for offshore wind farms Søren Ott, Morten Nielsen & Kurt Shaldemose Hansen 28-06- Outline What is Fuga? Model validation: which assumptions are tested? Met data interpretation:

More information

Energy from wind and water extracted by Horizontal Axis Turbine

Energy from wind and water extracted by Horizontal Axis Turbine Energy from wind and water extracted by Horizontal Axis Turbine Wind turbines in complex terrain (NREL) Instream MHK turbines in complex bathymetry (VP East channel NewYork) Common features? 1) horizontal

More information

Inuvik Wind Monitoring Update 2016

Inuvik Wind Monitoring Update 2016 Inuvik Wind Monitoring Update 2016 Source: MACA Prepared for By Jean Paul Pinard, P. Eng., PhD. 703 Wheeler St., Whitehorse, Yukon Y1A 2P6 Tel. (867) 336 2977; Email jpp@northwestel.net March 31, 2016

More information

MEMO CC: Summary. ESMWT16419: _MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx 1/8

MEMO CC: Summary. ESMWT16419: _MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx 1/8 MEMO Prepared: Anthony Crockford 23.02.2016 Reviewed: Erik Holtslag 24.02.2016 Approved: Michiel Müller 29.02.2016 Filename 20160224_MEM_RVO_HKZ floating LiDAR uncertainty_v3.docx Pages 8 Version Author

More information

Yelena L. Pichugina 1,2, R. M. Banta 2, N. D. Kelley 3, W. A. Brewer 2, S. P. Sandberg 2, J. L. Machol 1, 2, and B. J. Jonkman 3

Yelena L. Pichugina 1,2, R. M. Banta 2, N. D. Kelley 3, W. A. Brewer 2, S. P. Sandberg 2, J. L. Machol 1, 2, and B. J. Jonkman 3 4 th Symposium on Lidar Atmos. Applic, AMS, Phoenix, Arizona, January 2009 5.5 LIDAR MEASUREMENTS OF EXTREME INFLOW EVENTS FOR WIND ENERGY OPERATIONS Yelena L. Pichugina 1,2, R. M. Banta 2, N. D. Kelley

More information

How an extreme wind atlas is made

How an extreme wind atlas is made How an extreme wind atlas is made AC Kruger South African Weather Service X Larsén DTU Wind Energy Wind 1 Atlas for South Africa (WASA) Why do we need extreme wind statistics? Statistical background for

More information

Investigation on Atmospheric Boundary Layers: Field Monitoring and Wind Tunnel Simulation

Investigation on Atmospheric Boundary Layers: Field Monitoring and Wind Tunnel Simulation Investigation on Atmospheric Boundary Layers: Field Monitoring and Wind Tunnel Simulation Chii-Ming Cheng 1, 2, Ming-Shu Tsai 2, Yuan-Lung Lo 1, 2, Chun-Han Wang 2 1 Department of Civil Engineering, Tamkang

More information

Flow analysis with nacellemounted

Flow analysis with nacellemounted Flow analysis with nacellemounted LiDAR E.T.G. Bot September 2016 ECN-E--16-041 Acknowledgement The work reported here is carried out in the TKI LAWINE project which is partially funded by the Dutch government

More information

Exhibit #MH-156. ELECTRIC OPERATIONS (MH10-2) PROJECTED OPERATING STATEMENT (In Millions of Dollars) For the year ended March 31 REVENUES

Exhibit #MH-156. ELECTRIC OPERATIONS (MH10-2) PROJECTED OPERATING STATEMENT (In Millions of Dollars) For the year ended March 31 REVENUES PROJECTED OPERATING STATEMENT 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 REVENUES General Consumers at approved rates 1,194 1,223 1,235 1,254 1,265 1,279 1,296 1,307 1,320 1,336 additional * - 42

More information

Session 2a: Wind power spatial planning techniques. IRENA Global Atlas Spatial planning techniques 2-day seminar

Session 2a: Wind power spatial planning techniques. IRENA Global Atlas Spatial planning techniques 2-day seminar Session 2a: Wind power spatial planning techniques IRENA Global Atlas Spatial planning techniques 2-day seminar Central questions we want to answer After having identified those areas which are potentially

More information

DUTCH OFFSHORE WIND ATLAS

DUTCH OFFSHORE WIND ATLAS DUTCH OFFSHORE WIND ATLAS WindDays, Rotterdam, 14 June 2018 Dr. J.W. Wagenaar (ECN part of TNO) Ir. P.A. van Dorp (Whiffle) CONTENT Background & Objectives Approach Results so far Take away messages 2

More information

Wind farm performance

Wind farm performance Wind farm performance Ali Marjan Wind Energy Submission date: June 2016 Supervisor: Lars Sætran, EPT Norwegian University of Science and Technology Department of Energy and Process Engineering Wind

More information

Wind measurements that reduce electricity prices

Wind measurements that reduce electricity prices Wind measurements that reduce electricity prices Extensive testing in three countries has proven that laser measurements of wind provide precise, reliable wind data. The research findings will make it

More information

Session 2: Wind power spatial planning techniques

Session 2: Wind power spatial planning techniques Session 2: Wind power spatial planning techniques IRENA Global Atlas Spatial planning techniques 2-day seminar Central questions we want to answer After having identified those areas which are potentially

More information

7 th International Conference on Wind Turbine Noise Rotterdam 2 nd to 5 th May 2017

7 th International Conference on Wind Turbine Noise Rotterdam 2 nd to 5 th May 2017 7 th International Conference on Wind Turbine Noise Rotterdam 2 nd to 5 th May 2017 Sound power level measurements 3.0 ir. L.M. Eilders, Peutz bv: l.eilders@peutz.nl ing. E.H.A. de Beer, Peutz bv: e.debeer@peutz.nl

More information

A Wind Profiling Platform for Offshore Wind Measurements and Assessment. Presenter: Mark Blaseckie AXYS Technologies Inc.

A Wind Profiling Platform for Offshore Wind Measurements and Assessment. Presenter: Mark Blaseckie AXYS Technologies Inc. A Wind Profiling Platform for Offshore Wind Measurements and Assessment Presenter: Mark Blaseckie AXYS Technologies Inc. Any Sensor, Any Telemetry, Any Environment Founded in 1974 Part of the AXYS Group

More information

Site Summary. Wind Resource Summary. Wind Resource Assessment For King Cove Date Last Modified: 8/6/2013 By: Rich Stromberg & Holly Ganser

Site Summary. Wind Resource Summary. Wind Resource Assessment For King Cove Date Last Modified: 8/6/2013 By: Rich Stromberg & Holly Ganser Site Summary Wind Resource Assessment For King Cove Date Last Modified: 8/6/2013 By: Rich Stromberg & Holly Ganser Station ID: 2857 Latitude: 55 7 45.8 N Longitude: 162 16 10.6 W Tower Type: 30 m NRG Tall

More information

Assessment and Testing of Island Wind Resources without Masts

Assessment and Testing of Island Wind Resources without Masts 22 nd of June 2015 Assessment and Testing of Island Wind Resources without Masts ISLAND ENERGY TRANSITIONS: PATHWAYS FOR ACCELERATED UPTAKE OF RENEWABLES Martinique, June 22-24, 2015 Contents 1. The problem

More information

Best Practice RBI Technology Process by SVT-PP SIMTECH

Best Practice RBI Technology Process by SVT-PP SIMTECH Best Practice RBI Technology Process by SVT-PP SIMTECH We define the best practice in RBI as a proactive technology process which is used to formally and reliably optimise the inspection efforts for each

More information

Validation of long-range scanning lidars deployed around the Høvsøre Test Station

Validation of long-range scanning lidars deployed around the Høvsøre Test Station Downloaded from orbit.dtu.dk on: Dec 18, 2017 Validation of long-range scanning lidars deployed around the Høvsøre Test Station Lea, Guillaume; Courtney, Michael Publication date: 2016 Link back to DTU

More information

Outline. Wind Turbine Siting. Roughness. Wind Farm Design 4/7/2015

Outline. Wind Turbine Siting. Roughness. Wind Farm Design 4/7/2015 Wind Turbine Siting Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 andrew-kusiak@uiowa.edu Tel: 319-335-5934 Fax: 319-335-5669 http://www.icaen.uiowa.edu/~ankusiak Terrain roughness Escarpments

More information

Xcel Energy (Baa3/BBB-)

Xcel Energy (Baa3/BBB-) January 28, 2004 Fixed Income Research Recommendation: Market Perform Credit Trend: Improving Jacob P. Mercer, CFA Senior Research Analyst 612-303-1609 jacob.p.mercer@pjc.com Mark D. Churchill Associate

More information

Relevance of Questions from past Level III Essay Exams

Relevance of Questions from past Level III Essay Exams This document attempts to identify questions from past Level III essay exams which are still relevant in 2018. There is no guarantee that the information presented here is 100% accurate. If you have any

More information

Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work

Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work Publications (E) Energy 2-2010 Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work Regina Anne Deola Sandia National Laboratories Follow this

More information

WIND INDUSTRY APPLICATIONS

WIND INDUSTRY APPLICATIONS zephirlidar.com sales@zephirlidar.com WIND INDUSTRY APPLICATIONS 2017 Zephir Ltd. All rights reserved. ZephIR, Zephir, ZephIR 300, ZephIR 300M ZephIR DM, ZephIR Care, ZephIR Direct, ZephIR Power and Waltz

More information

renewable energy projects by renewable energy people

renewable energy projects by renewable energy people renewable energy projects by renewable energy people Our Services Full lifecycle services across renewable energy sectors 2 Time variant energy yield analysis A case study Presenter: Daniel Marmander Date:

More information

Wind Resource Assessment for NOME (ANVIL MOUNTAIN), ALASKA Date last modified: 5/22/06 Compiled by: Cliff Dolchok

Wind Resource Assessment for NOME (ANVIL MOUNTAIN), ALASKA Date last modified: 5/22/06 Compiled by: Cliff Dolchok 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org SITE SUMMARY Wind Resource Assessment for NOME (ANVIL MOUNTAIN), ALASKA Date last modified:

More information

Supplement of Wind turbine power production and annual energy production depend on atmospheric stability and turbulence

Supplement of Wind turbine power production and annual energy production depend on atmospheric stability and turbulence Supplement of Wind Energ. Sci., 1, 221 236, 2016 http://www.wind-energ-sci.net/1/221/2016/ doi:10.5194/wes-1-221-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Wind turbine power

More information

Upgrading Vestas V47-660kW

Upgrading Vestas V47-660kW Guaranteed performance gains and efficiency improvements Upgrading Vestas V47-660kW Newly developed controller system enables increased Annual Energy Production up to 6.1% and safe turbine lifetime extension

More information

COMPARISON OF DEEP-WATER ADCP AND NDBC BUOY MEASUREMENTS TO HINDCAST PARAMETERS. William R. Dally and Daniel A. Osiecki

COMPARISON OF DEEP-WATER ADCP AND NDBC BUOY MEASUREMENTS TO HINDCAST PARAMETERS. William R. Dally and Daniel A. Osiecki COMPARISON OF DEEP-WATER ADCP AND NDBC BUOY MEASUREMENTS TO HINDCAST PARAMETERS William R. Dally and Daniel A. Osiecki Surfbreak Engineering Sciences, Inc. 207 Surf Road Melbourne Beach, Florida, 32951

More information

CFD development for wind energy aerodynamics

CFD development for wind energy aerodynamics CFD development for wind energy aerodynamics Hamid Rahimi, Bastian Dose, Bernhard Stoevesandt Fraunhofer IWES, Germany IEA Task 40 Kick-off Meeting 12.11.2017 Tokyo Agenda BEM vs. CFD for wind turbine

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

Effect of wind flow direction on the loads at wind farm. Romans Kazacoks Lindsey Amos Prof William Leithead

Effect of wind flow direction on the loads at wind farm. Romans Kazacoks Lindsey Amos Prof William Leithead Effect of wind flow direction on the loads at wind farm Romans Kazacoks Lindsey Amos Prof William Leithead Objectives: Investigate the effect of wind flow direction on the wind turbine loads (fatigue)

More information

Sea Breeze, Coastal Upwelling Modeling to Support Offshore Wind Energy Planning and Operations

Sea Breeze, Coastal Upwelling Modeling to Support Offshore Wind Energy Planning and Operations Sea Breeze, Coastal Upwelling Modeling to Support Offshore Wind Energy Planning and Operations Greg Seroka, Travis Miles, Rich Dunk, Josh Kohut, Scott Glenn Center for Ocean Observing Leadership Rutgers

More information

Brookfield Asset Management O AK T R E E ACQUISITION M A R C H 1 3,

Brookfield Asset Management O AK T R E E ACQUISITION M A R C H 1 3, Brookfield Asset Management O AK T R E E ACQUISITION M A R C H 1 3, 2 0 19 Transaction Summary On March 13, 2019, Brookfield Asset Management ( BAM ) and Oaktree Capital Group ( OAK ) announced an agreement

More information

Offshore Micrositing - Meeting The Challenge

Offshore Micrositing - Meeting The Challenge Offshore Micrositing - Meeting The Challenge V. Barth; DEWI GmbH, Oldenburg English Introduction Offshore wind is increasingly gaining importance in the wind energy sector. While countries like the UK

More information

Investigation on Deep-Array Wake Losses Under Stable Atmospheric Conditions

Investigation on Deep-Array Wake Losses Under Stable Atmospheric Conditions Investigation on Deep-Array Wake Losses Under Stable Atmospheric Conditions Yavor Hristov, Mark Zagar, Seonghyeon Hahn, Gregory Oxley Plant Siting and Forecasting Vestas Wind Systems A/S Introduction Introduction

More information

Study on wind turbine arrangement for offshore wind farms

Study on wind turbine arrangement for offshore wind farms Downloaded from orbit.dtu.dk on: Jul 01, 2018 Study on wind turbine arrangement for offshore wind farms Shen, Wen Zhong; Mikkelsen, Robert Flemming Published in: ICOWEOE-2011 Publication date: 2011 Document

More information

JCOMM Technical Workshop on Wave Measurements from Buoys

JCOMM Technical Workshop on Wave Measurements from Buoys JCOMM Technical Workshop on Wave Measurements from Buoys Val Swail Chair, JCOMM Expert Team on Wind Waves and Storm Surges Neville Smith Vincent Cardone Peter Janssen Gerbrand Komen Peter Taylor WIND WAVES

More information

EXPERIMENTAL RESULTS OF GUIDED WAVE TRAVEL TIME TOMOGRAPHY

EXPERIMENTAL RESULTS OF GUIDED WAVE TRAVEL TIME TOMOGRAPHY 18 th World Conference on Non destructive Testing, 16-20 April 2012, Durban, South Africa EXPERIMENTAL RESULTS OF GUIDED WAVE TRAVEL TIME TOMOGRAPHY Arno VOLKER 1 and Hendrik VOS 1 TNO, Stieltjesweg 1,

More information

VINDKRAFTNET MEETING ON TURBULENCE

VINDKRAFTNET MEETING ON TURBULENCE VINDKRAFTNET MEETING ON TURBULENCE On-going Work on Wake Turbulence in DONG Energy 28/05/2015 Cameron Brown Load Engineer Lucas Marion R&D graduate Who are we? Cameron Brown Load Engineer from Loads Aerodynamics

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Deep Sea Offshore Wind Power R&D Seminar Trondheim, Jan. 2011

Deep Sea Offshore Wind Power R&D Seminar Trondheim, Jan. 2011 Deep Sea Offshore Wind Power R&D Seminar Trondheim, 20-21 Jan. 2011 Atmospheric Profiling by Lidar for Wind Energy Research Torben Mikkelsen Wind Energy Division Risø National Laboratory for Sustainable

More information

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel

Pressure distribution of rotating small wind turbine blades with winglet using wind tunnel Journal of Scientific SARAVANAN & Industrial et al: Research PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADES WITH WINGLET Vol. 71, June 01, pp. 45-49 45 Pressure distribution of rotating small wind

More information

High Ping Rate Profile Water Mode 12

High Ping Rate Profile Water Mode 12 Application Note FSA-014 (October 2008) Revised October 2008 High Ping Rate Profile Water Mode 12 Introduction Water Mode 12 is the result of the continued evolution of the signal processing within our

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

3D-simulation of the turbulent wake behind a wind turbine

3D-simulation of the turbulent wake behind a wind turbine Journal of Physics: Conference Series 3D-simulation of the turbulent wake behind a wind turbine To cite this article: Steffen Wußow et al 2007 J. Phys.: Conf. Ser. 75 012033 View the article online for

More information

EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming

EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming Jinkyoo Park 1 Introduction In a wind farm, the wakes formed by upstream wind turbines decrease the power outputs of downstream

More information

WIND RESOURCE ASSESSMENT FOR THE STATE OF WYOMING

WIND RESOURCE ASSESSMENT FOR THE STATE OF WYOMING WIND RESOURCE ASSESSMENT FOR THE STATE OF WYOMING Performed by Sriganesh Ananthanarayanan under the guidance of Dr. Jonathan Naughton, Professor, Department of Mechanical Engineering University of Wyoming,

More information

BOTTOM MAPPING WITH EM1002 /EM300 /TOPAS Calibration of the Simrad EM300 and EM1002 Multibeam Echo Sounders in the Langryggene calibration area.

BOTTOM MAPPING WITH EM1002 /EM300 /TOPAS Calibration of the Simrad EM300 and EM1002 Multibeam Echo Sounders in the Langryggene calibration area. BOTTOM MAPPING WITH EM1002 /EM300 /TOPAS Calibration of the Simrad EM300 and EM1002 Multibeam Echo Sounders in the Langryggene calibration area. by Igor Kazantsev Haflidi Haflidason Asgeir Steinsland Introduction

More information

Draft Kivalina Wind Resource Report

Draft Kivalina Wind Resource Report Draft Kivalina Wind Resource Report Kivalina aerial photo by Doug Vaught, July 2011 May 31, 2012 Douglas Vaught, P.E. dvaught@v3energy.com V3 Energy, LLC Eagle River, Alaska Draft Kivalina Wind Resource

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

Workshop Session 1: Resources, technology, performance

Workshop Session 1: Resources, technology, performance IBC 3rd Annual Wind Energy Conference Adelaide February 2004 Workshop Session 1: Resources, technology, performance Iain MacGill and Hugh Outhred School of Electrical Engineering and Telecommunications

More information

Surrounding buildings and wind pressure distribution on a high rise building

Surrounding buildings and wind pressure distribution on a high rise building Surrounding buildings and wind pressure distribution on a high rise building Conference or Workshop Item Accepted Version Luo, Z. (2008) Surrounding buildings and wind pressure distribution on a high rise

More information

High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields

High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields Dick K.P. Yue Center for Ocean Engineering

More information

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine

Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine Wind Flow Model of Area Surrounding the Case Western Reserve University Wind Turbine Matheus C. Fernandes 1, David H. Matthiesen PhD *2 1 Case Western Reserve University Dept. of Mechanical Engineering,

More information

Wind resource and site assessment

Wind resource and site assessment CHAPTER 2 Wind resource and site assessment Wiebke Langreder Wind & Site, Suzlon Energy, Århus, Denmark. Wind farm projects require intensive work prior to the finalizing of a project. The wind resource

More information

SUBMERGED VENTURI FLUME. Tom Gill 1 Robert Einhellig 2 ABSTRACT

SUBMERGED VENTURI FLUME. Tom Gill 1 Robert Einhellig 2 ABSTRACT SUBMERGED VENTURI FLUME Tom Gill 1 Robert Einhellig 2 ABSTRACT Improvement in canal operating efficiency begins with establishing the ability to measure flow at key points in the delivery system. The lack

More information

Snare Wind Monitoring Update 2016

Snare Wind Monitoring Update 2016 2016 Prepared for by Jean Paul Pinard, P. Eng., PhD. 703 Wheeler St., Whitehorse, Yukon Y1A 2P6 Tel. (867) 336 2977, jpp@northwestel.net March 31, 2016 Executive Summary This project is part of the assessment

More information

Briefing Papers from the Union of Concerned Scientists. Assessing Wind Resources. A Guide for Landowners, Project Developers and Power Suppliers

Briefing Papers from the Union of Concerned Scientists. Assessing Wind Resources. A Guide for Landowners, Project Developers and Power Suppliers UCS REPORTS Briefing Papers from the Union of Concerned Scientists Assessing Wind Resources A Guide for Landowners, Project Developers and Power Suppliers B y M i c h a e l W. T e n n i s S t e v e n C

More information

A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange. P. Argyle, S. J. Watson CREST, Loughborough University, UK

A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange. P. Argyle, S. J. Watson CREST, Loughborough University, UK A Comparison of the UK Offshore Wind Resource from the Marine Data Exchange P. Argyle, S. J. Watson CREST, Loughborough University, UK Introduction Offshore wind measurements are scarce and expensive,

More information

MULTI-WTG PERFORMANCE OFFSHORE, USING A SINGLE SCANNING DOPPLER LIDAR

MULTI-WTG PERFORMANCE OFFSHORE, USING A SINGLE SCANNING DOPPLER LIDAR MULTI-WTG PERFORMANCE OFFSHORE, USING A SINGLE SCANNING DOPPLER LIDAR Rémi Gandoin 1, Benny Svardal 2, Valerie Kumer 3, Raghavendra Krishna Murthy 4, Matthieu Boquet 4 1 DONG Energy Wind Power (DK) remga@dongenergy.dk

More information

EXTREME WIND GUSTS IN LARGE-EDDY SIMULATIONS OF TROPICAL CYCLONES

EXTREME WIND GUSTS IN LARGE-EDDY SIMULATIONS OF TROPICAL CYCLONES The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation (NSF) EXTREME WIND GUSTS IN LARGE-EDDY SIMULATIONS OF TROPICAL CYCLONES George Bryan National Center

More information

OFFSHORE CREDENTIALS. Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally

OFFSHORE CREDENTIALS. Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally OFFSHORE CREDENTIALS Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally ZEPHIR OFFSHORE CREDENTIALS Accepted for wind resource assessment onshore and offshore

More information

PARK - Main Result Calculation: PARK calculation (5 x 166m, + LT CORR + MITIGATION) N.O. Jensen (RISØ/EMD)

PARK - Main Result Calculation: PARK calculation (5 x 166m, + LT CORR + MITIGATION) N.O. Jensen (RISØ/EMD) PRK - Main Result Calculation: PRK calculation (5 x V15 @ 166m, + LT CORR + MITIGTION) Wake Model N.O. Jensen (RISØ/EMD) Calculation Settings ir density calculation mode Result for WTG at hub altitude

More information

Measurement of Coastal & Littoral Toxic Material Tracer Dispersion. Dr. Robert E. Marshall T41 NSWCDD

Measurement of Coastal & Littoral Toxic Material Tracer Dispersion. Dr. Robert E. Marshall T41 NSWCDD Measurement of Coastal & Littoral Toxic Material Tracer Dispersion Dr. Robert E. Marshall robert.e.marshall@navy.mil T41 NSWCDD Mouth of the Piankatank River Chesapeake Bay Model this for CB defense? Ground

More information

VISUAL AIDS FOR DENOTING OBSTACLES

VISUAL AIDS FOR DENOTING OBSTACLES CHAPTER 6. VISUAL AIDS FOR DENOTING OBSTACLES 6.1 Objects to be marked and/or lighted Note. The marking and/or lighting of obstacles is intended to reduce hazards to aircraft by indicating the presence

More information

Verdi G-Series. High-Power Pumps for Ti:Sapphire Lasers and Amplifiers FEATURES

Verdi G-Series. High-Power Pumps for Ti:Sapphire Lasers and Amplifiers FEATURES Verdi G-Series High-Power Pumps for Ti:Sapphire Lasers and Amplifiers The Verdi G is a high performance CW laser providing up to 20W at 532 nm, ideal for pumping Ti:Sapphire lasers and amplifiers, for

More information

Wind Projects: Optimizing Site Selection

Wind Projects: Optimizing Site Selection Wind Projects: Optimizing Site Selection ECOWAS Regional Workshop on Wind Energy Babul Patel, Principal Alain Rosier, Vice President Nexant, Inc. Praia, Cape Verde November 4-5, 2013 Basic Criteria for

More information