OMAE Proceedings of OMAE st International Conference on Offshore Mechanics and Artic Engineering June 23-28, 2002,Oslo, Norway

Size: px
Start display at page:

Download "OMAE Proceedings of OMAE st International Conference on Offshore Mechanics and Artic Engineering June 23-28, 2002,Oslo, Norway"

Transcription

1 Proceedings of OMAE st International Conference on Offshore Mechanics and Artic Engineering June 23-28, 2002,Oslo, Norway OMAE RANDOM WAVES AND CAPSIZE PROBABILITY BASED ON LARGE AMPLITUDE MOTION ANALYSIS Jan O. de Kat MARIN Wageningen, the Netherlands Dirk-Jan Pinkster MARIN Wageningen, the Netherlands Kevin A. McTaggart DREA Dartmouth, NS, Canada ABSTRACT The objective of this paper is to apply a methodology aimed at the probabilistic capsize assessment of two naval ships: a frigate and a corvette. Use is made of combined knowledge of the wave and wind climate a ship will be exposed to during its lifetime and of the physical behavior of that ship in the various sea states it is likely to encounter. This includes the behavior in extreme wave conditions that have a small probability of occurrence, but which may be critical to the safe operation of a ship. Time domain simulations provide the basis for deriving short-term and long-term statistics for extreme roll angles. The numerical model is capable of predicting the 6 DOF behavior of a steered vessel in wind and waves, including conditions that may lead to broaching and capsizing. INTRODUCTION The ability to predict the large amplitude motions of a ship in a seaway accurately is a necessary but not sufficient condition for quantifying capsize risk levels. It is also necessary to consider realistic operational scenarios over a given part of the ship's lifetime, including operational areas, encountered wave and wind climate, ship loading and ship handling aspects. This can be done within a probabilistic framework that makes use of efficient numerical modeling techniques and reliable data. Extreme rolling and - ultimately - capsizing in critical wave and operational conditions may occur due to the following mechanisms [1]: Static loss of stability (e.g. in wave crest) Dynamic loss of stability (e.g. parametric resonance) Broaching Combined modes with additional factors such as water on deck or wind To simulate such dynamic behavior, a numerical model is used that captures important parts of the physics involved. The numerical model and some properties of irregular waves have been discussed in [2], and the methodology of the probabilistic capsize analysis outlined above has been presented in [1]. This paper will focus on the following issues: - determination of short-term distribution of extreme roll angles based on time domain simulations - determination of long-term (yearly) distribution of extreme roll angles - influence of steering system (autopilot) on short-term probability of extreme rolling - relationship between high probability of capsize conditions to sea state and extreme wave properties The above analysis is applied to a corvette and a larger frigate ship in a normal loading condition for a range of heading angles (head to following seas) per sea state, for a large number of different sea states. Critical heading conditions in terms of extreme rolling tend to lie between following to beam seas. In these conditions the way in which a ship is steered may have a significant influence on the roll motions. To study this aspect, a typical "PID" controller is used (with fixed Proportional and 1 Copyright 2002 by ASME

2 Differential control coefficients) in the simulations and compared with an adaptive autopilot in terms of resulting roll probability distributions for some selected conditions. SHIP CAPSIZE PROBABILITY IN RANDOM WAVES General methodology The method used for obtaining capsize probabilities in random waves is in principle the same as described in [1]. In the present study it is applied to two ships of different length. Each ship is subjected to the same operational area and wave statistics: annual North Atlantic wave climate, where use is made of a wave scatter diagram that is based on a slightly modified Bales wave scattergram [1]. For a ship in a seaway of duration D (e.g., one hour), the probability of capsize P(C D ) is: P( CD ) = p( V ) p( β) p( Hs, Tp) P( CD V, β, Hs, Tp) (1) where p(x) is the probability density function for discretized variable X, V is ship speed, β is the relative wave heading, Hs is significant wave height, and Tp is peak wave period, and p(hs,tp) is their joint probability density. The last term of Equation 1 denotes a conditional capsize probability given a set of operational and seaway conditions, which is derived from numerical simulations using the model described in the next section. Similarly, the exceedence probability for maximum roll angle is given by: Q( φ max, D ) = p( V ) p( β ) p( Hs, Tp) Q( φ V, β, Hs, Tp) max, D where Q(X) is the exceedence probability for variable X. When predicting capsize probability, one must chose a suitable duration D for evaluating Equation 1. This duration should correspond to the observation interval for the wave statistics described by the joint distribution p(hs,tp). Wave statistics typically have observation intervals between one and three hours, during which time the wave conditions are assumed to be stationary. Once the probability of capsize for duration D has been computed using Equation 1, the associated annual probability of capsize can be computed as follows: P(C α 1year/D [ 1 - P(C ] annual ) 1 - D ) = (3) where α is the fraction of time spent at sea. (2) Capsize Probability in Given Conditions Using Fitted Gumbel Distribution The probability of capsize under given conditions is evaluated using the approach described in [3]. This approach considers the variation of maximum roll angle with seaway realization by considering maximum roll angles from a moderate number of time domain simulations (e.g., between 10 and 50). Ship speed, wave height, significant wave height, and peak wave period remain constant among the simulations for given conditions; however, each simulation uses a different seed number for generating random wave phases of sinusoidal components that are summed to model a long-crested random seaway. Between 20 and 100 wave components are typically used to model a random seaway. Using results from simulations for given conditions, distribution-free estimates of the cumulative distribution function F(X) = 1-Q(X) are as follows: ˆ i F( X i ) = (4) Ns + 1 where in this case X is used to denote φ max,d V,β,Hs,Tp, and i denotes the rank (increasing order) among simulation results, and N s is the number of simulations for the conditions V,β,Hs,Tp. Using the simulation results, a Gumbel distribution can be fitted to model maximum roll angle for given conditions: b X F( X ) = exp exp (5) a where a and b are scale and location parameters, with b being the 36.8 th percentile of X. The probability of capsize for given conditions can then be determined by: b φ P( C = C D V, β, Hs, Tp) 1 exp exp (6) a where φ C is the capsize roll angle (e.g., the angle of downflooding or zero static stability). Fitted Gumbel parameters are determined by using a least squares approach applied to ln[-ln(f(x))] in the following: b X ln [ ln( F( X ))] = (7) a A significant advantage of the least squares method is that it can be applied to a limited variable range of greatest interest. For predicting ship capsize risk, it appears appropriate to fit the Gumbel distribution to the upper 30 degree range of simulation 2 Copyright 2002 by ASME

3 roll angles for given conditions because the upper range is most important for ship capsize. Figure 1 shows an example of a Gumbel distribution fitted to maximum roll angles from simulations. Exceedence probability Q Simulations Gumbel fit Maximum hourly roll (deg) Figure 1: Roll Exceedence Probability for Frigate in One- Hour Seaway, V = 10 knots, β = 75 degrees, Tp = 12.4 s, Hs = 9.5 m, Wind speed = 40 knots Alternatives to Fitted Gumbel Distribution The theoretical basis of the Gumbel distribution is the maximum of a Gaussian process over a relatively large number of cycles [4]. Small amplitude ship motions in a random seaway can be considered to be a Gaussian process, and a Gumbel distribution provides an excellent model of maximum response. For ship roll motions approaching capsize, the response is no longer Gaussian and the Gumbel distribution is no longer ideal for modeling maximum response. As an alternative to using the fitted Gumbel distribution approach described above, capsize probabilities have been analyzed using a distribution free method, whereby capsize probabilities under given conditions are estimated using linear interpolation between sample values from Equation (4). The advantage of the distribution free method is that no assumption is required regarding the distribution of maximum roll angle. The main disadvantage of the distribution free method is that it does not facilitate extrapolation beyond the range of observed values. For example, the probability of exceeding the largest observed maximum roll angle for given conditions is taken as being zero. given very similar capsize probabilities when summing probabilities over a large number of conditions using Equation 1. The good agreement of summed capsize probabilities from the fitted Gumbel and distribution free approaches arises because distribution free estimates have no bias and fitted Gumbel estimates have only small bias. The generalized extreme value distribution (GEV) has also been considered for modelling maximum roll angle under given conditions. The GEV distribution is discussed in [5] and can be written as follows: 1/ c X b F( X ) = exp 1+ c (8) a where a is a scale parameter, b is a location parameter, and c is a shape parameter. The terms a and 1+c(X-b)/a in the above equation must be greater than 0. If c = 0, then the GEV distribution is a Gumbel distribution, Equation (5). For c < 0 the GEV distribution is a 3-parameter reverse Weibull distribution. In the case of c > 0, the GEV distribution represents a 3-parameter type II distribution. In comparison with the Gumbel distribution, the GEV distribution has the additional flexibility provided by the shape parameter c. Figure 2 gives an example of fitted Gumbel and GEV distributions for maximum roll angles from 500 time domain simulations. The GEV distribution parameters were determined using the maximum likelihood method presented in [6]. For small exceedence probabilities (Q(X) < 0.01), the Gumbel distribution always appears as a straight line when plotted on a log-log scale. In contrast, the shape parameter c allows the GEV distribution to appear as concave-up or concave-down (or straight) for small exceedence probabilities when plotted on a log-log scale. Experience with the GEV distribution has shown that it leads to great over prediction of capsize probabilities. This experience is based on using maximum roll angles for given conditions when determining GEV distribution parameters. Figure 2 shows a case using 500 simulations in which the GEV distribution clearly leads to over prediction of capsize probability. Experience using fitted Gumbel distributions and the distribution free method has indicated that the two approaches 3 Copyright 2002 by ASME

4 Exceedence probability Q Simulations Gumbel limited range fit GEV fit Maximum hourly roll (deg) Figure 2: Fitted Gumbel and GEV Distributions of Hourly Maximum Roll, No Wind, V = 10 knots, β = 15 degrees, Tp = 13.9 s, Hs = 9.5 m MODELING OF STEERED SHIP IN WAVES Extreme motions of intact vessels To determine the distribution of extreme roll angles, on which the conditional capsize probability Eq. (6) is based, use is made of a time domain simulation model. This model is applied to a large variety of sea states, wave realizations, heading angles and operational conditions to obtain the desired statistics. Work on time domain capsize prediction started in the mid 1970s, notably at the University of California, Berkeley. Time domain simulations offer the advantage of the ability to account for nonlinearities in the ship system and external forces in a comprehensive fashion. This section presents a brief description of the time domain model (FREDYN) that has been applied in this work. The model consists of a non-linear strip theory approach, where linear and non-linear potential flow forces are combined with maneuvering and viscous drag forces. The nonpotential force contributions are of a nonlinear nature and based on (semi)empirical models. The derivation of the equations of motions is based on the conservation of linear and angular momentum. These are given in principle in the inertial (earth-fixed) reference system. Euler s method is applied for deriving the equations of motion in terms of a rotating, ship-fixed coordinate system. The equations of motion are given by: ([ M] + [ a( )] ). F x F y F z x = M x M y M z m.(wq - vr) m.(ur - wp) m.(vp - uq) ( I zz,0 - I yy,0 )qr ( I xx,0 - I zz,0 )pr ( I yy,0 - I xx,0 )pq [M] is the generalized (6x6) mass matrix of the intact ship, [a( )] is the added mass matrix, and x is the acceleration vector at the center of gravity; u, v and w are the translational velocities; p, q and r represent the rotational velocities for roll, pitch and yaw, respectively. The summation signs in the right hand side represent the sum of all force and moment contributions, which result from: Froude-Krylov force (nonlinear) Wave radiation (linear) Diffraction (linear) Viscous and maneuvering forces (nonlinear) Propeller thrust and hull resistance (nonlinear) Appendages -- rudders, skeg, active fins (nonlinear) Wind (nonlinear) Internal fluid (nonlinear) Large angles must be retained in the matrices for transformation between the ship-fixed and the earth-fixed coordinate system in relation to acceleration vectors and rotational velocity vectors. One of the most important force contributions that should be treated "exactly" is associated with the hydrostatic and dynamic wave pressure. This represents the Froude-Krylov force, which is obtained by pressure integration over the instantaneous wetted surface of the hull at each time step. This will account for a large part of the nonlinearities that affect the ship response. Linear wave theory is used to describe the sea surface and wave kinematics. In the case of irregular waves, the model makes use of linear superposition of sinusoidal components with random phasing. Linear transfer functions (from strip theory) are used in the determination of the diffraction forces. The wave radiation forces are based on linear retardation functions and convolution integrals (including forward speed terms): t F ( t) = A x ( t) B x ( t) C x ( t) K ( t τ ) x ( τ ) dτ jk jk k jk k jk k jk k 0 (10) (9) 4 Copyright 2002 by ASME

5 Viscous effects include roll damping due to hull and bilge keels, wave-induced drag due to wave orbital velocities, and nonlinear maneuvering forces with empirically determined coefficients. The quasi-steady hull forces resulting from the motions in the horizontal plane consist of a linear and nonlinear part; for instance, the sway force is: F 2, H (t) = F H,L (u,v,r,θ;t) + F H,NL (v(x,t), T(x,t), C Dx (u(t),x), u,v,r,η t ) (11) developed an adaptive controller. The autopilot is based on Linear-Quadratic (LQ) control, which is a state-space technique for designing optimum dynamic control systems. It enables one to trade off control performance against control effort by means of a control performance criterion and weighting matrices. This adaptive controller has been implemented in FREDYN as an alternative autopilot. Figure 3 shows a schematic of the autopilot system. where v(x,t) is the local transverse velocity at (sectional) location x, T(x,t) is the local draft, C Dx is the local cross-flow drag coefficient, and η t is the local wave orbital velocity in transverse direction. The roll moment resulting from lift and hull drag forces has the following nature: M x,h (t) = F H,L.z(t) + F H,NL (t).z(x,t) + K ur.u(t).r + K up.u(t).p + K pp p p (12) Actual state (position, course, speed) Controller Task (course control) Freq Allocation Rudder Rudder angle The propeller thrust depends on the propeller characteristics and instantaneous inflow conditions. The hull resistance is a function of instantaneous speed and draft. Appendage forces are estimated by using wing theory in the case of a rudder or active fin, and by using pressure drag in the case of a skeg. Interaction between rudder and hull is accounted for. The equations of motion are solved in the time domain using a higher order Runge-Kutta scheme. Additional information (wave and windforces) Pilot setting Figure 3: Adaptive autopilot Course keeping A control system is needed for a ship to maintain course in waves and wind. Typically a simple autopilot linked to the rudder is used to provide course keeping ability in time domain simulations; in our work we have used extensively a PID-type (Proportional-Integrative-Differential) controller: ψ c () t c ( ψ () t ψ ) + c ψ ( t) = d 2 1 (13) where ψ c (t) is the commanded rudder angle, ψ(t) is the instantaneous heading angle of the ship, and ψ d is the desired heading angle. Selection of the gain coefficients c 1 and c 2 is a matter of judicious choice, based on experience and overall performance in relevant wave conditions. The values of these coefficients can have a significant influence on the roll response, as is evident from model test and simulation results. This implies also that the role of the autopilot in probabilistic capsize assessment can be significant. For instance, the extreme roll distributions derived in [2] are valid for a ship with constant gain coefficients, i.e., the autopilot settings were kept the same for all operational conditions and sea states covered in the scatter diagram. To enable more realistic course control in simulations, MARIN s Maritime Simulator Centre Netherlands (MSCN) The model is valid for the control of relatively small track and course deviations. The model is linearized around the actual forward velocity and matching propeller revolutions; by optimizing the performance criterion a linear feed back gain is derived. When a ship is moving relatively fast the autopilot reacts differently than when it is moving slowly. The autopilot settings are defined such that a fixed relation between deviation of desired course and position results in the same response, e.g. a deviation of 2 meters in x and 3 meters in y and 1 degrees course change can result in the same required effort. It is possible to change the weighting factors and make the autopilot more sensitive to a specific deviation such as heading angle. The linear feedback gain is adapted to generate continuous or discrete (at a fixed time step) rudder force orders. In the case of the FREDYN-autopilot, the feedback system generates a requested yaw moment, N req, for course control at a fixed time step of t=0.5 s, shown by Equation (14), and allocates the requested moment to the rudder(s). The input of the autopilot consists of ship position, heading and velocities and propeller revolutions, as well as on the desired parameters related to course keeping. Based on the difference in heading ( ψ) and track deviation ( y), the control settings are calculated and the required rudder angle, δ, is passed to the rudder actuator. The 5 Copyright 2002 by ASME

6 objective is to regulate the differences in position (or sway) and heading around zero. N req = c 1 y c 2 ψ c 3 v c 4 r δ req = f ( N req ) δ max δ req δ max CAPSIZE ASSESSMENT FOR TWO SHIPS The procedure outlined above for determining the short and long term capsize probabilities has been applied to two generic naval ships -- a frigate with a length of 120 m and a smaller corvette with a length of 70 m. To reduce the number of simulations to a certain extent, it has been assumed that both ships travel always at a speed of 10 knots in all sea states and heading angles when at sea. The speed of 10 knots is considered as a realistic speed for operation in severe sea conditions. Ship dimensions and hydrostatics (14) (6) GZ [m] KG=3.77m KG=3.55m KG=3.37m Generic 70m frigate Heel angle [deg] Figure 4: GZ curves for 70 m corvette The main dimensions of the two frigates are given in Table 1. For each ship simulations have been performed for three KG conditions at the same draft, T; the KG values were chosen such that the angles of vanishing stability were the same for both ships (80, 90 and 100 degrees). Figures 4 and 5 show the righting arm (GZ) curves in calm water for the three loading conditions of frigates 1 and 2, respectively. Corvette Frigate LBP (m) B (m) D (m) T (m) (tonnes) GM_KG1 (m) GM_KG2 (m) GM_KG3 (m) T φ (KG1) (s) T φ (KG2) (s) T φ (KG3) (s) AREA_KG1 (m-rad) AREA_KG2 (m-rad) AREA_KG3 (m-rad) Table 1: Ship characteristics for Corvette and Frigate Table 1 shows the GM and roll period T φ (at zero speed in calm water) associated with the three KG values for each ship. In addition, the associated area underneath the positive righting arm curve is shown in Table 1 for the three KG conditions. The GZ area represents a measure of restoring energy of a ship (also referred to as total dynamic stability ) and in previous studies was found to have a definitive influence on capsizing [7]. GZ [m] KG=6.46m KG=6.09m KG=5.77m Generic 120m frigate Heel angle [deg] Figure 5: GZ curves for 120 m frigate Extreme roll probability distributions To determine the short-term extreme roll probability given by Equation (1), the procedure for determining the conditional capsize probability, Eq. (7), was applied for one ship speed (V = 10 knots) for both ships in each sea state. This was done for all sea states covered by the modified Bales scatter diagram for the annual North Atlantic wave statistics. Furthermore, all heading angles with respect to the seaway were evaluated (from 0, 15,, 180 degrees) for each operational case. Subsequently the long-term (annual) probability of exceeding a critical roll angle was determined using Equation (3). 6 Copyright 2002 by ASME

7 All results shown below apply to the ships being kept on course with the PID-type autopilot. The annual cumulative probability of exceeding a given roll angle is given in Figures 6 and 7 for frigates 1 and 2, respectively. Generic 70m frigate capsize reduces significantly. Moreover, it is interesting to note that the lowest GM condition (KG1: = 80 deg) of the 120 m frigate results in approximately the same capsize probability of the 70 m frigate at its medium GM condition (KG2: = 90 deg). In these loading conditions both ships have the same areas underneath the positive GZ curve (approximately 0.48 m-rad), as shown in Table 1. Probability of exceedance [-] 10-3 Capsize probability [-] = 80 deg = 90 deg = 100 deg Roll angle [deg] Figure 6: Cumulative distribution function for roll of 70 m corvette (annual probability of exceedence) Probability of exceedance [-] Generic 120m frigate 10-3 Generic 70m frigate Generic 120m frigate [deg] Figure 8: Annual capsize probabilities for 70 m corvette and 120 m frigate as a function of angle of vanishing stability Although the annual capsize probabilities of the two frigates are similar for the loading conditions resulting in the same GZ area, their extreme motions can differ significantly in the same sea state = 80 deg = 90 deg = 100 deg Roll angle [deg] Probability of exceedance [-] Figure 7: Cumulative distribution function for roll of 120 m frigate (annual probability of exceedence) The annual probability of exceeding an angle of 90 degrees (assumed to be a capsize in the present analysis) is given in Figure 8 for frigates 1 and 2 as a function of the angle of vanishing stability,. It is clear that the capsize probability is sensitive to and that as the angle increases the probability of Generic 70m frigate Generic 120m frigate Roll angle [deg] Figure 9: One-hourly roll exceedence probability for frigate and corvette (Tp = 9.7 s, Hs = 6.5 m, 45 deg heading); = 90 deg for both ships 7 Copyright 2002 by ASME

8 To compare the extreme roll behavior of the two ships in a critical sea state, figure 9 shows the one-hourly roll exceedence probabilities for the frigates and corvette with loading conditions resulting in the same angle of vanishing stability ( = 90 deg). It suggests that the 70 m corvette has a somewhat higher roll exceedence probability than the 120 m frigate. Probability of exceedance [-] Probability of exceedance [-] Generic 70m frigate φ =90 v Generic 120m frigate φ =80 v Roll angle [deg] Figure 10: One-hourly roll exceedence probability for frigate and corvette (Tp = 9.7 s, Hs = 6.5 m, 45 deg heading); equal area under GZ curve for both ships In contrast, Figure 10 shows the same information as Figure 9, but in this case the loading condition for the 120 m frigate is such it results in the same area of the GZ curve (0.48 m-rad) as for the corvette. Here it is clear that the capsize probability of the frigate is significantly higher than for the smaller ship. The same roll distribution characteristics apply for another critical sea state, with Tp = 12.4 s and Hs = 9.5 m. A possible explanation for the behavior may be that these sea states contain individual waves that are more critical to the larger frigate in terms of wave length and height. Influence of autopilot To investigate the influence of autopilot on capsize probability, some of the most critical conditions were repeated in the simulations using the adaptive autopilot. Analysis of the shortterm (one-hourly) capsize probabilities suggested that one of the more critical heading angles was 45 degrees, i.e., stern quartering conditions. For the case shown in Figure 11, the adaptive autopilot results in somewhat lower roll exceedence probabilities than the PID controller for extreme roll angles, but the differences are of a moderate level in this case. Further work will continue to investigate the adaptive autopilot. Adaptive PID Roll angle [deg] Figure 11: One-hourly roll exceedence probability for 120 m frigate with PID and Adaptive autopilot control ( = 90 deg, V = 10 kn, 45 degrees heading, Tp = 12.4 s, Hs = 8.5 m) PROBABILITY OF ENCOUNTERING CRITICAL WAVE CONDITIONS The occurrence of an extreme roll event or capsize is dependent on an encountered individual wave or group of waves with critical wavelength and height, given the ship speed and heading angle. Analysis of the short-term (one-hourly) roll distributions suggests that the highest probability of capsize can be expected for the steepest sea states. The characteristic steepness of the seaway, defined by Hs/λp (where λp = gtp 2 /2π), determines the probability of occurrence of critical, steep waves. The maximum characteristic steepness observed for ocean waves lies typically around 0.05; wave statistics suggest the average steepness for worst North Atlantic storm waves is approximately For both ships, the capsize probability is relatively high for sea states with peak periods between 9 and 13 s; the corvette is more sensitive to sea states with shorter periods than the frigate. It is possible to make an assessment of the probability structure of waves based on the joint distribution of individual wave heights and periods. Let us consider the properties of a steep storm sea state obtained from buoy measurements in the North Atlantic, taken in deep water off the East coast of Canada. The significant wave height is 10.7 m with a peak period of 12.4 s (H S /λp = 0.044); to obtain statistically reliable distributions, the 20 minute time series with measured wave elevation data were concatenated into a stationary time series of about two hours duration. This sea state lies at the outer edge of the Bales wave scatter data and would be critical in terms of extreme roll probabilities for the ships considered. 8 Copyright 2002 by ASME

9 The outer contours represent the waves with smallest probability of occurrence; Figure 12 shows that the highest observed wave has a height of about 19 m and a period of 10.7 s. The same information can be represented in terms of spatial (zero-crossing) wavelength and height, represented in Figure 13. It can be seen, for instance, that waves with a height of more than 15 m have lengths ranging between 170 m and 300 m. As a last example of how such data can be presented, figure 14 shows the joint distribution of wave steepness as a function of wavelength, where the individual wave steepness is taken to be s = H/λ. The figure shows that the steepest waves have a length ranging from about 50m to 180 m; their maximum steepness is around s = Figure 12: Joint probability distribution function of wave period and height (full scale measurements, H s = 10.7 m, T p = 12.4 s) Figure 12 shows the joint distribution (probability density function) of the zero-crossing wave periods, T z, and associated crest-to-trough wave heights, H. Figure 14: Joint pdf of wavelength and steepness (full scale measurements, H s = 10.7 m, T p = 12.4 s). Figure 13: Joint pdf of spatial wavelength and height (full scale measurements, H s = 10.7 m, T p = 12.4 s). The probabilistic description of the wave surface as discussed above can provide a useful indication of the severity of a given sea state. A sea state with a realistic occurrence of high, steep waves can be considered potentially dangerous. Using the joint probability density function, it is easy to estimate the probability of occurrence of a wave with certain critical properties. Let us assume (purely for illustration purposes and disregarding conditional aspects) that the frigate with a length L = 120 m will experience extreme motions, possibly up to the point of capsize, when it meets a wave with the following properties: Critical wavelength range: λ min < λ < λ max Critical minimum wavelength: λ min = 0.85 x L 9 Copyright 2002 by ASME

10 Critical maximum wavelength: λ max = 1.75 x L Critical minimum steepness: s = H/λ = 0.08 (assumed for all wavelengths) Given the above properties, the probability of occurrence of such waves in the above conditions with H s = 10.7 m and T p = 12.4 s is 0.08, i.e., 8% probability in this sea state. If the critical minimum wave steepness were 0.09 instead of 0.08, the probability would be reduced to 4.7%. CONCLUSIONS This paper provides a brief overview of the background and framework for obtaining estimates of short-term and long-term capsize probability using time domain ship motion simulations. The analysis has been applied to two naval ships, a frigate of 120 m in length and a corvette with 70 m length. [4] Madsen, H.O., Krenk, S., and Lind, N.C., Methods of Structural Safety, Prentice-Hall, Englewood Cliffs, New Jersey, 1986 [5] Naess, A. and Clausen, P.H. (1999). "Statistical Extrapolation and the Peaks Over Threshold Method", Proceedings 18th International Conference on Offshore Mechanics and Arctic Engineering - OMAE '99, St. John s, Newfoundland [6] Hosking, J.R.M. (1985). "Maximum-likelihood Estimation of the Parameters of the Generalized Extreme-value Distribution", Applied Statistics, 34, pp [7] De Kat, J.O., Brouwer, R., McTaggart, K. and Thomas, W.L., "Intact ship survivability in extreme waves: new criteria from a research and navy perspective", Proceedings STAB '94 Conference, Melbourne, Florida, November 1994 From the results the following conclusions are drawn: For loading conditions resulting in the same angle of vanishing stability, the long-term capsize probability of the 120 m frigate is significantly lower than for the 70 m vessel. For loading conditions resulting in the same total dynamic stability (area underneath the positive righting arm curve), the annual capsize probability is approximately the same for both ships. Short-term roll exceedance distributions for specific wave conditions can differ significantly for both ships, even when the GZ areas are similar. Application of an adaptive autopilot results in a modest decrease of the capsize probability for the 120 m frigate. ACKNOWLEDGMENTS The authors would like to acknowledge the Cooperative Research Navies Dynamic Stability group for their continued efforts in extending the boundaries of developing and applying methods for dynamic stability assessment. REFERENCES [1] McTaggart, K.A. and De Kat, J.O., "Capsize Risk of Intact Frigates in Irregular Seas", SNAME Transactions, 2000 [2] De Kat, J.O., "Irregular Waves and Their Influence on Extreme Ship Motions", Proceedings 20 th Naval Hydrodynamics Symposium, Santa Barbara, August 1994 [3] McTaggart, K.A., "Ship Capsize Risk in a Seaway Using Fitted Distributions to Roll Maxima", Transactions of the ASME, Journal of Offshore Mechanics and Arctic Engineering, Vol. 122, No. 2, Copyright 2002 by ASME

Dynamic Stability of Ships in Waves

Dynamic Stability of Ships in Waves Gourlay, T.P. & Lilienthal, T. 2002 Dynamic stability of ships in waves. Proc. Pacific 2002 International Maritime Conference, Sydney, Jan 2002. ABSTRACT Dynamic Stability of Ships in Waves Tim Gourlay

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan

IMO REVISION OF THE INTACT STABILITY CODE. Proposal of methodology of direct assessment for stability under dead ship condition. Submitted by Japan INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON STABILITY AND LOAD LINES AND ON FISHING VESSELS SAFETY 49th session Agenda item 5 SLF 49/5/5 19 May 2006 Original: ENGLISH REVISION OF THE INTACT

More information

Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas

Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas Analysis of Factors Affecting Extreme Ship Motions in Following and Quartering Seas Chang Seop Kwon *, Dong Jin Yeo **, Key Pyo Rhee *** and Sang Woong Yun *** Samsung Heavy Industries Co., td. * Maritime

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Monika Warmowska, Jan Jankowski, Polski Rejestr Statków S.A., al. gen. Józefa Hallera 126, Poland, Gdańsk, 80-416 MODELLING OF WATER FLOW ON SMALL VESSEL S DECK Summary Green water moving on deck of small

More information

Abstract. 1 Introduction

Abstract. 1 Introduction A computational method for calculatingthe instantaneous restoring coefficients for a ship moving in waves N. El-Simillawy College of Engineering and Technology, Arab Academyfor Science and Technology,

More information

A New Approach to the Derivation of V-Line Criteria for a Range of Naval Vessels

A New Approach to the Derivation of V-Line Criteria for a Range of Naval Vessels A New Approach to the Derivation of V-Line Criteria for a Range of Naval Vessels Andrew Peters 1, Rick Goddard 2 and Nick Dawson 1 1. QinetiQ, Haslar Marine Technology Park (UK) 2. Steller Systems Ltd.,

More information

Modelling of Extreme Waves Related to Stability Research

Modelling of Extreme Waves Related to Stability Research Modelling of Extreme Waves Related to Stability Research Janou Hennig 1 and Frans van Walree 1 1. Maritime Research Institute Netherlands,(MARIN), Wageningen, the Netherlands Abstract: The paper deals

More information

WAVE IMPACTS DUE TO STEEP FRONTED WAVES

WAVE IMPACTS DUE TO STEEP FRONTED WAVES WAVE IMPACTS DUE TO STEEP FRONTED WAVES Bas Buchner and Arjan Voogt Maritime Research Institute Netherlands (MARIN) b.buchner@marin.nl, a.j.voogt@marin.nl INTRODUCTION It is the question whether Rogue

More information

SAMPLE MAT Proceedings of the 10th International Conference on Stability of Ships

SAMPLE MAT Proceedings of the 10th International Conference on Stability of Ships and Ocean Vehicles 1 Application of Dynamic V-Lines to Naval Vessels Matthew Heywood, BMT Defence Services Ltd, mheywood@bm tdsl.co.uk David Smith, UK Ministry of Defence, DESSESea-ShipStab1@mod.uk ABSTRACT

More information

Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves

Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves Experimental Study on the Large Roll Motion of a ROPAX Ship in the Following and Quartering Waves Sun Young Kim, Nam Sun Son, Hyeon Kyu Yoon Maritime & Ocean Engineering Research Institute, KORDI ABSTRACT

More information

ITTC - Recommended Procedures and Guidelines

ITTC - Recommended Procedures and Guidelines 7.5 Page 1 of 5 Table of Contents 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 4. DOCUMENTATION... 4 5. REFERENCES... 4 3. PARAMETERS... 4 Updated by Approved Manoeuvring Committee of

More information

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves

Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves Comparative Stability Analysis of a Frigate According to the Different Navy Rules in Waves ABSTRACT Emre Kahramano lu, Technical University, emrek@yildiz.edu.tr Hüseyin Y lmaz,, hyilmaz@yildiz.edu.tr Burak

More information

Split-time Algorithm Implementation in Advanced Hydrodynamic Codes

Split-time Algorithm Implementation in Advanced Hydrodynamic Codes Proceedings of the 15 th International Ship Stability Workshop, 13-15 June 2016, Stockholm, Sweden 1 Split-time Algorithm Implementation in Advanced Hydrodynamic Codes Kenneth Weems, Naval Surface Warfare

More information

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh

Ship Stability. Ch. 8 Curves of Stability and Stability Criteria. Spring Myung-Il Roh Lecture Note of Naval Architectural Calculation Ship Stability Ch. 8 Curves of Stability and Stability Criteria Spring 2016 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National

More information

Wind Regimes 1. 1 Wind Regimes

Wind Regimes 1. 1 Wind Regimes Wind Regimes 1 1 Wind Regimes The proper design of a wind turbine for a site requires an accurate characterization of the wind at the site where it will operate. This requires an understanding of the sources

More information

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section International Ship Stability Workshop 2013 1 A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section Tatsuya Miyake and Yoshiho Ikeda Department of Marine System Engineering,

More information

An Investigation of a Safety Level in Terms of. Excessive Acceleration in Rough Seas

An Investigation of a Safety Level in Terms of. Excessive Acceleration in Rough Seas Proceedings of the h International Conference on the Stability of Ships and Ocean Vehicles, 4-9 June 5, Glasgow, UK. An Investigation of a Safety Level in Terms of Excessive Acceleration in Rough Seas

More information

Wave Forces on a Moored Vessel from Numerical Wave Model Results

Wave Forces on a Moored Vessel from Numerical Wave Model Results Wave Forces on a Moored Vessel from Numerical Wave Model Results ABSTRACT P W O BRIEN OMC International Pty Ltd, Melbourne, Australia O WEILER WL Delft Hydraulics, Delft, The Netherlands M BORSBOOM WL

More information

Modelling and Simulation of Environmental Disturbances

Modelling and Simulation of Environmental Disturbances Modelling and Simulation of Environmental Disturbances (Module 5) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007

More information

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN Bridget M. Wadzuk 1 (Member, ASCE) and Ben R. Hodges 2 (Member, ASCE) ABSTRACT Modeling of dynamic pressure appears necessary to achieve a more robust

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

Assessment of Operational Risks of Parametric Roll

Assessment of Operational Risks of Parametric Roll SNAME Annual Meeting 23 Presentation Assessment of Operational Risks of Parametric Roll Marc Levadou 1 and Lionel Palazzi 1 ABSTRACT In October 1998, a post-panamax, C11 class containership encountered

More information

Influence of different controllers on ship motion stabilization at applied active fin stabilizer

Influence of different controllers on ship motion stabilization at applied active fin stabilizer Influence of different controllers on ship motion stabilization at applied active fin stabilizer Imed El Fray, Zbigniew Kubik Technical University of Szczecin Department of Computer Science, ul. Zolnierska

More information

A Note on the Capsizing of Vessels in Following and Quartering Seas

A Note on the Capsizing of Vessels in Following and Quartering Seas Oceanic Engineenng International, Vol. 1, No. 1, 1997, pp. 25-32 A Note on the Capsizing of Vessels in Following and Quartering Seas MARTIN RENILSON' * 'Australian Maritime Engineering CRC Ltd, c/o Australian

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

STABILITY CRITERIA EVALUATION AND PERFORMANCE BASED CRITERIA DEVELOPMENT FOR DAMAGED NAVAL VESSELS

STABILITY CRITERIA EVALUATION AND PERFORMANCE BASED CRITERIA DEVELOPMENT FOR DAMAGED NAVAL VESSELS 10 th International Conference 155 STABILITY CRITERIA EVALUATION AND PERFORMANCE BASED CRITERIA DEVELOPMENT FOR DAMAGED NAVAL VESSELS Andrew J. Peters QinetiQ, Haslar Marine Technology Park, (UK) David

More information

Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55

Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55 1 Sample Application of Second Generation IMO Intact Stability Vulnerability Criteria as Updated during SLF 55 Clève Wandji, Bureau Veritas Philippe Corrignan, Bureau Veritas ABSTRACT A second generation

More information

FORECASTING OF ROLLING MOTION OF SMALL FISHING VESSELS UNDER FISHING OPERATION APPLYING A NON-DETERMINISTIC METHOD

FORECASTING OF ROLLING MOTION OF SMALL FISHING VESSELS UNDER FISHING OPERATION APPLYING A NON-DETERMINISTIC METHOD 8 th International Conference on 633 FORECASTING OF ROLLING MOTION OF SMALL FISHING VESSELS UNDER FISHING OPERATION APPLYING A NON-DETERMINISTIC METHOD Nobuo Kimura, Kiyoshi Amagai Graduate School of Fisheries

More information

Conventional Ship Testing

Conventional Ship Testing Conventional Ship Testing Experimental Methods in Marine Hydrodynamics Lecture in week 34 Chapter 6 in the lecture notes 1 Conventional Ship Testing - Topics: Resistance tests Propeller open water tests

More information

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS

COUPLED DYNAMIC ANALYSIS OF MOORING LINES FOR DEEP WATER FLOATING SYSTEMS Proceedings of International Conference in Ocean Engineering, ICOE Proceedings 2009 of ICOE 2009 Coupled Dynamic Analysis IIT Madras, of Chennai, Mooring India. Lines for Deep Water Floating Systems 1-5

More information

A PROCEDURE FOR DETERMINING A GM LIMIT CURVE BASED ON AN ALTERNATIVE MODEL TEST AND NUMERICAL SIMULATIONS

A PROCEDURE FOR DETERMINING A GM LIMIT CURVE BASED ON AN ALTERNATIVE MODEL TEST AND NUMERICAL SIMULATIONS 10 th International Conference 181 A PROCEDURE FOR DETERMINING A GM LIMIT CURVE BASED ON AN ALTERNATIVE MODEL TEST AND NUMERICAL SIMULATIONS Adam Larsson, Det Norske Veritas Adam.Larsson@dnv.com Gustavo

More information

FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR AND NON-REGULAR WAVE

FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR AND NON-REGULAR WAVE Tomasz Hinz, Polish Registry of Shipping;Tomasz.Hinz@prs.pl Jerzy Matusiak, Aalto University School of Science and Technology FUZZY MONTE CARLO METHOD FOR PROBABILITY OF CAPSIZING CALCULATION USING REGULAR

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

An Investigation into the Capsizing Accident of a Pusher Tug Boat

An Investigation into the Capsizing Accident of a Pusher Tug Boat An Investigation into the Capsizing Accident of a Pusher Tug Boat Harukuni Taguchi, National Maritime Research Institute (NMRI) taguchi@nmri.go.jp Tomihiro Haraguchi, National Maritime Research Institute

More information

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES

ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES ZIPWAKE DYNAMIC TRIM CONTROL SYSTEM OUTLINE OF OPERATING PRINCIPLES BEHIND THE AUTOMATIC MOTION CONTROL FEATURES TABLE OF CONTENTS 1 INTRODUCTION 3 2 SYSTEM COMPONENTS 3 3 PITCH AND ROLL ANGLES 4 4 AUTOMATIC

More information

THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT

THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT THE USE OF A VERTICAL BOW FIN FOR THE COMBINED ROLL AND YAW STABILIZATION OF A FAST PATROL BOAT J Alexander Keuning, Shiphydromechanics Department, Delft University of Technology, Netherlands Guido L Visch,

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events Loads and Responses, Seakeeping Page 1 of 5 CONTENTS 1. PURPOSE OF PROCEDURE 2. STANDARDS FOR EXPERIMENTS ON RARELY OCCURRING EVENTS 2.1 Previous Recommendations of ITTC 2.2 Model Design and Construction

More information

Determination of the Design Load for Structural Safety Assessment against Gas Explosion in Offshore Topside

Determination of the Design Load for Structural Safety Assessment against Gas Explosion in Offshore Topside Determination of the Design Load for Structural Safety Assessment against Gas Explosion in Offshore Topside Migyeong Kim a, Gyusung Kim a, *, Jongjin Jung a and Wooseung Sim a a Advanced Technology Institute,

More information

Roll Stabilisation at Anchor: Hydrodynamic Aspects of the Comparison of Anti-Roll Tanks and Fins

Roll Stabilisation at Anchor: Hydrodynamic Aspects of the Comparison of Anti-Roll Tanks and Fins Roll Stabilisation at Anchor: Hydrodynamic Aspects of the Comparison of Anti-Roll Tanks and Fins R.P. Dallinga, Manager Seakeeping Department Maritime Research Institute Netherlands (MARIN) Project 2002,

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations

Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations International Journal on Marine Navigation and Safety of Sea Transportation Volume 4 Number 3 September 2010 Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO IS-Code Recommendations P.

More information

WAVE MECHANICS FOR OCEAN ENGINEERING

WAVE MECHANICS FOR OCEAN ENGINEERING Elsevier Oceanography Series, 64 WAVE MECHANICS FOR OCEAN ENGINEERING P. Boccotti Faculty of Engineering University of Reggio-Calabria Feo di Vito 1-89060 Reggio-Calabria Italy 2000 ELSEVIER Amsterdam

More information

Author s Name Name of the Paper Session. Positioning Committee. Marine Technology Society. DYNAMIC POSITIONING CONFERENCE September 18-19, 2001

Author s Name Name of the Paper Session. Positioning Committee. Marine Technology Society. DYNAMIC POSITIONING CONFERENCE September 18-19, 2001 Author s Name Name of the Paper Session PDynamic Positioning Committee Marine Technology Society DYNAMIC POSITIONING CONFERENCE September 18-19, 2001 POWER PLANT SESSION A New Concept for Fuel Tight DP

More information

Subj: Explanation of Upper Level Capacity and Stability Characteristics for Rolling Boat, Inc. Vessels.

Subj: Explanation of Upper Level Capacity and Stability Characteristics for Rolling Boat, Inc. Vessels. 23 Apr, 2009 From: Tullio Celano III P.E. To: Underwriters of Rolling Boat, Inc. Via: Phil Kazmierowicz, President, Rolling Boat, Inc. Subj: Explanation of Upper Level Capacity and Stability Characteristics

More information

Influence of wave steepness on extreme ship hull vertical wave bending moments

Influence of wave steepness on extreme ship hull vertical wave bending moments Influence of wave steepness on extreme ship hull vertical wave bending moments J. Parunov & I. SenjanoviC Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia. Abstract

More information

DP Ice Model Test of Arctic Drillship

DP Ice Model Test of Arctic Drillship Author s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE October 11-12, 211 ICE TESTING SESSION DP Ice Model Test of Arctic Drillship Torbjørn Hals Kongsberg Maritime, Kongsberg, Norway Fredrik

More information

Developing a Shared Vision for Naval Stability Assessment.

Developing a Shared Vision for Naval Stability Assessment. Developing a Shared Vision for Naval Stability Assessment. Doug Perrault 1 Tristram Hughes 2 Steve Marshall 3 on behalf of the Naval Stability Standards Working Group 1 Defence Research & Development Canada

More information

Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method

Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method Computing Added Resistance in Waves Rankine Panel Method vs RANSE Method Heinrich Söding, TU Hamburg-Harburg, Hamburg/Germany, h.soeding@tu-harburg.de Vladimir Shigunov, Germanischer Lloyd SE, Hamburg/Germany,

More information

ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots

ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots Jong H. Park School of Mechanical Engineering Hanyang University Seoul, 33-79, Korea email:jong.park@ieee.org Yong K. Rhee School of

More information

An experimental study of internal wave generation through evanescent regions

An experimental study of internal wave generation through evanescent regions An experimental study of internal wave generation through evanescent regions Allison Lee, Julie Crockett Department of Mechanical Engineering Brigham Young University Abstract Internal waves are a complex

More information

for Naval Aircraft Operations

for Naval Aircraft Operations Seakeeping Assessment of Large Seakeeping Assessment of Large Trimaran Trimaran for Naval Aircraft Operations for Naval Aircraft Operations Presented by Mr. Boyden Williams, Mr. Lars Henriksen (Viking

More information

Effects of directionality on wind load and response predictions

Effects of directionality on wind load and response predictions Effects of directionality on wind load and response predictions Seifu A. Bekele 1), John D. Holmes 2) 1) Global Wind Technology Services, 205B, 434 St Kilda Road, Melbourne, Victoria 3004, Australia, seifu@gwts.com.au

More information

The Specialist Committee on Prediction of Extreme Ship Motions and Capsizing

The Specialist Committee on Prediction of Extreme Ship Motions and Capsizing 3rd International Proceedings of the 3rd ITTC Volume II 619 The Specialist Committee on Prediction of Extreme Ship Motions and Capsizing Final Report and Recommendations to the 3rd ITTC 1. INTRODUCTION

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies.

1. A tendency to roll or heel when turning (a known and typically constant disturbance) 2. Motion induced by surface waves of certain frequencies. Department of Mechanical Engineering Massachusetts Institute of Technology 2.14 Analysis and Design of Feedback Control Systems Fall 2004 October 21, 2004 Case Study on Ship Roll Control Problem Statement:

More information

Sea State Analysis. Topics. Module 7 Sea State Analysis 2/22/2016. CE A676 Coastal Engineering Orson P. Smith, PE, Ph.D.

Sea State Analysis. Topics. Module 7 Sea State Analysis 2/22/2016. CE A676 Coastal Engineering Orson P. Smith, PE, Ph.D. Sea State Analysis Module 7 Orson P. Smith, PE, Ph.D. Professor Emeritus Module 7 Sea State Analysis Topics Wave height distribution Wave energy spectra Wind wave generation Directional spectra Hindcasting

More information

Dynamic Criteria 3rd June 2005

Dynamic Criteria 3rd June 2005 Dynamic Intact Stability Criteria Scope. General The aim of this report is to introduce dynamic criteria for the intact stability of ships which cover the phenomena of parametric roll and pure loss of

More information

DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED AT DMI

DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED AT DMI TECHNISCHE UNIVERSITET laboratoriurn vow Scheepshydromechareba slechlef Meketweg 2, 2628 CD. Delft Tel.: 015-788873 - Fax 015-781838 DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED

More information

Sample Applications of the Second Generation Intact Stability Criteria Robustness and Consistency Analysis

Sample Applications of the Second Generation Intact Stability Criteria Robustness and Consistency Analysis Proceedings of the 16 th International Ship Stability Workshop, 5-7 June 2017, Belgrade, Serbia 1 Sample Applications of the Second Generation Intact Stability Criteria Robustness and Consistency Analysis

More information

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS SMART SOLUTIONS FOR VIBRATION MONITORING GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS ANALYSIS OF CIVIL STRUCTURES - EXPO MERLATA PEDESTRIAN BRIDGE ABSTRACT Civil structures and in particular bridges and

More information

On the Challenges of Analysis and Design of Turret-Moored FPSOs in Squalls

On the Challenges of Analysis and Design of Turret-Moored FPSOs in Squalls On the Challenges of Analysis and Design of Turret-Moored FPSOs in Squalls Arun Duggal Amir Izadparast Yu Ding 19th SNAME Offshore Symposium 6 February 2014 Overview Squalls, History & Current Practice

More information

REVISITING GLOBAL RESPONSE OF FPSOS IN SHALLOW WATER AND THE RISER ANALYSIS REQUIREMENTS

REVISITING GLOBAL RESPONSE OF FPSOS IN SHALLOW WATER AND THE RISER ANALYSIS REQUIREMENTS REVISITING GLOBAL RESPONSE OF FPSOS IN SHALLOW WATER AND THE RISER ANALYSIS REQUIREMENTS AMIR H. IZADPARAST SENIOR RESEARCH ENGINEER, HYDRODYNAMICS AND MOORING TECHNOLOGY, SOFEC JIAXING CHEN RESEARCH ENGINEER,

More information

The Physics of Lateral Stability 1

The Physics of Lateral Stability 1 The Physics of Lateral Stability 1 This analysis focuses on the basic physics of lateral stability. We ask Will a boat heeled over return to the vertical? If so, how long will it take? And what is the

More information

Chapter 20. Planning Accelerated Life Tests. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 20. Planning Accelerated Life Tests. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chapter 20 Planning Accelerated Life Tests William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Copyright 1998-2008 W. Q. Meeker and L. A. Escobar. Based on the authors

More information

AIS data analysis for vessel behavior during strong currents and during encounters in the Botlek area in the Port of Rotterdam

AIS data analysis for vessel behavior during strong currents and during encounters in the Botlek area in the Port of Rotterdam International Workshop on Next Generation Nautical Traffic Models 2013, Delft, The Netherlands AIS data analysis for vessel behavior during strong currents and during encounters in the Botlek area in the

More information

SOFTWARE. Sesam user course. 12 May 2016 HydroD Hydrostatics & Stability. Ungraded SAFER, SMARTER, GREENER DNV GL 2016

SOFTWARE. Sesam user course. 12 May 2016 HydroD Hydrostatics & Stability. Ungraded SAFER, SMARTER, GREENER DNV GL 2016 SOFTWARE Sesam user course DNV GL 1 SAFER, SMARTER, GREENER Scope of presentation Describe features & commands for performing a hydrostatic analysis, and their concepts Analysis setup Code-checking Reporting

More information

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection Waves Vocabulary mechanical wave pulse continuous periodic wave amplitude wavelength period frequency wave velocity phase transverse wave longitudinal wave intensity displacement wave number phase velocity

More information

Ship Stability September 2013 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National University

Ship Stability September 2013 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National University Planning Procedure of Naval Architecture and Ocean Engineering Ship Stability September 2013 Myung-Il Roh Department of Naval Architecture and Ocean Engineering Seoul National University 1 Ship Stability

More information

IACS URS11 defines the dimensioning wave load for ship design, but what does it mean from a statistical point of view?

IACS URS11 defines the dimensioning wave load for ship design, but what does it mean from a statistical point of view? IACS URS11 defines the dimensioning wave load for ship design, but what does it mean from a statistical point of view? Seamocs meeting in Malta Gaute Storhaug, DNV Maritime 19th of March 2009 Overview

More information

Validation of Ship Motion Predictions with Sea Trials Data for a Naval Destroyer in Multidirectional Seas

Validation of Ship Motion Predictions with Sea Trials Data for a Naval Destroyer in Multidirectional Seas 25th Symposium on Naval Hydrodynamics St Johns, Newfoundland and Labrador, CANADA, 8-13 August 24 Validation of Ship Motion Predictions with Sea Trials Data for a Naval Destroyer in Multidirectional Seas

More information

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Minggui Zhou 1, Dano Roelvink 2,4, Henk Verheij 3,4 and Han Ligteringen 2,3 1 School of Naval Architecture, Ocean and Civil Engineering,

More information

On the application of the 2 nd Generation Intact Stability Criteria to Ro-Pax and Container Vessels

On the application of the 2 nd Generation Intact Stability Criteria to Ro-Pax and Container Vessels On the application of the 2 nd Generation Intact Stability Criteria to Ro-Pax and Container Vessels Stefan Krueger, Hannes Hatecke Hamburg University of Technology, Germany Paola Gualeni, Luca Di Donato

More information

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology.

J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. J. Szantyr Lecture No. 21 Aerodynamics of the lifting foils Lifting foils are important parts of many products of contemporary technology. < Helicopters Aircraft Gliders Sails > < Keels and rudders Hydrofoils

More information

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 3D CDF ODELING OF SHIP S HEELING OENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Przemysaw Krata, Jacek Jachowski Gdynia aritime University,

More information

A PHASE-AMPLITUDE ITERATION SCHEME FOR THE OPTIMIZATION OF DETERMINISTIC WAVE SEQUENCES

A PHASE-AMPLITUDE ITERATION SCHEME FOR THE OPTIMIZATION OF DETERMINISTIC WAVE SEQUENCES Proceedings of the ASME 29 28th International Conference on Ocean, Offshore and Arctic Engineering OMAE29 May 31 - June, 29, Honolulu, Hawaii, USA Proceedings of the ASME 28th International Conference

More information

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies Wave Motion Vocabulary mechanical waves pulse continuous periodic wave amplitude period wavelength period wave velocity phase transverse wave longitudinal wave intensity displacement amplitude phase velocity

More information

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Tor Anders Nygaard and Jacobus de Vaal, IFE Morten Hviid Madsen and Håkon Andersen, Dr.techn Olav Olsen AS Jorge Altuzarra, Vicinay Marine

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

2.016: Hydrodynamics

2.016: Hydrodynamics 2.016: Hydrodynamics Alexandra H. Techet Dept. of Mechanical Engineering Lecture 1 What is Hydrodynamics? Hydrodynamics v. Aerodynamics Water is almost 1000 times denser than air! Marine Hydrodynamics

More information

THE USE OF ENERGY BUILD UP TO IDENTIFY THE MOST CRITICAL HEELING AXIS DIRECTION FOR STABILITY CALCULATIONS FOR FLOATING OFFSHORE STRUCTURES

THE USE OF ENERGY BUILD UP TO IDENTIFY THE MOST CRITICAL HEELING AXIS DIRECTION FOR STABILITY CALCULATIONS FOR FLOATING OFFSHORE STRUCTURES 10 th International Conference 65 THE USE OF ENERGY BUILD UP TO IDENTIFY THE MOST CRITICAL HEELING AXIS DIRECTION FOR STABILITY CALCULATIONS FOR FLOATING OFFSHORE STRUCTURES Joost van Santen, GustoMSC,

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Free-Sailing Model Test Procedure

ITTC Recommended Procedures Testing and Extrapolation Methods Manoeuvrability Free-Sailing Model Test Procedure Testing and Extrapolation Methods Free-Sailing Model Test Procedure Page 1 of 10 22 CONTENTS 1. PURPOSE OF PROCEDURE 2. DESCRIPTION OF PROCEDURE 2.1 Preparation 2.1.1 Ship model characteristics 2.1.2 Model

More information

ESTIMATION OF THE DESIGN WIND SPEED BASED ON

ESTIMATION OF THE DESIGN WIND SPEED BASED ON The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan ESTIMATION OF THE DESIGN WIND SPEED BASED ON UNCERTAIN PARAMETERS OF THE WIND CLIMATE Michael Kasperski 1 1

More information

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE

SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE SECOND ENGINEER REG III/2 NAVAL ARCHITECTURE LIST OF TOPICS A B C D E F G H I J Hydrostatics Simpson's Rule Ship Stability Ship Resistance Admiralty Coefficients Fuel Consumption Ship Terminology Ship

More information

THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING

THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING 8 th International Conference on 521 THE EFFECT OF COUPLED HEAVE/HEAVE VELOCITY OR SWAY/SWAY VELOCITY INITIAL CONDITIONS ON CAPSIZE MODELING Leigh S. McCue and Armin W. Troesch Department of Naval Architecture

More information

Ship waves in Tallinn Bay: Experimental and numerical study

Ship waves in Tallinn Bay: Experimental and numerical study Ship waves in Tallinn Bay: Experimental and numerical study Tomas Torsvik Bergen Center for Computational Science UNIFOB AS In collaboration with Tarmo Soomere Wave Engineering Centre for Nonlinear studies

More information

DUKC DYNAMIC UNDER KEEL CLEARANCE

DUKC DYNAMIC UNDER KEEL CLEARANCE DUKC DYNAMIC UNDER KEEL CLEARANCE Information Booklet Prepared in association with Marine Services Department 10/10/2005 Dynamic Under Keel Clearance (DUKC) integrates real time measurement of tides and

More information

Dynamic Positioning Control Augmentation for Jack-up Vessels

Dynamic Positioning Control Augmentation for Jack-up Vessels DYNAMIC POSITIONING CONFERENCE October 9-10, 2012 Design and Control Session Dynamic Positioning Control Augmentation for Jack-up Vessels By Bradley Deghuee L-3 Communications 1 Introduction Specialized

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 10 Table of Contents 1. PURPOSE... 2 2. NUMERICAL METHODS... 2 3. PREPARATION, SIMULATIONS AND ANALYSIS... 4 3.1 Geometry... 4 3.2 Preparations... 5 3.3 Wave conditions... 6 3.4 Wind conditions...

More information

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations

Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Presentation for Defense of Master Thesis Hydrodynamic Analysis of a Heavy Lift Vessel during Offshore Installation Operations Speaker: Bin Wang Supervisor: Prof. Robert Bronsart 23 rd Feb, 2015 Nantes

More information

STABILITY OF MULTIHULLS Author: Jean Sans

STABILITY OF MULTIHULLS Author: Jean Sans STABILITY OF MULTIHULLS Author: Jean Sans (Translation of a paper dated 10/05/2006 by Simon Forbes) Introduction: The capsize of Multihulls requires a more exhaustive analysis than monohulls, even those

More information

Seakeeping Tests (with ships) Experimental Methods in Marine Hydrodynamics Lecture in week 43

Seakeeping Tests (with ships) Experimental Methods in Marine Hydrodynamics Lecture in week 43 Seakeeping Tests (with ships) Experimental Methods in Marine Hydrodynamics Lecture in week 43 1 Topics Why do seakeeping tests? What to do? Activities Details of model test set-up and instrumentation Waves

More information

Propellers and propulsion

Propellers and propulsion Propellers and propulsion Kul-24.3200 Introduction of Marine Hydrodynamics Aalto University 25/10/2015 Introduction of Marine Hydrodynamics 1 Content of the course Resistance Propulsion Introduction, Momentum

More information

The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts

The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts THE 17 th CHESAPEAKE SAILING YACHT SYMPOSIUM ANNAPOLIS, MARYLAND, MARCH 25 The Effect of Mast Height and Centre of Gravity on the Re-righting of Sailing Yachts Jonathan R. Binns, Researcher, Australian

More information

Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements

Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements Downloaded from vbn.aau.dk on: januar 15, 2019 Aalborg Universitet Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements Toft, Henrik Stensgaard; Sørensen, John Dalsgaard Published

More information

Voith Water Tractor Improved Manoeuvrability and Seakeeping Behaviour

Voith Water Tractor Improved Manoeuvrability and Seakeeping Behaviour Amsterdam, The Netherlands Organised by the ABR Company Ltd Day Paper No. 2 9 Voith Water Tractor Improved Manoeuvrability and Seakeeping Behaviour Dr Dirk Jürgens and Michael Palm, Voith Turbo Schneider

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information