Pressure Measurement. Introduction. Engr325 Instrumentation. Dr Curtis Nelson 3/1/17

Size: px
Start display at page:

Download "Pressure Measurement. Introduction. Engr325 Instrumentation. Dr Curtis Nelson 3/1/17"

Transcription

1 3/1/17 Pressure Measurement Engr325 Instrumentation Dr Curtis Nelson Introduction A cluster of 72 helium-filled balloons over Temecula, California in April of The helium balloons displace approximately 230 m3 of air, providing the necessary buoyant force. Go ahead try it! 1

2 What Is Pressure? Pressure is defined as force per unit area that a fluid exerts on its surroundings. Pressure, P, is a function of force, F, and area, A: P = F/A The SI unit for pressure is the pascal (N/m 2 ), but other common units of pressure include pounds per square inch (psi), atmospheres (atm), bars, inches of mercury (in. Hg), millimeters of mercury (mm Hg), and torr. Pressure Measurement Absolute pressure is the pressure measured w.r.t. a vacuum (unit = psia). Gauge pressure is the pressure measured w.r.t. atmospheric pressure (unit = psig). Atmospheric pressure is the pressure on the earth s surface due to the weight of gases in the earth s atmosphere (14.7psi). Zero Pressure Pressure due to Atmosphere Absolute Pressure at point of interest Gauge Pressure at point of interest 2 2

3 Definitions Absolute Pressure The absolute measurement method is relative to 0 Pa, the static pressure in a vacuum. The pressure being measured is acted upon by atmospheric pressure in addition to the pressure of interest. Therefore, absolute pressure measurement includes the effects of atmospheric pressure. This type of measurement is well-suited for atmospheric pressures such as those used in altimeters or vacuum pressures. Gauge Pressure Gauge pressure is measured relative to ambient atmospheric pressure. This means that both the reference and the pressure of interest are acted upon by atmospheric pressures. Therefore, gauge pressure measurement excludes the effects of atmospheric pressure. These types of measurements include tire pressure and blood pressure measurements. Differential Pressure Differential pressure is similar to gauge pressure; however, the reference is another pressure point in the system rather than the ambient atmospheric pressure. You can use this method to maintain relative pressure between two vessels such as a compressor tank and an associated feed line. Pressure Measuring Instruments The techniques used for pressure measurement depend on the level of pressure (low, moderate, high). Low Pressure Measurement (below 133 Pa or 1 torr) McLeod gauge, Pirani gauge, or Ionization gauge. Moderate Pressure Measurement Manometer and elastic elements (diaphragm, bellows, capsules, bourdon tubes, spiral, helix). High Pressure Measurement (> 1000 atm) Electrical resistance pressure gauge. 3 3

4 Static Pressure of Atmosphere Gases differ from liquids in two respects: they are very compressible, and they completely fill any closed vessel in which they are placed. The nonlinear air pressure variation with altitude shown in the figure is an example of the effect of the compressibility of gases. Dynamic Effects Static pressure is measured under steady-state or equilibrium conditions, but most real-life applications deal with dynamic or changing pressure. For example, the measurement of blood pressure usually gives the two steady-state values of systolic and diastolic pressure. There is much additional information in the shape of the blood pressure signal which is the reason for the monitors used in critical-care situations. To measure changing pressures, the frequency response of the sensor must be considered. As a rough approximation, the sensor frequency response should be 5-10 the highest frequency component in the pressure signal. Another issue is the remote measurement of pressure where a liquid coupling medium is used. Care must be taken to purge all air because its compressibility will corrupt the waveform. 4 4

5 Pressure Sensing Pressure is sensed by mechanical elements such as plates, shells, and tubes that are designed and constructed to deflect when pressure is applied. This is the basic mechanism converting pressure to physical movement. Next, this movement must be transduced to obtain an electrical or other output. Finally, signal conditioning may be needed, depending on the type of sensor and the application. displacement electric Pressure Sensing Element Transduction element Signal Conditioner V or I output Pressure Measurement Methods A pressure measurement can further be described by the type of measurement being performed. The three methods for measuring pressure are absolute, gauge, and differential. Absolute pressure is referenced to the pressure in a vacuum, whereas gauge and differential pressures are referenced to another pressure such as the ambient atmospheric pressure or pressure in an adjacent vessel. 5 5

6 Sensing Elements The main types of sensing elements are Bourdon tubes, diaphragms, capsules, and bellows. All except diaphragms provide a fairly large displacement that is useful in mechanical gauges and for electrical sensors that require a significant movement. Bridge-Based Pressure Sensors Wheatstone bridge (strain-based) sensors are the most common because they offer solutions that meet varying accuracy, size, ruggedness, and cost constraints. Bridge-based sensors can measure absolute, gauge, or differential pressure in both high- and low- pressure applications. They use a strain gage to detect the deformity of a diaphragm subjected to the applied pressure. You can bond foil strain gages directly to a diaphragm or to an element that is connected mechanically to the diaphragm. Silicon strain gages are sometimes used as well. 6 6

7 Signal Conditioning for Bridge-Based Pressure Sensors Bridge-based pressure sensors are by far the most common pressure sensors. You need to consider several signal conditioning elements to make an effective bridge-based pressure measurement system: Excitation to power the Wheatstone bridge circuitry. Remote sensing to compensate for errors in excitation voltage from long lead wires. Amplification to increase measurement resolution and improve signal-tonoise ratio. Filtering to remove external, high-frequency noise. Offset nulling to balance the bridge to output 0 V when no strain is applied. Calibration to verify the output of the bridge to a known value. Capacitive Pressure Sensors A variable capacitance pressure transducer measures the change in capacitance between a metal diaphragm and a fixed metal plate. The capacitance between two metal plates changes if the distance between these two plates changes due to applied pressure. 7 7

8 Capacitive Pressure Sensors Capacitive pressure sensors typically use a thin diaphragm as one plate of a capacitor. Applied pressure causes the diaphragm to deflect and the capacitance to change. This change may or may not be linear and is typically on the order of several picofarads out of a total capacitance of pf. This change in capacitance may be used to control the frequency of an oscillator or to vary the coupling of an AC signal through a network. Piezoelectric Pressure Sensors Piezoelectric sensors rely on the electrical properties of quartz crystals rather than a resistive bridge transducer. These crystals generate an electrical charge when they are strained. Electrodes transfer the charge from the crystals to an amplifier built into the sensor. These sensors do not require an external excitation source, but they are susceptible to shock and vibration. 8 8

9 Piezoelectric Pressure Sensors Piezoelectric elements are bi-directional transducers capable of converting stress into an electric potential and vice versa. One important factor to remember is that this is a dynamic effect, providing an output only when the input is changing. This means that these sensors can be used only for varying pressures. The piezoelectric element has a high-impedance output and care must be taken to avoid loading the output by the interface electronics. Some piezoelectric pressure sensors include an internal amplifier to provide an easy electrical interface. Conditioned and Optical Pressure Sensors Sensors that include integrated circuitry, such as amplifiers, are referred to as amplified sensors. These types of sensors may be constructed using bridge-based, capacitive, or piezoelectric transducers. In the case of a bridge-based amplified sensor, the unit itself provides completion resistors and the amplification necessary to measure the pressure directly with a data acquisition system. Though excitation must still be provided, the accuracy of the excitation is less important. Optical Pressure Sensors Pressure measurement using optical sensing has many benefits including noise immunity and isolation. Read Fundamentals of FBG Optical Sensing for more information about this method of measurement. 9 9

10 Choosing the Right Pressure Sensor Bridge-based or piezoresistive sensors are the most common types of sensor because of their simple construction and durability. This translates to lower cost. In general, foil strain gages are used in high-pressure (up to 700M Pa) applications. They also have a higher operating temperature than silicon strain gages, but silicon strain gages offer the benefit of larger overload capability. Because they are more sensitive, silicon strain gages are often preferred in low-pressure applications (~2k Pa). Capacitive and piezoelectric pressure transducers are generally stable and linear, but they are sensitive to high temperatures and are more complicated to set up than most pressure sensors. Piezoelectric sensors respond quickly to pressure changes. For this reason, they are used to make rapid pressure measurements from events such as explosions. Because of their superior dynamic performance, piezoelectric sensors are the least cost-effective, and you must be careful to protect their sensitive crystal core. Conditioned sensors are typically more expensive because they contain components for filtering and signal amplification, excitation leads, and the regular circuitry for measurement. This is helpful for lower cost systems that do not warrant a dedicated signal conditioning system. Because the conditioning is built in, you can connect the sensor directly to a DAQ device as long as you provide power to the sensor in some way. Pressure Measuring Devices Barometer Atmospheric pressure is measured by a device called a barometer; thus, the atmospheric pressure is often referred to as the barometric pressure. A frequently used pressure unit is the standard atmosphere, which is defined as the pressure produced by a column of mercury 760 mm in height at 0 C (r Hg = 13,595 kg/m 3 ) under standard gravitational acceleration (g = m/s 2 ). The basic barometer. The length or the cross-sectional area of the tube has no effect on the height of the fluid column of a barometer, provided that the tube diameter is large enough to avoid surface tension (capillary) effects

11 Pressure Measuring Devices Bourdon Gage Principles: Change in curvature of the tube is proportional to difference of pressure inside from that outside the tube. Applications: Tire pressure, pressure at the top or along the walls of tanks or vessels Pressure Measuring Devices Strain Gage Principles: P à Resistance à Voltage Applications: Sensors for internal combustion engines, automotive, research etc

12 3/1/17 Pressure Measuring Devices Quartz Gage Principles: Pressure à Charge à Voltage Applications: Measurements with high accuracy, good repeatability, high resolution, e g. Quartz Clock. Piezoelectric transducers Pressure Measuring Devices Piezoresistive Gage Principles: Pressure = Charge = Resistance = Voltage Applications: Very accurate for small pressure differentials e.g. difference between indoor and outdoor pressure. Digital Manometer 12 12

13 Pressure Measuring Devices U-tube Manometer Principles: Hydrostatic Law P=ρ g h Pressure Measuring Devices U-tube Manometer Applications: Air pressure, pipe pressure, etc. Mercury Water Manometer Air Water Manometer 13 13

14 Elastic Elements Elastic elements, when subjected to pressure, get deformed. Measurement of the deformation gives an indication of pressure value. The deformation may be measured by mechanical or electrical means. Example of elastic elements are: diaphragms, capsules, bellows, Bourdon or helical tubes. Elastic Elements Flat diaphragm Corrugated diaphragm Capsule Bellows Straight tubes C-shape Bourdon tube Twisted Bourdon tube Helical Bourdon tube Spiral Bourdon tube 14 14

15 Electrical Resistance Pressure Gauge The concept of operation is based on electrical resistance change in a conductor when applied directly to a pressure. The sensing element consist of a loosely wound coil of relatively fine wire, and it will be compressed when high pressure is applied to it. The length and cross section of the wire affect its electrical resistance. McLeod Gauge It compresses the low pressure gas so that the increased pressure can be measured. The change in volume and pressure can then be used to calculate the original gas pressure, providing that the gas not condensed

16 Pirani Gauge It consist of platinum filament and thermocouple enclosed in a chamber. The pressure measurement is based on the relation of heat conduction and radiation from a heating element to the number of gas molecules per unit volume in the low pressure region. Ionization Gauge It can be used to measure pressure down to about 2 torr. The gas is ionized with a beam of electrons and the current is measured between two electrodes in the gas. The current is proportional to the number of ions per unit volume, which also proportional to the gas pressure

17 Piezoresistive Integrated Semiconductor Integrated Circuit processing is used to form the piezoresistors on the surface of a silicon wafer. There are four piezoresistors within the diaphragm area on the sensor. Two are subjected to tangential stress and two to radial stress when the diaphragm is deflected. They are connected in a fourelement bridge configuration and provide the following output: V OUT /V CC = ΔR / R Piezoresistive Integrated Semiconductor IC processing is used to form the piezoresistors on the surface of a silicon wafer to fabricate an integrated piezoresistive pressure sensor. Integrated silicon pressure sensor measures 0.52 in. long by 0.44 in. wide by 0.75 in. high, including the port

18 Calibration Dead-Weight Tester. A dead-weight tester uses calibrated weights that exert force on a piston which then acts on a fluid to produce a test pressure. Oil is the medium typically used for lower pressures. For high pressures (>500 psi), pneumatic bearing testers are available and are more convenient as well as less messy to use

19 The Manometer It is commonly used to measure small and moderate pressure differences. A manometer contains one or more fluids such as mercury, water, alcohol, or oil. Measuring the pressure drop across a flow section or a flow device by a differential manometer. The basic manometer. In stacked-up fluid layers, the pressure change across a fluid layer of density r and height h is rgh. 37 A simple U-tube manometer, with high pressure applied to the right side

20 In many structures of practical application, the submerged surfaces are not flat, but curved as here at Glen Canyon Dam in Utah and Arizona. 39 Exercise Find the absolute pressure, if a pressure gauge reads 8.3psi, while the atm pressure is 14.7psi. P abs = P at + P g = = 23 psi 20 20

21 Hydrostatic Pressure Hydrostatic pressure is the pressure in a liquid. The pressure increases as the depth in a liquid increases, due to its weight. In term of equation, P = ρgh ρ = density in kg/m 3 g = acceleration due to gravity (9.8m/s 2 ) h = depth in liquid in m P = pressure in Pa P = ρ w h ρ w = weight density in lb/ft 3 h = depth in liquid in ft P = pressure in lb/ft 2 Exercise If a pool has a water with a depth of 6 ft. Find the pressure at the bottom of the pool in Pa and psi. (assume density = 10 3 kg/m 3 ) 21 21

22 Manometer Manometer is the simplest device for measuring static pressure. It contains water/ mercury or any other suitable fluid in the manometer tube. When a pressure line is connected to one column of manometer, the fluid in the column will be forced down, and the fluid in the other will rise. By measuring the difference in height of the fluid in the two columns, the pressure of the inlet can be expressed in inches of fluid. Types of Manometer U-tube Manometer Well-type Manometer Incline-tube Manometer 22 22

23 Potentiometric Pressure Sensors Potentiometric pressure sensors use a Bourdon tube, capsule, or bellows to drive a wiper arm on a resistive element. For reliable operation the wiper must bear on the element with some force, which leads to repeatability and hysteresis errors. These devices are very low cost, however, and are used in lowperformance applications such as dashboard oil pressure gauges Several configurations based on varying inductance or inductive coupling are used in pressure sensors. They all require AC excitation of the coil(s) and, if a DC output is desired, subsequent demodulation and filtering. The LVDT types have a fairly low frequency response due to the necessity of driving the moving core of the differential transformer The LVDT uses the moving core to vary the inductive coupling between the transformer primary and secondary. Inductive Pressure Sensors 23 23

24 Capacitive Pressure Sensors Capacitive Pressure Sensors Piezoelectric Pressure Sensors. Piezoelectric sensors convert stress into an electric potential and vice versa. Sensors based on this technology are used to measure varying pressures

25 Strain Gauge Pressure Sensors Strain gauge sensors originally used a metal diaphragm with strain gauges bonded to it. the signal due to deformation of the material is small, on the order of 0.1% of the base resistance Semiconductor strain gauges are widely used, both bonded and integrated into a silicon diaphragm, because the response to applied stress is an order of magnitude larger than for a metallic strain gauge. Strain Gauge Pressure Sensors When the crystal lattice structure of silicon is deformed by applied stress, the resistance changes. This is called the piezoresistive effect. Following are some of the types of strain gauges used in pressure sensors. Deposited strain gauge. Metallic strain gauges can be formed on a diaphragm by means of thin film deposition. This construction minimizes the effects of repeatability and hysteresis that bonded strain gauges exhibit. These sensors exhibit the relatively low output of metallic strain gauges

26 Strain Gauge Pressure Sensors Bonded semiconductor strain gauge. A silicon bar may be bonded to a diaphragm to form a sensor with relatively high output. Making the diaphragm from a chemically inert material allows this sensor to interface with a wide variety of media Pressure Switches Pressure switches, combining a diaphragm or other pressure measuring means with a precision snap switch, can provide precise single-point pressure sensing. Alternatively, simple electronic switches may be combined with electrical sensors to construct a pressure switch with an adjustable set point and hysteresis

27 Electrical Interfacing Care must be taken to avoid corrupting the signal by noise of 60/50 Hz AC pickup. If the signal must be run some distance to the interface circuitry, twisted and/or shielded wire should be considered. A decoupling capacitor located at the sensor and connected from the supply to ground will also filter noise, as will a capacitor from output to ground. For long runs, a current output sensor should be considered. These devices have a 2-wire interface and modulate the supply current in response to applied pressure. Obviously, wire resistance has no effect and noise must change the loop current, not simply impress a voltage on the signal. The industry standard interface is: PL = 4 ma PH = 20 ma PL= low pressure range limit PH = high pressure range limit Manometer A mercury manometer is a simple pressure standard and may be used for gauge, differential, and absolute measurements with a suitable reference. It is useful mainly for lower pressure work because the height 27 27

28 Selection Considerations Selection of a pressure sensor involves consideration of the medium for compatibility with the materials used in the sensor, the type (gauge, absolute, differential) of measurement, the range, the type of electrical output, and the accuracy required. Manufacturer's specifications usually apply to a particular temperature range. If the range of operation in a given application is smaller, for example, the errors should ratio down. Total error can be computed by adding the individual errors (worstcase) or by computing the geometric sum or root sum of the squares (RSS). The latter is more realistic since it treats them as independent errors that typically vary randomly. Selection Considerations Following is a comparison of the two methods. Given the following error terms: Linearity = 1% F.S. Null calibration = 1% F.S. Sensitivity calibration = 1% F.S. Temperature errors are sometimes given as coefficients per ºC referenced to 25ºC. Simply multiply the coefficient by the temperature range of the application to obtain the total error. Temperature error = 0.5% F.S. Repeatability and hysteresis = 0.1% F.S

29 Selection Considerations Worst case error is equal to the sum of all the maximum errors: Worst case error = = 3.6% Industrial Applications Fluid level in a tank: A gauge pressure sensor located to measure the pressure at the bottom of a tank can be used for a remote indication of fluid level using the relation: h = P/ρg Fluid flow: An orifice plate placed in a pipe section creates a pressure drop. This approach is widely used to measure flow because the pressure drop may be kept small in comparison to some other types of flowmeters and because it is impervious to clogging, which may otherwise be a problem when measuring flow of a viscous medium or one containing particulate matter. The relation is: 29 29

Pressure Measurement. Introduction. Engr325 Instrumentation. Dr Curtis Nelson 3/12/18

Pressure Measurement. Introduction. Engr325 Instrumentation. Dr Curtis Nelson 3/12/18 3/12/18 Pressure Measurement Engr325 Instrumentation Dr Curtis Nelson Introduction A cluster of 72 helium-filled balloons over Temecula, California in April of 2003. The helium balloons displace approximately

More information

Instrumentation & Data Acquisition Systems

Instrumentation & Data Acquisition Systems Instrumentation & Data Acquisition Systems Section 4 - Pressure Robert W. Harrison, PE Bob@TheHarrisonHouse.com Made in USA 1 Definition of Pressure Pressure is the amount of force applied perpendicular

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid

More information

Pressure Measurements

Pressure Measurements ME 22.302 Mechanical Lab I Pressure Measurements Dr. Peter Avitabile University of Massachusetts Lowell Pressure - 122601-1 Copyright 2001 A transducer is a device that converts some mechanical quantity

More information

Instrumentation & Data Acquisition Systems

Instrumentation & Data Acquisition Systems Instrumentation & Data Acquisition Systems Section 3 -Level Robert W. Harrison, PE Bob@TheHarrisonHouse.com Made in USA 1 Level Section Question Which level measuring technology is the best solution when

More information

Pressure measurement. Absolute pressure D Gauge pressure C Atmospheric pressure

Pressure measurement. Absolute pressure D Gauge pressure C Atmospheric pressure Pressure measurement Pressure measurement is a very common requirement for most industrial process control systems and many different types of -sensing and -measurement systems are available. However,

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Absolute and Gage Pressure P abs = P gage + P atm where P abs = Absolute pressure P abs = Gage pressure P abs = atmospheric pressure A perfect vacuum is the lowest possible pressure.

More information

Chapter 3 PRESSURE AND FLUID STATICS

Chapter 3 PRESSURE AND FLUID STATICS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGraw-Hill

More information

SPD Pressure Sensor Families

SPD Pressure Sensor Families DATASHEET SPD Pressure Sensor Families 1/7 Introduction to the principals of Smart Pressure Devices 1 Basic principles Pressure sensors are based on the principle of bending a membrane caused by the pressure

More information

Hydrostatic pressure Consider a tank of fluid which contains a very thin plate of (neutrally buoyant) material with area A. This situation is shown in Figure below. If the plate is in equilibrium (it does

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

Unit 2 Pressure Measurement Techniques 1. State importance of pressure measurement in process industries.

Unit 2 Pressure Measurement Techniques 1. State importance of pressure measurement in process industries. Unit 2 Pressure Measurement Techniques 1. State importance of pressure measurement in process industries. The measurement of pressure is one of the most important measurements, as it is used in almost

More information

The Experts in Vacuum Solutions

The Experts in Vacuum Solutions By Woodrow Farrow - Reprinted with permission from Specialty Gas Report Vacuum: a space that is relatively empty of matter, especially when that void has been created through artificial means. The earth

More information

Lab 1c Isentropic Blow-down Process and Discharge Coefficient

Lab 1c Isentropic Blow-down Process and Discharge Coefficient 058:080 Experimental Engineering Lab 1c Isentropic Blow-down Process and Discharge Coefficient OBJECTIVES - To study the transient discharge of a rigid pressurized tank; To determine the discharge coefficients

More information

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7.

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7. Phys101 Lectures 21-22 Fluids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 10-1,2,3,4,5,6,7. Page 1 10-1 Phases of Matter The three common phases of matter are solid,

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

This educational seminar discusses creating, measuring, and troubleshooting Rough Vacuum.

This educational seminar discusses creating, measuring, and troubleshooting Rough Vacuum. This educational seminar discusses creating, measuring, and troubleshooting Rough Vacuum. Specifically, today s talk will cover: Brief review of Vacuum Fundamentals Applications Using Rough Vacuum Rough

More information

A Journal of Practical and Useful Vacuum Technology. By Phil Danielson

A Journal of Practical and Useful Vacuum Technology. By Phil Danielson A Journal of Practical and Useful Vacuum Technology From By Phil Danielson Thermal Conductivity Gauges Thermal conductivity pressure gauges are extremely common in vacuum technology, but an understanding

More information

Level MEASUREMENT 1/2016

Level MEASUREMENT 1/2016 Level MEASUREMENT 1/2016 AGENDA 2 A. Introduction B. Float method C. Displacer method D. Hydrostatic pressure method E. Capacitance method G. Ultrasonic method H. Radar method I. Laser method J. Level

More information

Introduction to Pressure Measurement

Introduction to Pressure Measurement Introduction to Pressure Measurement FG05W5 Version 1.3 2010 Standards Certification Education & Training Publishing Conferences & Exhibits Seminar Logistics Seminar materials Downloadable presentation

More information

Gauge Pressure, Absolute Pressure, and Pressure Measurement

Gauge Pressure, Absolute Pressure, and Pressure Measurement Gauge Pressure, Absolute Pressure, and Pressure Measurement By: OpenStax College Online: This module is copyrig hted by Rice University. It is licensed under the Creative

More information

Fluid Machinery Introduction to the laboratory measurements

Fluid Machinery Introduction to the laboratory measurements Fluid Machinery Introduction to the laboratory measurements Csaba H s (csaba.hos@hds.bme.hu) Ferenc Hegedus (hegedusf@hds.bme.hu) February 21, 2014 1 Requirements related to the measurement part of the

More information

Precision level sensing with low-pressure module MS

Precision level sensing with low-pressure module MS The task on hand Level sensing as it is understood in modern process automation is much more than simply "tank half full" or "tank a quarter full". Using suitable sensors, levels, inlets and outlets can

More information

INSTRUMENTATION EQUIPMENT

INSTRUMENTATION EQUIPMENT INSTRUMENTATION EQUIPMENT 2.0 INTRODUCTION Instrumentation is the art of measuring the value of some plant parameter, pressure, flow, level or temperature to name a few and supplying a signal that is proportional

More information

Chapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity

Chapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity Chapter 10 Fluids 10-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can

More information

Applied Thermodynamics. Experiment_01_MT_234. Instructor: Mr. Adnan Qamar. Mechanical Engineering Department

Applied Thermodynamics. Experiment_01_MT_234. Instructor: Mr. Adnan Qamar. Mechanical Engineering Department Applied Thermodynamics Experiment_01_MT_234 Instructor: Mr. Adnan Qamar Mechanical Engineering Department 1 Experiment No. 01: To test that Pressure is an intensive property. Apparatus: Nozzle Distribution

More information

Chapter 15 Fluid. Density

Chapter 15 Fluid. Density Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid

More information

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7.

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7. Phys101 Lectures 24-25 luids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 10-1,2,3,4,5,6,7. Page 1 10-1 Phases of Matter The three common phases of matter are solid,

More information

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy

More information

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 CEE 331 Lab 1 Page 1 of 9 SAFETY Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 Laboratory exercise based on an exercise developed by Dr. Monroe Weber-Shirk The major safety hazard in this

More information

Pressure measurement explained

Pressure measurement explained Rev A1, May 25 th, 2018 Sens4Knowledge Sens4 A/S Nordre Strandvej 119 G 3150 Hellebaek Denmark Phone: +45 8844 7044 Email: info@sens4.com www.sens4.com Introduction Pressure is defined as the force per

More information

Engineering: Measurement Technology Pressure/Level (SCQF level 6)

Engineering: Measurement Technology Pressure/Level (SCQF level 6) National Unit Specification: general information CODE F5KT 12 SUMMARY This Unit can be delivered as part of a National Qualification Group Award but can also be taken as a free-standing Unit. This Unit

More information

Properties of Fluids SPH4C

Properties of Fluids SPH4C Properties of Fluids SPH4C Fluids Liquids and gases are both fluids: a fluid is any substance that flows and takes the shape of its container. Fluids Liquids and gases are both fluids: a fluid is any substance

More information

PRESSURE SENSOR - ABSOLUTE (0 TO 700 kpa)

PRESSURE SENSOR - ABSOLUTE (0 TO 700 kpa) Instruction Sheet for the PASCO Model CI-6532A PRESSURE SENSOR - ABSOLUTE (0 TO 700 kpa) 012-06859B 10/98 $1.00 polyurethane tubing syringe cable with DIN s to computer interface quick release s (4) pressure

More information

BAROMETER PRESSURE STANDARD PRESSURE CONTROLLER

BAROMETER PRESSURE STANDARD PRESSURE CONTROLLER BAROMETER PRESSURE STANDARD PRESSURE CONTROLLER Features ±0.01% FS Measurement & Control Accuracy ±0.001% /ºC Thermal Stability Pressure Ranges from ±1 psid to 1200 psia Applications Barometric Measurement

More information

Unit A-2: List of Subjects

Unit A-2: List of Subjects ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A-1: Introduction to Thermodynamics A-2: Engineering Properties Unit A-2: List of Subjects Basic Properties and Temperature Pressure

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

Pressure and Depth. In a static, non-moving fluid

Pressure and Depth. In a static, non-moving fluid Pressure and Depth In a static, non-moving fluid Static Fluids Being on the surface of the earth, you can say that we dwell on the bottom of an ocean of air. The pressure we experience is primarily caused

More information

3.0 Pressure Transmitter Selection

3.0 Pressure Transmitter Selection 3.0 Pressure Transmitter Selection Each Tronic Line pressure transmitter has different features to meet specific performance, environmental, and price requirements. It is not possible to describe every

More information

Density and Specific Gravity

Density and Specific Gravity Fluids Phases of Matter Matter is anything that has mass and takes up space (volume). The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a

More information

Chapter 3: Fluid Statics. 3-1 Pressure 3-2 Fluid Statics 3-3 Buoyancy and Stability 3-4 Rigid-Body Motion

Chapter 3: Fluid Statics. 3-1 Pressure 3-2 Fluid Statics 3-3 Buoyancy and Stability 3-4 Rigid-Body Motion 3-1 Pressure 3-2 Fluid Statics 3-3 Buoyancy and Stability 3-4 Rigid-Body Motion Chapter 3 Fluid Statics 3-1 Pressure (1) Pressure is defined as a normal force exerted by a fluid per unit area. Units of

More information

WHITEPAPER. The flowplus 16 Pressure Sensor. Physical Principles and Function

WHITEPAPER. The flowplus 16 Pressure Sensor. Physical Principles and Function The flowplus 16 Pressure Sensor Physical Principles and Function Sensors (from the Latin "Sensire") are devices by means of which it is possible to detect physical or chemical properties of materials.

More information

COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS

COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS COMPARISON OF DIFFERENTIAL PRESSURE SENSING TECHNOLOGIES IN HOSPITAL ISOLATION ROOMS AND OTHER CRITICAL ENVIRONMENT APPLICATIONS APPLICATION NOTE LC-136 Introduction Specialized spaces often times must

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

BAPI Pressure Line of Products - FAQs

BAPI Pressure Line of Products - FAQs Table of Contents 1. Several manufacturers produce pressure transmitters, why should I purchase from BAPI?... p. 2 2. BAPI makes several styles of pressure transmitters. What are the features of each?...

More information

How to specify a product. Process Sensors and Mechanical Instruments

How to specify a product. Process Sensors and Mechanical Instruments How to specify a product Process Sensors and Mechanical Instruments Keep the overview. Here is some guideline information on how to specify our products. Intended as supplementary help to specification

More information

Exercise 8. Closed-Loop Pressure Control, Proportional-Plus-Integral Mode EXERCISE OBJECTIVE

Exercise 8. Closed-Loop Pressure Control, Proportional-Plus-Integral Mode EXERCISE OBJECTIVE Exercise 8 Closed-Loop Pressure Control, EXERCISE OBJECTIVE To understand open and closed-loop pressure control; To learn how to sense the pressure in a pneumatic circuit; To control the pressure in a

More information

Fluid Mechanics. Chapter Three: Fluid Statics. Dr. Amer Khalil Ababneh

Fluid Mechanics. Chapter Three: Fluid Statics. Dr. Amer Khalil Ababneh Fluid Mechanics Chapter Three: Fluid Statics Dr. Amer Khalil Ababneh This chapter deals with mechanics of fluids by introducing concepts related to pressure and by describing how to calculate forces associated

More information

PHYSICS - CLUTCH CH 17: FLUID MECHANICS.

PHYSICS - CLUTCH CH 17: FLUID MECHANICS. !! www.clutchprep.com INTRO TO DENSITY LIQUIDS and GASES are types of. So we use the term to refer generally to both Liquids AND Gases. The DENSITY of a material is a measure of how tight the molecules

More information

ASDX Series Silicon Pressure Sensors

ASDX Series Silicon Pressure Sensors ASDX Series Silicon Pressure Sensors DESCRIPTION The ASDX Series is a Silicon Pressure Sensor offering a ratiometric analog interface for reading pressure over the specified full scale pressure span and

More information

Selecting the right pressure sensor for your application

Selecting the right pressure sensor for your application Selecting the right pressure sensor for your application This guide from Acal BFi details the key factors that you must consider when selecting a pressure sensor for your application. Selecting the best

More information

2600T Series Pressure Transmitter Models 264DC Differential and 264HC Gage Level Transmitters. Kent-Taylor

2600T Series Pressure Transmitter Models 264DC Differential and 264HC Gage Level Transmitters. Kent-Taylor INDUSTRIAL INSTRUMENTS AND CONTROLS SPECIALIST Kent-Taylor 2600T Series Pressure Transmitter Models 264DC Differential and 264HC Gage Level Transmitters Features Include Base accuracy : ±0.075% Span limits

More information

Another convenient term is gauge pressure, which is a pressure measured above barometric pressure.

Another convenient term is gauge pressure, which is a pressure measured above barometric pressure. VACUUM Theory and Applications Vacuum may be defined as the complete emptiness of a given volume. It is impossible to obtain a perfect vacuum, but it is possible to obtain a level of vacuum, defined as

More information

Lecture 19 Fluids: density, pressure, Pascal s principle and Buoyancy.

Lecture 19 Fluids: density, pressure, Pascal s principle and Buoyancy. Lecture 19 Water tower Fluids: density, pressure, Pascal s principle and Buoyancy. Hydraulic press Pascal s vases Barometer What is a fluid? Fluids are substances that flow. substances that take the shape

More information

AMS 6916 Board mount pressure sensor with ratiometric analog output

AMS 6916 Board mount pressure sensor with ratiometric analog output FEATURES Piezoresistive pressure sensor with amplified analog output Calibrated and temperature compensated Ratiometric voltage output, 0.5 4.5 V Digital signal conditioning, 12 bit output resolution Differential,

More information

Objectives deals with forces applied by fluids at rest or in rigid-body motion.

Objectives deals with forces applied by fluids at rest or in rigid-body motion. Objectives deals with forces applied by fluids at rest or in rigid-body motion. The fluid property responsible for those forces is pressure, which is a normal force exerted by a fluid per unit area. discussion

More information

Gases and Pressure SECTION 11.1

Gases and Pressure SECTION 11.1 SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.

More information

1 Overview. Pressure Measurement Single-range transmitters for general applications. 1/22 Siemens FI US Edition

1 Overview. Pressure Measurement Single-range transmitters for general applications. 1/22 Siemens FI US Edition Siemens AG 07 SITRANS LH00 Transmitter for hydrostatic level Overview Function U const. p U I EM The pressure transmitter SITRANS LH00 is a submersible sensor for hydrostatic level measurement. The pressure

More information

Measurement And Control Appreciation

Measurement And Control Appreciation Measurement And Control Appreciation Course Content Aim To provide an appreciation of the operation and application of process plant instrumentation used for the measurement and display of the main process

More information

CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF PRESSURE METROLOGY

CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF PRESSURE METROLOGY CRITERIA FOR LABORATORY ACCREDITATION IN THE FIELD OF PRESSURE METROLOGY Approved By: Chief Executive Officer: Ron Josias Senior Manager: Mpho Phaloane Revised By: Specialist Technical Committee Date of

More information

Process Equipment Design Guidelines Chapter Four Instrumentation Selection and Sizing (Engineering Design Guidelines)

Process Equipment Design Guidelines Chapter Four Instrumentation Selection and Sizing (Engineering Design Guidelines) KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia www.klmtechgroup.com Process Equipment Design Guidelines Instrumentation Selection and Sizing (Engineering

More information

Operating Instructions for Intrinsically Safe Pressure Transmitters Series DMG/******** for Hazardous Application in Coal Mining Industry

Operating Instructions for Intrinsically Safe Pressure Transmitters Series DMG/******** for Hazardous Application in Coal Mining Industry Operating Instructions for Intrinsically Safe ressure Transmitters Series DMG/******** for Hazardous Application in Coal Mining Industry Contents 1. Introduction 2. Abbreviations, symbols 3. Important

More information

Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip.

Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip. Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip. CEE 3310 - Summer 2012 SAFETY The major safety hazard in this laboratory is a shock hazard. Given that you will be working

More information

TEK-SUB 4800B. Submersible Level Transmitter. Flow Level Temperature Pressure Valves Analyzers Accessories TekValSys LEVEL

TEK-SUB 4800B. Submersible Level Transmitter.   Flow Level Temperature Pressure Valves Analyzers Accessories TekValSys LEVEL Technology Solutions TEK-SUB 4800B Submersible Level Transmitter LEVEL Flow Level Temperature Pressure Valves Analyzers Accessories TekValSys Introduction The Tek-Sub 4800B Submersible Level Transmitter

More information

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI

GP1 & GP2. Electropneumatic Regulators FOR PRESSURE CONTROL TO 1,000 PSI GP1 & GP2 Electropneumatic Regulators FOR PRESSURE CONTROL TO 1, PSI GP1 & GP2 Functional Description The GP series control valve is an electronic pressure regulator designed to precisely control the pressure

More information

Improving distillation tower operation

Improving distillation tower operation Improving distillation tower operation Measuring differential pressure across long sections of distillation columns has always been challenging, but purpose-built sensor systems provide a solution Fast

More information

Assistant Lecturer Anees Kadhum AL Saadi

Assistant Lecturer Anees Kadhum AL Saadi Pressure Variation with Depth Pressure in a static fluid does not change in the horizontal direction as the horizontal forces balance each other out. However, pressure in a static fluid does change with

More information

Pressure Control. where: p is the pressure F is the normal component of the force A is the area

Pressure Control. where: p is the pressure F is the normal component of the force A is the area Pressure Control First of all, what is pressure, the property we want to control? From Wikipedia, the free encyclopedia. Pressure is the application of force to a surface, and the concentration of that

More information

1 Overview. Pressure Measurement Single-range transmitters for general applications. 1/22 Siemens FI

1 Overview. Pressure Measurement Single-range transmitters for general applications. 1/22 Siemens FI Siemens AG 06 SITRANS LH00 Transmitter for hydrostatic level Overview Function U const. p U I EM The pressure transmitter SITRANS LH00 is a submersible sensor for hydrostatic level measurement. The pressure

More information

P499 Heavy Duty Pressure Transducer

P499 Heavy Duty Pressure Transducer P499 Heavy Duty Pressure Transducer Product Bulletin Code No. LIT-??? E Issued 11 2006 The P499 Series is a new global Pressure Transducer with an excellent price performance ratio. The P499 exceeds the

More information

Process Control Measurement Pressure, Flow, and Level Courseware Sample

Process Control Measurement Pressure, Flow, and Level Courseware Sample Process Control Measurement Pressure, Flow, and Level Courseware Sample 85981-F0 Order no.: 85981-10 First Edition Revision level: 07/2015 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec,

More information

Mechanical methods of

Mechanical methods of 3 FORCE-RELTED MESUREMENTS Measurement From Mechanical to Electronic Transducer Types Practical Considerations Measurement M Mechanical methods of measuring pressure have been known for centuries. U-tube

More information

Vortex Meters for Liquids, Gas, and Steam

Vortex Meters for Liquids, Gas, and Steam A Measuring Principle Comes of Age: Vortex Meters for Liquids, Gas, and Steam Dipl.-Hyd. Oliver Seifert, Product Management Vortex Meters at Flowtec AG, and Ellen-Christine Reiff, M.A., Editor s Office,

More information

EcoPRO-Series 4-20mA SUBMERSIBLE PRESSURE TRANSMITTER INSTRUCTIONS

EcoPRO-Series 4-20mA SUBMERSIBLE PRESSURE TRANSMITTER INSTRUCTIONS EcoPRO-Series 4-20mA SUBMERSIBLE PRESSURE TRANSMITTER INSTRUCTIONS EcoPRO-Series 4-20mA SUBMERSIBLE PRESSURE TRANSMITTER INSTRUCTIONS 9001:2008 ISO CERTIFIED COMPANY Table of Contents Introduction - EcoPRO-Series

More information

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

More information

Pressure measurement. Pressure gauges

Pressure measurement. Pressure gauges Pressure gauge Pressure measurement There are four types of pressure measurements: Measurement of absolute pressure : Measurements are made with respect to absolute pressure, for example as with atmospheric

More information

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION Application Note Doc. G8108-001 Rev. A - 23-Jul-02 ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION For more information regarding Digiquartz products contact: Paroscientific,

More information

L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather

L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather The deeper you go the higher the pressure P Top A hypothetical volume of water inside

More information

Vortex Flow Meter Wafer or Flange Connection. - Steam - Liquid - Gas

Vortex Flow Meter Wafer or Flange Connection. - Steam - Liquid - Gas Vortex Flow Meter Wafer or Flange Connection - Steam - Liquid - Gas Working Principle & Circuit Diagram Working Principle When a column body placed in flowing fluids in pipe, a series of vortices will

More information

Chapter 15 Fluids. Copyright 2010 Pearson Education, Inc.

Chapter 15 Fluids. Copyright 2010 Pearson Education, Inc. Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle Fluid Flow and Continuity

More information

Chapter 5: Subatmospheric Total Pressure Gauges

Chapter 5: Subatmospheric Total Pressure Gauges Chapter 5: Subatmospheric Total Pressure Gauges The pressure gauges that will be described in this section are used to monitor the environment in a vacuum vessel so that processes conducted under subatmospheric

More information

Pressure Measurement Single-range transmitters for general applications

Pressure Measurement Single-range transmitters for general applications Siemens AG 07 Overview Function U const. p U I EM Sensor Connection for auxiliary power supply Vent pipe with humidity filter Protective conductor connection/ Equipotential bonding Diaphragm The pressure

More information

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions L 100 Bubble-Tube Level System Installation, Operation and Maintenance Instructions Figure 1 Contents Section Description Page 1.0 Introduction 2 2.0 Specifications 3 3.0 Installation 3 4.0 Warranty 6

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

Process Equipment Design Guidelines Chapter Four Instrumentation Selection and Sizing (Engineering Design Guidelines)

Process Equipment Design Guidelines Chapter Four Instrumentation Selection and Sizing (Engineering Design Guidelines) Guidelines for Processing www.klmtechgroup.com Page : 1 of 56 Rev 1 - April 2007 Rev 2 Nov 2010 Rev 3 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Process

More information

Measurement of Atmospheric Pressure. Atmospheric Instrumentation

Measurement of Atmospheric Pressure. Atmospheric Instrumentation Measurement of Atmospheric Pressure Outline Measurement of Atmospheric Pressure Review of Atmospheric Pressure Barometers Liquid Aneroid Wind Speed Correction Significant Exposure Error Sea-Level Correction

More information

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015 FDE 211 Material & Energy Balances Instructor: Dr. Ilgin Paker Yikici Fall 2015 Material& Energy Balances first step in understanding a process leads to a better understanding of a process forces the engineer

More information

Introductory Lab: Vacuum Methods

Introductory Lab: Vacuum Methods Introductory Lab: Vacuum Methods Experiments in Modern Physics (P451) In this lab you will become familiar with the various components of the lab vacuum system. There are many books on this topic one of

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

AMS 2710 PCB pressure sensor module with V output

AMS 2710 PCB pressure sensor module with V output FEATURES Universal pressure sensor module with 0.. 10 V voltage output Fully calibrated and temperature compensated sensor module Variants for (bidirectional) differential, gage, absolute and barometric

More information

Cover Page for Lab Report Group Portion. Drag on Spheres

Cover Page for Lab Report Group Portion. Drag on Spheres Cover Page for Lab Report Group Portion Drag on Spheres Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 29 September 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

T EK-SUB 4800C 19 mm Submersible Level Transmitter

T EK-SUB 4800C 19 mm Submersible Level Transmitter Technology Solutions T EK-SUB 4800C 19 mm Submersible Level Transmitter Instruction Manual Document Number: IM-4800C www.tek-trol.com Table of Contents 1 Safety Instructions... 2 1.1 Intended Use... 2

More information

The M-Series Eletta Flow Meter High accuracy DP Flow Meter with multiple functions

The M-Series Eletta Flow Meter High accuracy DP Flow Meter with multiple functions The M-Series Eletta Flow Meter High accuracy DP Flow Meter with multiple functions Flow Meter with multiple functions for gases and liquids M3 The M-series Flow Meter, with its versatile and user-friendly

More information

AMS 6915 Board mount pressure sensor with digital output (I²C)

AMS 6915 Board mount pressure sensor with digital output (I²C) Board mount pressure sensor with digital output (I²C) FEATURES Calibrated and temperature compensated pressure sensor with digital output (I²C) Differential, relative (gage), bidirectional differential,

More information

PHY131H1S - Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little pre-class reading quiz

PHY131H1S - Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little pre-class reading quiz PHY131H1S - Class 23 Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle Archimedes (287-212 BC) was asked to check the amount of silver alloy in the king s crown. The answer

More information

Model 4000 Pressure Controller

Model 4000 Pressure Controller FEATURES Multiple Configurations The 4000 series pressure controller can be configured into either proportional only or proportional plus reset mode with a minimum of parts. Rugged Design Die cast aluminum

More information

SX150A. Features. Typical Applications. Description

SX150A. Features. Typical Applications. Description Datasheet -- Pressure Sensors: Measurement Type: Absolute; 0 psia to 150 psia, Unamplified, Representative photograph, actual product appearance may vary. Due to regional agency approval requirements,

More information

SITRANS P measuring instruments for pressure

SITRANS P measuring instruments for pressure SITRANS P measuring instruments for pressure Z series for gage pressure Siemens AG 008 Overview Design The main components of the pressure transmitter are: Brass housing with silicon measuring cell and

More information

Pressure is defined as force per unit area. Any fluid can exert a force

Pressure is defined as force per unit area. Any fluid can exert a force Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary

More information