These two respiratory media (air & water) impose rather different constraints on oxygen uptake:

Size: px
Start display at page:

Download "These two respiratory media (air & water) impose rather different constraints on oxygen uptake:"

Transcription

1 Topic 19: OXYGEN UPTAKE AND TRANSPORT (lectures 29-30) OBJECTIVES: 1. Be able to compare air vs. water as a respiratory medium with respect to oxygen content, diffusion coefficient, viscosity and water loss. 2. Be able to give some examples of organisms that use passive diffusion for gas exchange and where they might be found. 3. Have a general understanding of specialized gas exchange organs such as gills, insect tracheae and air capillary and alveolar lungs. 4. Be able to describe the concept of partial pressure. 5. Be able to describe the role of respiratory pigments like hemoglobin and how they work (i.e., reversible oxygen binding). 6. Describe the three ways in which CO 2 is transported in the blood. Virtually every animal must take up oxygen from its environment and release carbon dioxide; there a few exceptions, namely intestinal parasites, worms living in anaerobic muds etc. Terrestrial organisms obtain oxygen from the air while most aquatic organisms obtain oxygen form water (the exception, of course, being such air breathers as aquatic mammals, birds, reptiles). Water: Air: O 2 O 2 CO 2 CO 2 These two respiratory media (air & water) impose rather different constraints on oxygen uptake: 1. oxygen content- oxygen content of air is at least 30 times higher than water; oxygen content of water decreases with increasing temperature and salt content 2. diffusion coefficient (D)- recall the diffusion equation (J = (D x A x C)/d); the D value for oxygen in air is 10,000 times higher than in water; oxygen does not diffuse 1

2 very rapidly in water; this means that most large, active aquatic organisms must move the water (ventilate= convective movement of respiratory medium) across their gas exchange surface) 3. viscosity of the medium- viscosity is a measure of the resistance to flow of a medium; water is much more viscous than air. Ventilation of water across gas exchange surface requires greater expenditure of energy 4. water content- water vapor content of air may be very low so air breathers often lose large amount of water during respiration ( respiratory water loss) Gas Exchange Mechanisms I. Passive diffusion across the body surface 1. aquatic animals- because the D value for oxygen is so low, passive diffusion works only in small animals and/or in large, thin, sluggish species like sea anemones. 2. Terrestrial animals- characteristic of earthworms, land planarians, slugs; there also is a group of lungless salamanders who rely on gas exchange across their skin (cutaneous gas exchange); these animals are restricted to moist habitats II. Specialized gas exchange organs which may or may not be ventilated- (a) gillsfleshy, blood-filled structures bathed in water, (b) tracheal system- system of tubes in insects with direct connection to the exterior and (c) lungs- internal gas exchange structures in a few fish, terrestrial amphibians, reptiles, mammals and birds. Gills: gills of more active, complex animals are internal to the extent that they are protected; by the operculum in the case of fish and the carapace in the case of crustaceans. Fig fish gills are complex and have a very high surface area (why?); each gill consists of a number of arches with each arch having many filaments and each filament containing many lamellae. Lamellae are very thin and contain a rich blood supply. The blood flows in the opposite direction of water passing over the gill (fig ); this creates a counter-current flow which optimizes the amount of oxygen that can be extracted from the medium. Ventilation is produced by pumping of the mouth cavity or simply by swimming with the mouth open which is called ram jet ventilation (as seen in tuna, sharks) Insect tracheal system (fig ): insects are unique in that they have a system of small tubes connecting to the surface by way of a valves called spiracles. These tubes called trachea break up into smaller tubes called tracheoles which actually travel all the way to the surface of cells ( one can find electron microscopy pictures of these tracheoles touching parts of cells where there is a cluster of mitochondria!). When spiracles are open, air flows passively into the system. Ventilation is generally not required for relatively sluggish insects due to the fact that the D value is so high in air. Flying insects do ventilate because their oxygen requirements are so much higher. 2

3 NOTE: The fossil record shows that flying insects attained rather large size in the past; these animals lived at a time when the oxygen content of air was ~28% as opposed to the present ~21%! Lungs: there are two types- (1) alveolar lungs (amphibians, reptiles and mammals) and (2) air capillary lungs (birds) Alveolar lungs (fig ); consist of a series of tubes which branch off into increasing smaller tubes that ultimate terminate in very tiny clusters of air sacs known as alveoli. Aveoli have the following characteristics: 1. membranes are very thin 2. they are covered by a dense mesh-work of capillaries where gas exchange takes place 3. the aveoli represent a very high surface area for gas exchange (a single human lung has 75 m 2 of alveolar surface area) lungs are ventilated; that is, they inflate during inspiration and deflate during expiration. This process is accomplished by alternating contractions and relaxation of the diaphragm, a muscle located at the base of the thoracic cavity- fig inspiration- diaphragm contracts; creates a negative pressure inside lungs; air is sucked in to inflate the lungs 2. expiration- diaphragm relaxes; creates a positive pressure in the lungs; pushing air out so that the lungs deflate Air capillary lungs (fig ); these lungs lack alveoli but instead have thousands of rigid tubes called air capillaries (or parabronchi) that run the length of the lung. The volume of the lungs never changes. Instead, the lungs are connected to a series of ventilatory structures known as air sacs. There are anterior and posterior sets of air sacs. These structures inflate during inspiration and deflate during expiration. What is unique about this system is that air passes through the parabronchi during both inspiration and expiration - the lung is continuously ventilated! This is a adaptation which permits high rates of gas exchange, this is essential for flight which is costly. Blood oxygen transport Gases flow from areas of high concentration to areas of low concentration; we normally refer to gas concentration by the term partial pressure. Partial pressure- the fractional pressure of a gas in a gas mixture; air is 21% oxygen and the total pressure of air at sea level is around 760 mm Hg so the partial pressure of oxygen is 0.21 x 760 = 160 mm Hg. Using partial pressure to express gas levels we call follow the changes in gas partial pressure as blood passes through the pulmonary and 3

4 systemic circulations (fig ). Both oxygen and carbon dioxide flow from areas of high partial pressure to areas of low partial pressure (always in the opposite direction). Oxygen flows from the air in the alveolus into the blood in the capillaries; what determines the amount of oxygen that can move into the blood? If you look at the blood leaving the lungs of a mammal, you will find that only about 5% of the oxygen the blood is carrying is dissolved in direction solution in the plasma; the rest (95%) is present in the red blood cells. In vertebrates, oxygen binds to a red pigment protein called hemoglobin (abbreviated Hb). Hemoglobin is a protein that contains an atom of iron (Fe) in its center. Hb has the capacity to bind oxygen at high partial pressures and release it at low partial pressures. This is known as reversible oxygen binding and can be shown as follows: high oxygen levels oxygen + hemoglobin oxygen-hemoglobin (deoxyhb) (oxyhb) low oxygen levels Most vertebrate hemoglobins have four subunit proteins each capable of binding one O 2 molecule so that each hemoglobin has the capacity to bind 4 O 2 molecules. Each red blood cell may contain several million molecules of Hb. The more red blood cells in a volume of blood, the greater the potential for carrying oxygen. Recall fig , When the blood leaves the alveolus, the oxygen partial pressure is 104 mmhg; under these circumstances most of the molecules of Hb have oxygen bound to them. When the blood reaches the tissues its oxygen partial pressure falls to 40 mm Hg. The Hb can hold a much smaller amount of oxygen under conditions, much less than what was bound in the alveolus. Thus, oxygen is released by the Hb and it is taken up by the tissues. This is a manifestation of reversible oxygen binding. Hemoglobin is classified as a respiratory pigment because it has a color and it is involved in oxygen transport. There are a number of other respiratory pigments including the blue copper- containing pigment hemocyanin (molluscs, arthropods), the green pigment chlorocruorin (some marine worms) and the purple pigment hemerythrin ( some marine invertebrate groups). Carbon dioxide transport- fig ; roughly 7% carbon dioxide is transported as molecular CO 2 ; 23% of CO 2 is directly bound to Hb and the remaining 70% of CO 2 travels in the plasma as bicarbonate (HCO 3 - ). At the site of oxygen delivery (in the cells and tissues of the systemic circulation), a large fraction of CO 2 is goes through the following reaction as catalyzed by the enzyme carbonic anhydrase: CO 2 + H 2 O H 2 CO 3 which spontaneously dissociates to H + + HCO 3-4

5 At the site of oxygen uptake in the alveoli, the above reaction is reversed and the bicarbonate converts back to CO 2. 5

Then the partial pressure of oxygen is x 760 = 160 mm Hg

Then the partial pressure of oxygen is x 760 = 160 mm Hg 1 AP Biology March 2008 Respiration Chapter 42 Gas exchange occurs across specialized respiratory surfaces. 1) Gas exchange: the uptake of molecular oxygen (O2) from the environment and the discharge of

More information

Then the partial pressure of oxygen is. b) Gases will diffuse down a pressure gradient across a respiratory surface if it is: i) permeable ii) moist

Then the partial pressure of oxygen is. b) Gases will diffuse down a pressure gradient across a respiratory surface if it is: i) permeable ii) moist 1 AP Biology March 2008 Respiration Chapter 42 Gas exchange occurs across specialized respiratory surfaces. 1) Gas exchange: Relies on the diffusion of gases down pressure gradients. At sea level, atmosphere

More information

Topic 13: Gas Exchange Ch. 42. Gas Exchange pp Gas Exchange. Gas Exchange in Fish pp Gas Exchange in Fish

Topic 13: Gas Exchange Ch. 42. Gas Exchange pp Gas Exchange. Gas Exchange in Fish pp Gas Exchange in Fish Topic 13: Gas Exchange Ch. 42 Fig. 42.24 Gas Exchange pp.979-989 Gas exchange involves the uptake of oxygen and the discharge of carbon dioxide (i.e. respiration or breathing). It is necessary for cellular

More information

Chapter 22 Gas Exchange

Chapter 22 Gas Exchange Chapter 22 Gas Exchange PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction: Surviving in Thin Air

More information

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial Gas Exchange in Animals Uptake of O2 from environment and discharge of CO2 Respiratory medium! water for aquatic animals, air for terrestial Respiratory surface! skin, gills, lungs Circulatory System O2/CO2

More information

Life 23 - Respiration in Air Raven & Johnson Ch. 53 (part)

Life 23 - Respiration in Air Raven & Johnson Ch. 53 (part) 1 Life 23 - Respiration in Air Raven & Johnson Ch. 53 (part) Objectives 1: Compare the properties of air and water as media for respiration, and the consequences for the evolution of respiratory systems

More information

Respiration. Chapter 33

Respiration. Chapter 33 Respiration Chapter 33 Learning Objectives: Understand the basis of gas exchange and factors that influence diffusion of gases in and out of tissues Compare and contrast different respiratory systems among

More information

I. Gas Exchange Respiratory Surfaces Respiratory Surface:

I. Gas Exchange Respiratory Surfaces Respiratory Surface: I. Gas Exchange Respiratory Surfaces Respiratory Surface: Common characteristics of respiratory surfaces: a) Moist: allows for the RAPID diffusion of dissolved gasses across its surface. Whereas the respiratory

More information

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology

alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology alveoli Chapter 42. Gas Exchange gills elephant seals Gas exchange O 2 & CO 2 exchange exchange between environment & cells provides O 2 for aerobic cellular respiration need moist membrane need high

More information

AP Biology. Chapter 42. Gas Exchange. Optimizing gas exchange. Gas exchange. Gas exchange in many forms. Evolution of gas exchange structures

AP Biology. Chapter 42. Gas Exchange. Optimizing gas exchange. Gas exchange. Gas exchange in many forms. Evolution of gas exchange structures alveoli Chapter 42. Gas Exchange gills elephant seals Gas exchange & C exchange exchange between environment & cells provides for aerobic cellular respiration need moist membrane need high surface area

More information

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG GAS EXCHANGE AND TRANSPORT I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O 2 to generate CO 2 & H 2 O. This is cellular respiration II. HOW GAS ENTERS A CELL A. The composition of air: 79% N

More information

Pop Quiz. What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach?

Pop Quiz. What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach? Pop Quiz What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach? Respiratory System Review Cellular respiration: obtain glucose and oxygen, get

More information

Circulation and Gas Exchange Chapter 42

Circulation and Gas Exchange Chapter 42 Circulation and Gas Exchange Chapter 42 Circulatory systems link exchange surfaces with cells throughout the body Diffusion is only efficient over small distances In small and/or thin animals, cells can

More information

Gas Exchange Respiratory Systems

Gas Exchange Respiratory Systems alveoli gills Gas Exchange Respiratory Systems elephant seals 2008-2009 Why do we need a respiratory system? respiration for respiration Need O 2 in for aerobic cellular respiration make ATP Need CO 2

More information

Respiratory System 1

Respiratory System 1 Respiratory System 1 Outline Respiratory structures Gills Air-Breathing Animals Amphibians and Reptiles Mammals Birds Structures and Mechanisms of Breathing 2 Copyright The McGraw-Hill Companies, Inc.

More information

Respiration. Chapter 39

Respiration. Chapter 39 Respiration Chapter 39 Impacts, Issues Up in Smoke Smoking immobilizes ciliated cells and kills white blood cells that defend the respiratory system; highly addictive nicotine discourages quitting 39.1

More information

GASEOUS EXCHANGE 17 JULY 2013

GASEOUS EXCHANGE 17 JULY 2013 GASEOUS EXCHANGE 17 JULY 2013 Lesson Description In this lesson we: Discuss what is gaseous exchange? Consider requirements of an efficient gaseous exchange surface. Look at diversity in gas exchange systems.

More information

AP Biology. Gas Exchange Respiratory Systems. Gas exchange. Why do we need a respiratory system? Optimizing gas exchange. Gas exchange in many forms

AP Biology. Gas Exchange Respiratory Systems. Gas exchange. Why do we need a respiratory system? Optimizing gas exchange. Gas exchange in many forms alveoli Gas Exchange Respiratory Systems gills elephant seals 2008-2009 Why do we need a respiratory system? Need O 2 in food respiration for respiration for aerobic cellular respiration make ATP Need

More information

UNIFYING CONCEPTS OF ANIMAL CIRCULATION

UNIFYING CONCEPTS OF ANIMAL CIRCULATION UNIFYING CONCEPTS OF ANIMAL CIRCULATION Every organism must exchange materials with its environment, relying upon diffusion, the spontaneous movement of molecules from an area of higher concentration to

More information

Lesson 9.1: The Importance of an Organ Delivery System

Lesson 9.1: The Importance of an Organ Delivery System Lesson 9.1: The Importance of an Organ Delivery System Animals require a continuous supply of oxygen (O 2 ) for cellular respiration, and they must expel carbon dioxide (CO 2 ), the waste product of this

More information

Respiratory Systems: Ventilation & Gas Exchange

Respiratory Systems: Ventilation & Gas Exchange Respiratory Systems: Ventilation & Gas Exchange Ventilation of Respiratory Surfaces Non-directional ventilation: Medium flows past gas exchange surface in an unpredictable pattern. Tidal Ventilation External

More information

Diagram 1: The three phases of gas exchange

Diagram 1: The three phases of gas exchange 1 Diagram 1: The three phases of gas exchange 1. Breathing When an animal breathes, a large, moist internal surface is exposed to air. O 2 diffuses across the cells lining the lungs and into surrounding

More information

system. and then into the tissues. Diffusion of wastes such as Carbon Dioxide from tissues into blood and out of blood into the lungs.

system. and then into the tissues. Diffusion of wastes such as Carbon Dioxide from tissues into blood and out of blood into the lungs. Respiratory System 1.Exchange Why do of we gases breathe? into the Think blood of all and the tissues. reasons Diffusion why we of Oxygen need a respiratory into blood from the lungs system. and then into

More information

Life 24 - Blood and Circulation Raven & Johnson Ch 52 & 53 (parts)

Life 24 - Blood and Circulation Raven & Johnson Ch 52 & 53 (parts) 1 Life 24 - Blood and Circulation Raven & Johnson Ch 52 & 53 (parts) Objectives 1: Understand the importance of oxygen carrier molecules in respiration 2: Describe the characteristics and locations of

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014

GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014 GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014 In this lesson, we: Lesson Description Define gaseous exchange o o Look at the requirements for efficient gaseous exchange Study gaseous exchange in various

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

3.3.2 Gas Exchange SPECIFICATION

3.3.2 Gas Exchange SPECIFICATION alevelbiology.co.uk 3.3.2 Gas Exchange SPECIFICATION Adaptations of gas exchange surfaces, shown by gas exchange: Across the body surface of a single-celled organism In the tracheal system of an insect

More information

It is of vital importance that a source of clean, oxygen-rich air is available 24 hours a day. Like Robert gets when he sleeps at night..

It is of vital importance that a source of clean, oxygen-rich air is available 24 hours a day. Like Robert gets when he sleeps at night.. Gas Exchange is critical to all organisms It is of vital importance that a source of clean, oxygen-rich air is available 24 hours a day. Like Robert gets when he sleeps at night.. Avoid breathing contaminated

More information

Comparing Respiratory Systems

Comparing Respiratory Systems Comparing Respiratory Systems Respiration Respiration is a process involving the movement of oxygen gas into cells and carbon dioxide out of cells, (This better called BREATHING ) in order to facilitate

More information

Gases and Respiration. Respiration Overview I

Gases and Respiration. Respiration Overview I Respiration Overview I Respiration Overview II Gas Laws Equation of State: PV = nrt Same volumes of different gases have same # of molecules BTPS: body temp, atmospheric pressure, saturated ATPS: ambient

More information

Gas Exchange & Circulation

Gas Exchange & Circulation Why is gas exchange important? Gas Exchange & Circulation Read Ch. 42 start with 42.5: Gas Exchange in Animals Respiration: C 6 H 12 O 6 + O 2! Energy + CO 2 + H 2 O Photosynthesis: Energy + CO 2 + H 2

More information

Monday, ! Today: Respiratory system! 5/20/14! Transport of Blood! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing!

Monday, ! Today: Respiratory system! 5/20/14! Transport of Blood! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing! Monday, 5.19.14! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing! Transport of Blood! What is transported! Nutrients! Oxygen! Carbon Dioxide! Hormones! Antibodies! What it is/does!

More information

GAS EXCHANGE & CIRCULATION CHAPTER 42 ( )

GAS EXCHANGE & CIRCULATION CHAPTER 42 ( ) Winter 08 1 of 10 GAS EXCHANGE & CIRCULATION CHAPTER 42 (867 891) MOVEMENT OF GASES Both O 2 and CO 2 move by The movement down a If a gas produced in one location, it diffuses away But diffusion is usually

More information

Page 1. Chapter 33: Respiration O 2 CO 2

Page 1. Chapter 33: Respiration O 2 CO 2 Chapter 33: Respiration O 2 CO 2 Features of Respiratory Systems: 1) Moist surface (to dissolve gas) 2) Thin cells lining surface 3) Large surface area contacting environment Facilitate Diffusion Methods

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

What do animals do to survive?

What do animals do to survive? What do animals do to survive? Section 26-1 All Animals have are carry out Eukaryotic cells with Heterotrophs Essential functions such as No cell walls Feeding Respiration Circulation Excretion Response

More information

Systems of distribution

Systems of distribution Systems of distribution Outline Distribution of respiratory gases, and in blood Respiratory systems - transport of oxygen to tissues - radically different designs in mammals, birds, insects Vertebrate

More information

Chapter 11: Respiratory System Review Assignment

Chapter 11: Respiratory System Review Assignment Name: Date: Mark: / 45 Chapter 11: Respiratory System Review Assignment Multiple Choice = 45 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following

More information

Chapter 22. Gas Exchange. Lecture by Richard L. Myers Translated by Nabih A. Baeshen

Chapter 22. Gas Exchange. Lecture by Richard L. Myers Translated by Nabih A. Baeshen Chapter 22 Gas Exchange ﺗﺑﺎدل اﻟﻐﺎزات اﻟﺑﺎب اﻟﺛﺎﻧﻲ واﻟﻌﺷرون PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education,

More information

1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/

1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/ 1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/ CHAPTER 17 BREATHING AND EXCHANGE OF GASES Oxygen (O2) is utilised by the organisms to indirectly break down nutrient molecules like

More information

Respiration. The ins and outs

Respiration. The ins and outs Respiration The ins and outs Functions 1. To bring O 2 into the body and transfer it to the blood stream 2. To remove CO 2 Circulation and respiration work together to achieve these functions Why Do We

More information

CHAPTER 17 BREATHING AND EXCHANGE OF GASES

CHAPTER 17 BREATHING AND EXCHANGE OF GASES 268 BIOLOGY CHAPTER 17 BREATHING AND EXCHANGE OF GASES 17.1 Respiratory Organs 17.2 Mechanism of Breathing 17.3 Exchange of Gases 17.4 Transport of Gases 17.5 Regulation of Respiration 17.6 Disorders of

More information

Gaseous exchange. Grade 11

Gaseous exchange. Grade 11 z Gaseous exchange Grade 11 z Terminology 1. Breathing 2. Gaseous exchange 3. Diffusion 4. Spongy mesophyll cells 5. Tracheae 6. Gills 7. Alveoli 8. Larynx 9. Diaphragm 10. Endothelium 1. Pleura 2. Squamous

More information

Structures of the Respiratory System include:

Structures of the Respiratory System include: Respiratory System Structures of the Respiratory System include: ü Oral Cavity ü Nasal Cavity ü Pharynx ü Epiglottis ü Larynx ü Trachea ü Diaphragm ü Lung ü Bronchus ü Bronchioles ü Alveolus ü Pulmonary

More information

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood Breathing rate is regulated by blood ph and C02 breathing reduces plasma [CO2]; plasma [CO2] increases breathing. When C02 levels are high, breating rate increases to blow off C02 In low C02 conditions,

More information

How Animals Survive (Circulation and Gas Exchange)

How Animals Survive (Circulation and Gas Exchange) How Animals Survive (Circulation and Gas Exchange) by Flourence Octaviano on February 16, 2018 lesson duration of 30 minutes under Earth and Life Science generated on February 16, 2018 at 12:45 am Tags:

More information

Mammalian systems. Chapter 3 Pages

Mammalian systems. Chapter 3 Pages Mammalian systems Chapter 3 Pages 75-103 Learning intentions To know that multicellular organisms exist from specialized cells To know how the respiratory system is specialized and organized and how a

More information

Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23

Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23 nd Lecture Fri 06 Mar 009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 009 Kevin Bonine & Kevin Oh Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 1-3 1 Housekeeping,

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM A. CHAPTER REVIEW 1. Define the four components of respiration. 2. What happens to the air as it moves along the air passages? What

More information

Chapter 16 Respiratory System

Chapter 16 Respiratory System Introduction Chapter 16 Respiratory System The respiratory system consists of tubes that filter incoming air and transport it to alveoli where gases are exchanged. Think pair share: what organs are associated

More information

Human Biology Respiratory System

Human Biology Respiratory System Human Biology Respiratory System Respiratory System Responsible for process of breathing Works in cooperation with Circulatory system Three types: 1. Internal Respiration 2. External Respiration 3. Cellular

More information

REVISION: GASEOUS EXCHANGE & EXCRETION 11 SEPTEMBER 2013

REVISION: GASEOUS EXCHANGE & EXCRETION 11 SEPTEMBER 2013 REVISION: GASEOUS EXCHANGE & EXCRETION 11 SEPTEMBER 2013 Lesson Description In this lesson we: Revise gaseous exchange in different animals and examine the structure of the kidney Key Concepts Important

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The tissues exchange O 2 directly with the air in

More information

SCIENCE- NOTES. Q1. Draw the diagram of human respiratory system and explain the function of the following parts:

SCIENCE- NOTES. Q1. Draw the diagram of human respiratory system and explain the function of the following parts: SCIENCE- NOTES NAME: RESPIRATION IN ORGANISMS STD.VII DIV: Q1. Draw the diagram of human respiratory system and explain the function of the following parts: i. Nasal cavity ii. Trachea iii. Lungs iv. Bronchioles

More information

Animal Kingdom: Comparative Anatomy

Animal Kingdom: Comparative Anatomy Invertebrate feeding and digestion Animal Kingdom: Comparative Anatomy Invertebrates can either have or digestion: meaning that food is digested each individual of the organism. Animals a digestive tract.

More information

Introduction to Biological Science - BIOL Gas Exchange

Introduction to Biological Science - BIOL Gas Exchange Gas Exchange A. Influence of concentration gradient on gas diffusion rate 1. You have two tubes of permeable membrane. a. Add an arrow to illustrate concurrent fluid flow in Tubes A and B. Tube A Tube

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water.

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water. 1. Answers should be written in continuous prose. Credit will be given for biological accuracy, the organisation and presentation of information and the way in which an answer is expressed. Fick s law

More information

Lesson 28. Function - Respiratory Pumps in Air Breathers Buccal Force Pump Aspiration Pump - Patterns of Gas Transfer in Chordates

Lesson 28. Function - Respiratory Pumps in Air Breathers Buccal Force Pump Aspiration Pump - Patterns of Gas Transfer in Chordates Lesson 28 Lesson Outline: Evolution of Respiratory Mechanisms - Air Breathers Form - Accessory Air Breathing Organs Facultative vs Obligate - Lungs Function - Respiratory Pumps in Air Breathers Buccal

More information

Lesson 27. Objectives: At the end of this lesson you should be able to:

Lesson 27. Objectives: At the end of this lesson you should be able to: Lesson 27 Lesson Outline: Evolution of Respiratory Mechanisms Cutaneous Exchange Evolution of Respiratory Mechanisms - Water Breathers o Origin of pharyngeal slits from corner of mouth o Origin of skeletal

More information

Respiratory system & exercise. Dr. Rehab F Gwada

Respiratory system & exercise. Dr. Rehab F Gwada Respiratory system & exercise Dr. Rehab F Gwada Objectives of lecture Outline the major anatomical components & important functions of the respiratory system. Describe the mechanics of ventilation. List

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Body tissue INTERSTITIAL FLUID Capillary Net fluid movement out Net fluid movement in Direction of blood flow Blood pressure

Body tissue INTERSTITIAL FLUID Capillary Net fluid movement out Net fluid movement in Direction of blood flow Blood pressure Capillary Func4on exchange of substances between blood and inters44al fluid across thin endothelial capillary walls difference between blood pressure and osmo4c pressure Drives fluids out of capillaries

More information

SCIENCE 8 RESPIRATION

SCIENCE 8 RESPIRATION SCIENCE 8 RESPIRATION WHEN WE BREATHE, WHAT DO WE BREATHE IN? O2, N2, CO2, O3, NO2 (gas fumes), CO, pollutant, fragrants, toxins, etc. WHAT IS THE PURPOSE OF BREATHING IN? WHAT DOES OUR BODY WANT? O2 WHY?

More information

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration.

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration. Biology 12 Respiration Divisions of Respiration Breathing: entrance and exit of air into and out of the lungs External Respiration: exchange of gases(o2 and CO2) between air (in alveoli) and blood Internal

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing Respiratory system Function Outline - Respiratory System I. II. III. IV. Respiratory System The function of the respiratory system is to bring in oxygen to the body and remove carbon dioxide. Function

More information

Respiratory Pulmonary Ventilation

Respiratory Pulmonary Ventilation Respiratory Pulmonary Ventilation Pulmonary Ventilation Pulmonary ventilation is the act of breathing and the first step in the respiratory process. Pulmonary ventilation brings in air with a new supply

More information

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives exercise 7 Respiratory System Mechanics Objectives 1. To explain how the respiratory and circulatory systems work together to enable gas exchange among the lungs, blood, and body tissues 2. To define respiration,

More information

Assignments for Life Processes(Respiration)

Assignments for Life Processes(Respiration) Assignments for Life Processes(Respiration) 1 Question 1 Why do organisms need food? Organisms need food for obtaining energy to perform the vital functions. Question 2 What is a respiratory substrate?

More information

PARTS AND STRUCTURE OF THE RESPIRATORY SYSTEM

PARTS AND STRUCTURE OF THE RESPIRATORY SYSTEM PARTS AND STRUCTURE OF THE RESPIRATORY SYSTEM Parts of the Respiratory System The RS can be divided into two parts: 1. Respiratory Tract, (path that air follows). Nasal passage Pharynx Larynx Trachea Bronchi,

More information

Lecture III.5a. Questions.

Lecture III.5a. Questions. Lecture III.5a. Questions. 1. Suppose that echinoderms were originally bilaterally symmetric. How would that change the synapomorphies in the cladogram on page 2? 2. If echinoderms were originally bilaterally

More information

Chapter 42 Part III The Respiratory System

Chapter 42 Part III The Respiratory System Biology 120 J. Greg Doheny Chapter 42 Part III The Respiratory System Notes: In this section we will discuss the breathing system, also known as the respiratory system. This should not be confused with

More information

(Slide 1) Lecture Notes: Respiratory System

(Slide 1) Lecture Notes: Respiratory System (Slide 1) Lecture Notes: Respiratory System I. (Slide 2) The Respiratory Tract A) Major structures and regions of the respiratory Tract/Route INTO body 1) nose 2) nasal cavity 3) pharynx 4) glottis 5)

More information

82 Respiratory Tract NOTES

82 Respiratory Tract NOTES 82 Respiratory Tract NOTES RESPIRATORY TRACT The respiratory tract conducts air to the lungs where gaseous exchange occurs. It is separated into air-conducting and respiratory (where gas exchange occurs)

More information

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

The Respiratory System. Medical Terminology

The Respiratory System. Medical Terminology The Respiratory System Medical Terminology The respiratory system is where gas exchange occurs via respiration; inhalation/exhalation. pick up oxygen from inhaled air expels carbon dioxide and water sinus

More information

Respiratory System Review

Respiratory System Review KEY THIS TEST WILL BE COMPLETED IN ONE CLASS PERIOD MONDAY, MARCH 10. 2014 Respiratory System Review Name A. Directions: Fill in the blank with the appropriate vocabulary word or words (several examples

More information

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi Course : PG Pathshala-Biophysics Paper 13 : Physiological Biophysics Module 17 : Gas transport and pulmonary circulation Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The cell exchange O 2 directly with the air in the

More information

PMT. Smaller species of annelid do not have gills. Explain why these small worms do not need gills to obtain sufficient oxygen

PMT. Smaller species of annelid do not have gills. Explain why these small worms do not need gills to obtain sufficient oxygen 1. There are many different species of annelid worm. Some are very small, only a few millimetres in length. Others, such as lugworms, are much larger. The drawing shows a lugworm and part of one of its

More information

Alveolus and Respiratory Membrane

Alveolus and Respiratory Membrane Alveolus and Respiratory Membrane thin membrane where gas exchange occurs in the lungs, simple squamous epithelium (Squamous cells have the appearance of thin, flat plates. They fit closely together in

More information

Animal Systems: The Respiratory System

Animal Systems: The Respiratory System Animal Systems: The Respiratory System Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems The Digestive The Circulatory

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

25/4/2016. Physiology #01 Respiratory system Nayef Garaibeh Rawan Alwaten

25/4/2016. Physiology #01 Respiratory system Nayef Garaibeh Rawan Alwaten 25/4/2016 Physiology #01 Respiratory system Nayef Garaibeh Rawan Alwaten Respiratory System Introduction: - We breath while we are sleeping, talking, working and resting. - Respiratory diseases are abundant

More information

3. (a) countercurrent mechanism; helps maintain diffusion gradient; 2

3. (a) countercurrent mechanism; helps maintain diffusion gradient; 2 1. (a) (i) Fish has ventilation system which replaces water; highly oxygenated water (circulatory system brings in) blood with low concentration of oxygen/blood removes oxygen; counter current system/description;

More information

Respiration. The resspiratory system

Respiration. The resspiratory system Respiration The resspiratory system The Alveoli The lungs have about 300 million alveoli, with a total crosssec onal area of 50 70 m2.. Each alveolar sac is surrounded by blood capillaries. The walls of

More information

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46 Human gas exchange Question Paper Level Subject Exam oard Topic Sub Topic ooklet O Level iology ambridge International Examinations Respiration Human gas exchange Question Paper Time llowed: 56 minutes

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

Respiratory Lecture Test Questions Set 3

Respiratory Lecture Test Questions Set 3 Respiratory Lecture Test Questions Set 3 1. The pressure of a gas: a. is inversely proportional to its volume b. is unaffected by temperature changes c. is directly proportional to its volume d. does not

More information

Biology. Slide 1 of 53. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 53. End Show. Copyright Pearson Prentice Hall Biology 1 of 53 Chapter 33 Comparing Chordates 2 of 53 This chapter is a good revision of the material we saw during Unit III. 3 of 53 4 of 53 Controlling Body Temperature The control of body temperature

More information

Explain how the structure of the gas exchange system of an insect ensures that there is a large surface area for gas exchange.

Explain how the structure of the gas exchange system of an insect ensures that there is a large surface area for gas exchange. 1 Gas exchange takes place by diffusion. surfacearea differenceinconcentration diffusion lengthof diffusionpath a The diagram shows part of an insect tracheal system. i Explain how the structure of the

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

Respiratory Physiology Gaseous Exchange

Respiratory Physiology Gaseous Exchange Respiratory Physiology Gaseous Exchange Session Objectives. What you will cover Basic anatomy of the lung including airways Breathing movements Lung volumes and capacities Compliance and Resistance in

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information