Ra-226 SOURCES IN METAL MATRICES: GAS PRESSURE. Michael I. Ojovan SIA Radon, Moscow, Russia

Size: px
Start display at page:

Download "Ra-226 SOURCES IN METAL MATRICES: GAS PRESSURE. Michael I. Ojovan SIA Radon, Moscow, Russia"

Transcription

1 ABSTRACT -226 SOURCES IN METAL MATRICES: GAS PRESSURE Michael I. Ojovan SIA don, Moscow, Russia The process of gas generation for radium sources embedded in metal matrices (or metal capsules) is described in order to obtain the conditions of safe immobilisation of radium sources in metal matrices. For this purpose a simple model describing immobilisation of sources in a metal housing is proposed. Both helium and radon generation is considered near a radium source. Partial pressures of helium and radon were found depending on time. The diffusion of helium in the metal and decay of -222 were taken into account. It is shown that the pressures of both radon and helium increase until some maximum values, after that the pressures slowly fall. The maximum radon pressure is achieved during months whereas helium increases its pressure during one-a few years. The formulae for maximum pressures and times necessary to achieve these pressures were obtained. The helium overpressure depends on the diffusion coefficient in the metal. Therefore for a lead or lead based alloys the overpressure it is much lower than for copper or steel matrices. Safe conditions of immobilisation of radium sources are determined on the base of obtained values. INTRODUCTION Sealed radiation sources containing -226 were widely used in the past mainly for medical applications. After 1950s radium sources were replaced by more cheaper, safer and efficient sources containing artificial radionuclides is a long lived radionuclide therefore radium sources containing sources must be disposed of in a deep underground repository. Spent radium sources shall be safely stored until their disposal into a deep geological formation. Immobilisation of radium sources by metal matrices or using metal hermetic capsules provide safe conditions for storage for a long time period. Dues to the decay of -226 gaseous products are generated, which cause overpressure in a sealed source and facilitate the leakage of radionuclides. lium gas as final stable product and radon-222 gas as intermediate unstable product is produced due to the natural decay of One gram of radium produces about 0.2 atmospheres in a free volume of one cubic cm per year [2]. Accumulation of gases can cause even explosive ruptures of sources. In the early days there were explosions of large standard -226 sources encapsulated in glass, and explosive ruptures of metal sealed sources have also been reported [2]. IMMOBILISATION IN METAL MATRICES There are many options for radium sources immobilisation [2, 3]. One of most reliable is the embedding of sources into a metal matrix material. The immobilisation of -226 sources using metal matrices aims to ensure safe conditions of long term storage in repositories as well as to facilitate transportation and final disposal of sources in deep underground repositories. The

2 immobilisation process usually implies the embedding of a radium source into a metal matrix. As a result metal blocks are produced, which contain radium sources surrounded by a metal material. Due to very low corrosion rate and suitable technological parameters lead and lead based alloys are considered as most appropriate matrix materials [4]. The conditions of safe immobilisation of radium sources in a metal matrix are thereafter of primary importance. RADIUM DECAY AND GAS GENERATION The -226 decay scheme belongs to so called uranium-actinium series. In the following figure one can see the most important chains of this scheme. Fig.1. The main decay pathway of What is the most important for our task is that the decay of one -226 atom give rise to appearance of one radon-222 atom as intermediate product and finally causes production of five helium atoms. Therefore the number of helium atoms N produced finally as a result of -226 decay can be written as dn dt = 5λ N, (Eq. 1) where λ is the decay constant of -226 and N is the number of -226 atoms in the source. The number of -226 atoms changes accordingly with the law of natural decay as N = N (0)exp(-λ t). So if we consider the accumulation of helium atoms produced by the decay of -226 atoms we obtain the following formula for the number of helium atoms:

3 N = 5N (0)[1 exp( λ t)] (Eq. 2) HELIUM OVERPRESSURE If the helium atoms are accumulated in a given volume V the gas overpressure can be calculated from the state equation of gas as: NkT p = (Eq. 3) V Let consider a -226 source embedded into a metal matrix. We can suppose the source in a form of a sphere with radius R being surrounded by a metal material. Fig.2. The -226 source in a metal matrix material. There is a small gap between the source case (with radius R) and metal housing which can be due to normal roughness of materials or technological method applied for immobilisation of source. The dimension of this gap is l<<r. The helium atoms are produced due to the decay of Simultaneously there is a diffusion process of helium atoms through the metal housing material. The equation that describe this process can be written as follows: dn dt = 5 N Sj, (Eq. 4) R where j R is the helium diffusion gas flow through the surface of the housing S. Since the housing is considered as spherical its surface is: S=4πR 2

4 The helium diffusion gas flow is given by relationship: j R dn = D r=r (Eq. 5) dr We consider time periods much larger than the characteristic diffusion time t>>r 2 /D, where D is the diffusion coefficient of helium in the housing material. Therefore the distribution of helium atoms around source (at distances r>r) in the housing material can be supposed as stationary accordingly with the equation: n (r)=0, (Eq. 6) where n is the concentration of helium in the metal matrix surrounding the source. This equation has the general solution n =a/r+b, where a and b are some constants to be determined from boundary conditions. Since the concentration of helium at very large distances from the source is nil the constant b=0. The concentration of helium in the free volume of the gap between the source casing and housing V=4πR 2 l is n =N /V, from where we find that a= N /4πRl. From equations (5) and (6) we obtain thereby j R D N = (Eq. 7) πr l By substituting this relationship into equation (4) we obtain the following formula for the number of helium atoms accumulated in the source housing: N 5λN (0) = [exp( λ ( D / Rl) λ t) exp( D t / Rl)] (Eq. 8) The overpressure in the housing can be found accordingly from the equation (3). One can see that the number of helium atoms as well as gas overpressure in the housing at the time equal to 1 t 0 = ln( D / Rlλ ) (Eq. 9) D / Rl λ reach the maximum values. Since the inequality is valid: the working formulae can be simplified to following: (D /Rl)>>λ t 0 =(Rl/D )ln(d /Rlλ ), (Eq. 10)

5 N, max =5N (0) λ Rl/D (Eq. 11) p, max =5N (0) λ kt/4πrd (Eq. 12) The maximal helium overpressure can be expressed using the initial radioactivity of -226 source A (0) as: p, max =5A (0) kt/4πrd (Eq. 13) The time when the helium pressure reaches maximal value depends on the size of the gap between the source and housing, whereas the value of this maximum pressure does not depend on the gap size, being determined only by source dimension R, initial radioactivity and helium diffusion coefficient. If the maximum overpressure of helium not cause any destroying of matrix material the immobilisation can be regarded as reliable. We now can estimate the gas overpressure for typical sources. RADON-222 OVERPRESSURE We mentioned above that the decay of one -226 atom produces one -222 atom, which consequently decays. The process of radon gas accumulation is described by equation: dn dt = λ N λ N (Eq. 14) The diffusion process for radon gas in a metal matrix can be ignored due to small diffusion coefficients. From equation (14) we obtain for the number of radon atoms in the housing the formula: N λn(0) = [exp( λt) exp( λt)] (Eq. 15) λ λ One can see that the maximum radon overpressure is reached at the time: 1 λ t 0 = ln( ) (Eq. 16) λ λ λ Taking into account that the decay constant of -222 is much higher than the decay constant of -226 we can rewrite working formulae as: t 0 1 λ = ln( ) (Eq. 17) λ λ N, max =N (0)λ /λ (Eq. 18) p, max =A (0)kT /4πR 2 lλ (Eq. 18)

6 One can numerically estimate the value of radon overpressure as well as the time when this maximal value will be reached. NUMERICAL ESTIMATIONS The gas overpressure in the housing will be the sum of all gases partial pressures (helium +radon). We estimate herein the partial overpressures of these gases separately. In order to obtain numeric results is necessary to know parameters of radium source and metal matrix material. Typical radium sources have initial radioactivity up to 100 GBq. Roughly their size (radius R in our estimations) is about one cm. The temperature is supposed to be normal (20 C). The diffusion coefficient of helium in a lead matrix appears to be enough large. It is known for example that the diffusion coefficient of hydrogen in the lead is about1.8*10-11 m 2 /s [5]. Thus the typical helium overpressure is only 0.01 atmosphere. Other matrices having much smaller diffusion coefficients for helium (steel, copper, and glass) will produce much higher gas overpressures. In principle this is only a rough estimation since the exact diffusion coefficient of helium is unknown. The radon gas overpressure at the same parameters and gap size value about 0.1 mm will be about atmospheres. One can conclude therefore that for lead matrices the helium overpressure near the -226 sources is relative low due to good diffusion transport of helium. The radon overpressure is low also because of rapid decay of this gas. LITERATURE 1. Ortis P., Friedrich V., Whitly D., Oresgun M.. IAEA Bulletin, 1999, v.41, #3, p IAEA TECDOC-620. Nature and magnitude of the problem of spent radiation sources, IAEA, Vienna, IAEA-TECDOC-548. Handling, conditioning and disposal of spent sealed sources, IAEA, Vienna, 1990, pp Arustamov A.E., Ojovan M.I., Kachalov M.B. Lead and lead based alloys as waste matrix materials. Mat. Res. Soc. Symp. Proc., Vol.556 (1999), (Sci. Bas. Nucl. Waste Manag. XXII) 5. Constants of interaction of metals with gases. Handbook. (in Russian). Under the edition of B.A. Kolachev and Yu.V. Levinskyi, Moscow, Nauka, 1987.

IAEA-TECDOC-1105 XA

IAEA-TECDOC-1105 XA IAEA-TECDOC-1105 XA9952138 Inventory The originating Section of this publication in the IAEA was: Waste Safety Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna,

More information

QUALIFICATION TESTS FOR A TYPE B (U) PACKAGE

QUALIFICATION TESTS FOR A TYPE B (U) PACKAGE 14th International Symposium on the Packaging and Paper # 028 Transportation of Radioactive Materials (PATRAM 2004), Berlin, Germany, September 20-24, 2004 QUALIFICATION TESTS FOR A TYPE B (U) PACKAGE

More information

Dalton s Law How is the total pressure of a mixture of gases related to the partial pressures of the component gases?

Dalton s Law How is the total pressure of a mixture of gases related to the partial pressures of the component gases? Dalton s Law Chapter 4 The Behavior of Gases 4. Properties of Gases 4. The Gas Laws 4. Ideal Gases Dalton s Law How is the total pressure of a mixture of gases related to the partial pressures of the component

More information

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION

WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION WATER HYDRAULIC HIGH SPEED SOLENOID VALVE AND ITS APPLICATION Akihito MITSUHATA *, Canghai LIU *, Ato KITAGAWA * and Masato KAWASHIMA ** * Department of Mechanical and Control Engineering, Graduate school

More information

Helium Management of the ESS Target and Monolith Systems

Helium Management of the ESS Target and Monolith Systems Helium Management of the ESS Target and Monolith Systems P. Nilsson, R. Linander, A. Lundgren, C. Kharoua, P. Sabbagh, F. Plewinski, F. Mezei and E. Pitcher European Spallation Source ESS AB, SE-22100

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Hong Xu, Chokri Guetari ANSYS INC. Abstract Transient numerical simulations of the rise of a train of gas bubbles in a liquid

More information

Name Hour. The Behavior of Gases. Practice B

Name Hour. The Behavior of Gases. Practice B Name Hour The Behavior of Gases Practice B B 1 Objective 1: Apply Boyle s Law, Charles s Law, and Gay-Lussac s Law to solve problems involving pressure and volume and temperature. 1. A high-altitude balloon

More information

AUK Environmental Sensor. Determining the refractive index of the air. AUK Environmental Sensor

AUK Environmental Sensor. Determining the refractive index of the air. AUK Environmental Sensor AUK Environmental Sensor Environmental influences can be compensated in two ways: 1. "Manual" input of the current data for air temperature, humidity and pressure and the material temperature of the testpiece

More information

Prediction of the long-term insulating capacity of cyclopentane-blown polyurethane foam

Prediction of the long-term insulating capacity of cyclopentane-blown polyurethane foam Prediction of the long-term insulating capacity of cyclopentane-blown polyurethane foam Camilla Persson, Licentiate of Engineering Johan Claesson, Professor camilla.persson@chalmers.se johan.claesson@chalmers.se

More information

Sample of A Proposal to Research the Storage Facility. Roger Bloom October Introduction

Sample of A Proposal to Research the Storage Facility. Roger Bloom October Introduction Sample of A Proposal to Research the Storage Facility Roger Bloom October 2010 Introduction Nuclear power plants produce more than 20 percent of the electricity used in the United States [Murray, 1989].

More information

Graham s Law of Diffusion 1. Dalton s law of partial pressure is not applied for 1) N CO ) NO O 3) CO O ) O, N. vessel contains Helium and Methane in : 1 molar ratio at 0 bar pressure. Due to leakage,

More information

I.CHEM.E. SYMPOSIUM SERIES NO. 97 BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES

I.CHEM.E. SYMPOSIUM SERIES NO. 97 BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES M. R. Marshall* and P. L. Stewart-Darling* A simple mathematical model for the buoyancy driven ventilation of an enclosed space, using a two-pipe

More information

POGIL EXERCISE 18 All You Need to Know About Gas Laws

POGIL EXERCISE 18 All You Need to Know About Gas Laws POGIL 18 Page 1 of 11 POGIL EXERCISE 18 All You Need to Know About Gas Laws Each member should assume his or her role at this time. The new manager takes charge of the POGIL folder and hands out the GRF

More information

PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PROPERTIES OF GASES. [MH5; Ch 5, (only)] PROPERTIES OF GASES [MH5; Ch 5, 5.1-5.5 (only)] FEATURES OF A GAS Molecules in a gas are a long way apart (under normal conditions). Molecules in a gas are in rapid motion in all directions. The forces

More information

Chapter 14 Practice Problems

Chapter 14 Practice Problems Chapter 14 Practice Problems In problems that require the atomic masses (atomic weights) of atomic hydrogen, oxygen, nitrogen, and carbon, we will use the rounded values, 1, 16, 14, and 12, respectively.

More information

Failure Data Analysis for Aircraft Maintenance Planning

Failure Data Analysis for Aircraft Maintenance Planning Failure Data Analysis for Aircraft Maintenance Planning M. Tozan, A. Z. Al-Garni, A. M. Al-Garni, and A. Jamal Aerospace Engineering Department King Fahd University of Petroleum and Minerals Abstract This

More information

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg. Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

More information

Fitness for Service Assessment of Ageing Pressure Vessel Experiencing External Corrosion: A Case Study

Fitness for Service Assessment of Ageing Pressure Vessel Experiencing External Corrosion: A Case Study The International Journal Of Engineering And Science (IJES) Volume 6 Issue 2 Pages PP 12-16 2017 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Fitness for Service Assessment of Ageing Pressure Vessel Experiencing

More information

Experimental study on the gas tightness of a mined cavern with groundwater

Experimental study on the gas tightness of a mined cavern with groundwater Experimental study on the gas tightness of a mined cavern with groundwater Yoshinobu Nishimoto a *, Noboru Hasegawa a, and Makoto Nishigaki b a Electric Power Development Co. Ltd., Japan b Okayama University,

More information

Modeling Diffusion Rates of a Gas in an Enclosed Space

Modeling Diffusion Rates of a Gas in an Enclosed Space Modeling Diffusion Rates of a Gas in an Enclosed Space By: Chirag Kulkarni, Haoran Fei, Henry Friedlander Abstract: This research attempts to identify the relationship between pressure of a certain gas

More information

MODELING RADIOACTIVE DECAY WITH FLUID DYNAMICS

MODELING RADIOACTIVE DECAY WITH FLUID DYNAMICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS MODELING RADIOACTIVE DECAY WITH FLUID DYNAMICS Note: Due to material and space constraints, you will work in teams of three to collect data Each individual will be

More information

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c Applied Mechanics and Materials Online: 2013-06-13 ISSN: 1662-7482, Vols. 321-324, pp 299-304 doi:10.4028/www.scientific.net/amm.321-324.299 2013 Trans Tech Publications, Switzerland Study on the Influencing

More information

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

More information

OOC RGA. Ion Pump 400 l/s. 8" ports with baked viton o-ring seals. Welsh rotary roughing pump 650 l/s manual isolation valve.

OOC RGA. Ion Pump 400 l/s. 8 ports with baked viton o-ring seals. Welsh rotary roughing pump 650 l/s manual isolation valve. LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T000126-00- R 11/20/2000 Vacuum pressure at the

More information

ICHEME SYMPOSIUM SERIES NO. 144

ICHEME SYMPOSIUM SERIES NO. 144 EXPLOSION VENTING - THE PREDICTED EFFECTS OF INERTIA By Steve Cooper - Stuvex Safety Systems Limited Explosion venting is an established and well used method of primary explosion protection within industry.

More information

Preliminary Biology Assessment Task #1. Part 1 is to be completed and handed in before the start of period 1 on Friday 13/05/2016.

Preliminary Biology Assessment Task #1. Part 1 is to be completed and handed in before the start of period 1 on Friday 13/05/2016. Preliminary Biology Assessment Task #1 Assessment Overview: There are THREE (3) parts to this assessment. Part 1: Research and planning; To be done in own time. Part 1 is to be completed and handed in

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

The Polyethylene Casing as Diffusion Barrier for Polyurethane Insulated District Heating Pipes

The Polyethylene Casing as Diffusion Barrier for Polyurethane Insulated District Heating Pipes Polyethylene Casing as Diffusion Barrier for Polyurethane Insulated District Heating Pipes The Polyethylene Casing as Diffusion Barrier for Polyurethane Insulated District Heating Pipes Maria Olsson and

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies IMPROVED CALIBRATION AND OPERATION OF A STABLE-GAS QUANTIFICATION MANIFOLD AS PART OF A RADIOXENON COLLECTION SYSTEM ABSTRACT Richard M. Williams, James C. Hayes, and Randy R. Kirkham Pacific Northwest

More information

Critical Gust Pressures on Tall Building Frames-Review of Codal Provisions

Critical Gust Pressures on Tall Building Frames-Review of Codal Provisions Dr. B.Dean Kumar Dept. of Civil Engineering JNTUH College of Engineering Hyderabad, INDIA bdeankumar@gmail.com Dr. B.L.P Swami Dept. of Civil Engineering Vasavi College of Engineering Hyderabad, INDIA

More information

Gas Law Worksheets - WS: Boyle s and Charles Law

Gas Law Worksheets - WS: Boyle s and Charles Law Gas Law Worksheets - WS: Boyle s and Charles Law Boyle s Law states that the volume of a gas varies inversely with its pressure if temperature is held constant. (If one goes up the, other goes down.) We

More information

CHM 111 Unit 5 Sample Questions

CHM 111 Unit 5 Sample Questions Name: Class: Date: As you work these problems, consider and explain: A. What type of question is it? B. How do you know what type of question it is? C. What information are you looking for? D. What information

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101.

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101. Simple Gas Laws To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and 101.3 kpa If assuming 1 mol, V = 22.4L SATP: 25 C (298 K) and 101.3 kpa If assuming 1 mol, V =

More information

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class 0.30 Fall 004 Homework Problem Set 9 Due Wednesday, November 4, at start of class Part A. Consider an iron surface which serves as a catalyst for the production of ammonia from nitrogen and hydrogen. The

More information

Gravity waves in stable atmospheric boundary layers

Gravity waves in stable atmospheric boundary layers Gravity waves in stable atmospheric boundary layers Carmen J. Nappo CJN Research Meteorology Knoxville, Tennessee 37919, USA Abstract Gravity waves permeate the stable atmospheric planetary boundary layer,

More information

Balloon Calculations

Balloon Calculations Balloon Calculations Timothy Paul Smith July 9, 2012 The purpose of this short note is to gather together all the equations and graphs which can be used to calculate the trajectory of a balloon, such as

More information

Characterizing a Cu/Mn Alloy for Extracting Oxygen from Inert Gas. Streams

Characterizing a Cu/Mn Alloy for Extracting Oxygen from Inert Gas. Streams Characterizing a Cu/Mn Alloy for Extracting Oxygen from Inert Gas Streams Grace Lenhard Prattsburgh Central School LLE advisors: Walter Shmayda and Matthew Sharpe Laboratory for Laser Energetics University

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

Design and Safety Document for the Vacuum Windows of the NPDGamma Liquid Hydrogen Target at SNS

Design and Safety Document for the Vacuum Windows of the NPDGamma Liquid Hydrogen Target at SNS Design and Safety Document for the Vacuum Windows of the NPDGamma Liquid Hydrogen Target at SNS Prepared: Checked: Approved: H. Nann W. Fox M. Snow The NPDGamma experiment is going to run at BL13 at SNS

More information

Isotopes and Gases. Isotopes as constraints to air sea gas exchange, gas exchange time scales, the various time scales of carbon (isotope) exchange

Isotopes and Gases. Isotopes as constraints to air sea gas exchange, gas exchange time scales, the various time scales of carbon (isotope) exchange Isotopes and Gases Isotopes as constraints to air sea gas exchange, gas exchange time scales, the various time scales of carbon (isotope) exchange Isotope effects in gas solution and molecular diffusion

More information

Thermodynamic Study of Compartment Venting

Thermodynamic Study of Compartment Venting Thermodynamic Study of Compartment Venting Francisco Manuel Bargado Benavente francisco.benavente@tecnico.ulisboa.pt Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal Abstract Compartment

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

Advantages of Carrier Gas Leak Detection using Novel Helium or Hydrogen Leak Detectors with Specific Sensor Types

Advantages of Carrier Gas Leak Detection using Novel Helium or Hydrogen Leak Detectors with Specific Sensor Types 19 th World Conference on Non-Destructive Testing 2016 Advantages of Carrier Gas Leak Detection using Novel Helium or Hydrogen Leak Detectors with Specific Sensor Types Klaus HERRMANN 1, Daniel WETZIG

More information

Combined Pressure / Vacuum Relief Valve KITO VD/o

Combined Pressure / Vacuum Relief Valve KITO VD/o KITO VD/o DN D H kg* vacuum setting (mbar) pressure DIN ANSI DIN ANSI min max min max** 50 PN 16 2 220 332 351 11 3 50 10 75 80 PN 16 3 260 367 387 145 3 50 10 70 100 PN 16 4 260 368 393 178 3 50 10 80

More information

A deliberation on the surface tension theory

A deliberation on the surface tension theory A deliberation on the surface tension theory Hamid V. Ansari Department of Physics, Isfahan University, Isfahan, IRAN Personal address: No. 16, Salman-Farsi Lane, Zeinabieh Street, Isfahan, Postal Code

More information

Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler

Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler Micro Channel Recuperator for a Reverse Brayton Cycle Cryocooler C. Becnel, J. Lagrone, and K. Kelly Mezzo Technologies Baton Rouge, LA USA 70806 ABSTRACT The Missile Defense Agency has supported a research

More information

Ch. 11 Mass transfer principles

Ch. 11 Mass transfer principles Transport of chemical species in solid, liquid, or gas mixture Transport driven by composition gradient, similar to temperature gradients driving heat transport We will look at two mass transport mechanisms,

More information

A. What are the three states of matter chemists work with?

A. What are the three states of matter chemists work with? Chapter 10 and 12 The Behavior of Gases Chapter 10 The States of Matter A. What are the three states of matter chemists work with? Section 10.1 Pg 267 B. We will explain the behavior of gases using the

More information

1 SE/P-02. Experimental and Analytical Studies on Thermal-Hydraulic Performance of a Vacuum Vessel Pressure Suppression System in ITER

1 SE/P-02. Experimental and Analytical Studies on Thermal-Hydraulic Performance of a Vacuum Vessel Pressure Suppression System in ITER 1 SE/P-2 Experimental and Analytical Studies on Thermal-Hydraulic Performance of a Vacuum Vessel Pressure Suppression System in ITER K. Takase 1), H. Akimoto 1) 1) Japan Atomic Energy Research Institute,

More information

Inadequacy of traditional test methods for detection of non-hermetic energetic components

Inadequacy of traditional test methods for detection of non-hermetic energetic components Inadequacy of traditional test methods for detection of non-hermetic energetic components George R. Neff & Jimmie K. Neff IsoVac Engineering, Inc., Glendale, CA Barry T. Neyer PerkinElmer Optoelectronics,

More information

CHEMISTRY - CLUTCH CH.5 - GASES.

CHEMISTRY - CLUTCH CH.5 - GASES. !! www.clutchprep.com CONCEPT: UNITS OF PRESSURE Pressure is defined as the force exerted per unit of surface area. Pressure = Force Area The SI unit for Pressure is the, which has the units of. The SI

More information

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils 86 Pet.Sci.(29)6:86-9 DOI 1.17/s12182-9-16-x Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils Ehsan Khamehchi 1, Fariborz Rashidi

More information

Boyle s Law Practice

Boyle s Law Practice Boyle s Law Practice Boyle s Law is an indirect relationship. Most of these problems can be done in your head without showing your work. 1. Herman has 30.0 L of helium gas trapped in a cylinder by a piston.

More information

Results of mathematical modelling the kinetics of gaseous exchange through small channels in micro dischargers

Results of mathematical modelling the kinetics of gaseous exchange through small channels in micro dischargers Journal of Physics: Conference Series PAPER OPEN ACCESS Results of mathematical modelling the kinetics of gaseous exchange through small channels in micro dischargers Related content - The versatile use

More information

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Figure 13.25 This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as though it was taken at

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

ELEVATION CORRECTION FACTORS FOR RADON MONITORS*

ELEVATION CORRECTION FACTORS FOR RADON MONITORS* ELEVATION CORRECTION FACTORS FOR E-PERM@ RADON MONITORS* P. Kotrappa and L. R. Stiefl Abstract-E-PERMm radon monitors are based on the principle of electret ion chambers and are usually calibrated in a

More information

New Viscosity Correlation for Different Iraqi Oil Fields

New Viscosity Correlation for Different Iraqi Oil Fields Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.15 No.3 (September 2014) 71-76 ISSN: 1997-4884 University of Baghdad College of Engineering New

More information

A high-sensitivity large volume cryogenic detector for radon in gas

A high-sensitivity large volume cryogenic detector for radon in gas DOI: 10.1007/s10967-008-0730-7 Journal of Radioanalytical and Nuclear Chemistry, Vol. 277, No.1 (2008) 199 205 A high-sensitivity large volume cryogenic detector for radon in gas M. Wojcik, 1 * G. Zuzel

More information

A new concept in the storage of liquefied chemical and petrochemical gases Zero leakage Zero fugitive emissions

A new concept in the storage of liquefied chemical and petrochemical gases Zero leakage Zero fugitive emissions A new concept in the storage of liquefied chemical and petrochemical gases Zero leakage Zero fugitive emissions Introduction Industries involved in the handling of dangerous fluids have to answer increasing

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

More information

Product Technical Bulletin #48

Product Technical Bulletin #48 AN INTEGRATED SOLUTIONS PROVIDER Product Technical Bulletin #48 Current-Carrying Capacity of R-Series Connectors AirBorn Proprietary Page 1 AN INTEGRATED SOLUTIONS PROVIDER R-Series Current-Carrying Capacity

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

Dynamics of bubble rising at small Reynolds numbers

Dynamics of bubble rising at small Reynolds numbers MATEC Web of Conferences 3, 01004 ( 015) DOI: 10.1051/ matecconf/ 015301004 C Owned by the authors, published by EDP Sciences, 015 Dynamics of bubble rising at small Reynolds numbers Vladimir Arkhipov

More information

machine design, Vol.6(2014) No.3, ISSN pp

machine design, Vol.6(2014) No.3, ISSN pp machine design, Vol.6(04) No.3, ISSN 8-59 pp. 79-84 ANALYSIS OF CLEARANCES AND DEFORMATIONS AT CYCLOID DISC Mirko BLAGOJEVIĆ * University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia Preliminary

More information

Fig. 2. M.I. Yaroslavtsev, 2002

Fig. 2. M.I. Yaroslavtsev, 2002 SPECIAL FEATURES OF USING N O FOR HEATING OF THE TEST GAS IN A HOT-SHOT WIND TUNNEL M.I. Yaroslavtsev Institute of Theoretical and Applied Mechanics SB RAS, 630090 Novosibirsk Russia 1. The study of heat

More information

THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4

THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4 THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4 OBJECTIVES 1. To measure the equilibrium constant, enthalpy, entropy, and Gibbs free energy change of the reaction N2O4(g) = 2 NO2(g). 2.

More information

DISSOLVED GAS ANALYSIS OF NATURAL ESTER FLUIDS UNDER ELECTRICAL AND THERMAL STRESS

DISSOLVED GAS ANALYSIS OF NATURAL ESTER FLUIDS UNDER ELECTRICAL AND THERMAL STRESS DISSOLVED GAS ANALYSIS OF NATURAL ESTER FLUIDS UNDER ELECTRICAL AND THERMAL STRESS M. Jovalekic 1*, D. Vukovic 1 and S. Tenbohlen 1 1 Institute of Power Transmission and High Voltage Technology (IEH) University

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 e-issn (O): 2348-4470 p-issn (P): 2348-66 International Journal of Advance Engineering and Research Development Volume 4, Issue 11, November -17 SERVICE

More information

Self-operated Pressure Regulators Type Universal Pressure Reducing Valve

Self-operated Pressure Regulators Type Universal Pressure Reducing Valve Self-operated Pressure Regulators Type 41-23 Universal Pressure Reducing Valve JIS version Application Pressure regulators for set points from 5 to 2800 kpa/0.05 to 28 bar Valve sizes ½B/15A to 4B/100A

More information

THE WAY THE VENTURI AND ORIFICES WORK

THE WAY THE VENTURI AND ORIFICES WORK Manual M000 rev0 03/00 THE WAY THE VENTURI AND ORIFICES WORK CHAPTER All industrial combustion systems are made up of 3 main parts: ) The mixer which mixes fuel gas with combustion air in the correct ratio

More information

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. Fluids 1a. [1 mark] The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. State the difference in terms of the velocity of the

More information

Gases and Pressure. Main Ideas

Gases and Pressure. Main Ideas Gases and Pressure Key Terms pressure millimeters of mercury partial pressure newton atmosphere of pressure Dalton s law of partial pressures barometer pascal In the chapter States of Matter, you read

More information

PRO-50 Instrument Supply Regulator

PRO-50 Instrument Supply Regulator Features CRN Approved The PRO-50 Regulator has been granted a Canadian Registration Number. Sour Service Capability Available in NACE configurations that comply with NACE MR0175/MR0103. Environmental limits

More information

Chapter 3 Atmospheric Thermodynamics

Chapter 3 Atmospheric Thermodynamics Chapter 3 Atmospheric Thermodynamics Spring 2017 Partial Pressure and Dalton Dalton's law of partial pressure: total pressure exerted by a mixture of gases which do not interact chemically is equal to

More information

B outflow. Outflow. B1 Introduction. introduction

B outflow. Outflow. B1 Introduction. introduction B outflow introduction B1 Introduction The subject of this chapter is the release, or better the incidental release of hazardous materials. It is obvious that this topic is much broader than just a chapter.

More information

Experimental Verification of Integrated Pressure Suppression Systems in Fusion Reactors at In-Vessel Loss-of -Coolant Events

Experimental Verification of Integrated Pressure Suppression Systems in Fusion Reactors at In-Vessel Loss-of -Coolant Events Experimental Verification of Integrated Pressure Suppression Systems in Fusion Reactors at In-Vessel Loss-of -Coolant Events K. Takase 1), H. Akimoto 1) 1) Japan Atomic Energy Research Institute (JAERI),

More information

Example 5.1 Converting between Pressure Units

Example 5.1 Converting between Pressure Units Example 5.1 Converting between Pressure Units For Practice 5.1 Your local weather report announces that the barometric pressure is 30.44 in Hg. Convert this pressure to psi. For More Practice 5.1 Convert

More information

( ) ADVANCED HONORS CHEMISTRY - CHAPTER 14 NAME: THE BEHAVIOR OF GASES GRAHAM'S LAW WORKSHEET - ANSWERS - V8 PAGE:

( ) ADVANCED HONORS CHEMISTRY - CHAPTER 14 NAME: THE BEHAVIOR OF GASES GRAHAM'S LAW WORKSHEET - ANSWERS - V8 PAGE: ADVANCED HONORS CHEMISTRY - CHAPTER 14 NAME: THE BEHAVIOR OF GASES DATE: GRAHAM'S LAW WORKSHEET - ANSWERS - V8 PAGE: 1. How fast would a ecule of sulfur dioxide travel if an atom of krypton (aarrgghh!)

More information

Lab 1. Adiabatic and reversible compression of a gas

Lab 1. Adiabatic and reversible compression of a gas Lab 1. Adiabatic and reversible compression of a gas Introduction The initial and final states of an adiabatic and reversible volume change of an ideal gas can be determined by the First Law of Thermodynamics

More information

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book.

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book. Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections 10.1 10.2 of your book. Convert the following to Celsius and Kelvin temperatures: 1. 80.0 o F Early E. C.:

More information

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] Chapter 10 Gases We have talked a little about gases in Chapter 3 and we dealt briefly with them in our stoichiometric calculations in

More information

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them. Chapter 5 Gases Gas Gases are composed of particles that are moving around very fast in their container(s). These particles moves in straight lines until they collides with either the container wall or

More information

Generating Calibration Gas Standards

Generating Calibration Gas Standards Technical Note 1001 Metronics Inc. Generating Calibration Gas Standards with Dynacal Permeation Devices Permeation devices provide an excellent method of producing known gas concentrations in the PPM and

More information

Unit 8: Gases and States of Matter

Unit 8: Gases and States of Matter Unit 8: Gases and States of Matter Gases Particles that have no definite shape or volume. They adapt to the shape and volume of their container. Ideal gases are imaginary gases that comply with all the

More information

1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg

1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg Score 1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg 2. [Chang7 5.P.019.] The volume of a gas is 5.80 L, measured at 1.00 atm. What is the pressure of the gas in mmhg if

More information

Unit 14 Gas Laws Funsheets

Unit 14 Gas Laws Funsheets Name: Period: Unit 14 Gas Laws Funsheets Part A: Vocabulary and Concepts- Answer the following questions. Refer to your notes and the PowerPoint for help. 1. List 5 different common uses for gases: a.

More information

Course Deviation to Find Stronger Lift (No Wind)

Course Deviation to Find Stronger Lift (No Wind) Course Deviation to Find Stronger Lift (No Wind) Instructions on how to use the spreadsheets By: Branko Stojkovic Date: December 27, 2011 Theory In his Corse Deviations article in the December 2011 issue

More information

Behavior of Gases Chapter 12 Assignment & Problem Set

Behavior of Gases Chapter 12 Assignment & Problem Set Behavior of Gases Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Behavior of Gases 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

Heat Transfer Research on a Special Cryogenic Heat Exchanger-a Neutron Moderator Cell (NMC)

Heat Transfer Research on a Special Cryogenic Heat Exchanger-a Neutron Moderator Cell (NMC) Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Heat Transfer Research on a Special Cryogenic Heat Exchanger-a Neutron

More information

Development of High-speed Gas Dissolution Device

Development of High-speed Gas Dissolution Device Development of High-speed Gas Dissolution Device Yoichi Nakano*, Atsushi Suehiro**, Tetsuhiko Fujisato***, Jun Ma**** Kesayoshi Hadano****, Masayuki Fukagawa***** *Ube National College of Technology, Tokiwadai

More information

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

International Journal of Technical Research and Applications e-issn: ,  Volume 4, Issue 3 (May-June, 2016), PP. DESIGN AND ANALYSIS OF FEED CHECK VALVE AS CONTROL VALVE USING CFD SOFTWARE R.Nikhil M.Tech Student Industrial & Production Engineering National Institute of Engineering Mysuru, Karnataka, India -570008

More information

Chapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity

Chapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity Chapter 10 Fluids 10-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can

More information

Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected to Drop Impact

Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected to Drop Impact Materials Transactions, Vol. 53, No. 2 (12) pp. 291 to 295 Special Issue on APCNDT 9 12 The Japanese Society for Non-Destructive Inspection Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected

More information

Stability and Computational Flow Analysis on Boat Hull

Stability and Computational Flow Analysis on Boat Hull Vol. 2, Issue. 5, Sept.-Oct. 2012 pp-2975-2980 ISSN: 2249-6645 Stability and Computational Flow Analysis on Boat Hull A. Srinivas 1, V. Chandra sekhar 2, Syed Altaf Hussain 3 *(PG student, School of Mechanical

More information

STIFFNESS INVESTIGATION OF PNEUMATIC CYLINDERS. A. Czmerk, A. Bojtos ABSTRACT

STIFFNESS INVESTIGATION OF PNEUMATIC CYLINDERS. A. Czmerk, A. Bojtos ABSTRACT 59 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 11 15 September 2017 URN: urn:nbn:de:gbv:ilm1-2017iwk-148:6 STIFFNESS INVESTIGATION OF PNEUMATIC CYLINDERS A. Czmerk, A. Bojtos Budapest

More information