The Discussion of this exercise covers the following points:

Size: px
Start display at page:

Download "The Discussion of this exercise covers the following points:"

Transcription

1 Exercise 5-3 Wet Reference Leg EXERCISE OBJECTIVE Learn to measure the level in a vessel using a wet reference leg. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Measuring level in a closed tank Dry reference leg Measurement errors. Wet reference leg Measurement errors. DISCUSSION Measuring level in a closed tank In a closed tank, it is possible to measure the level using a differential-pressure transmitter. However, it requires a special installation for the transmitter impulse lines that takes into account the pressure inside the tank. In a closed tank, the pressure at the bottom of the tank is the sum of the static pressure, the hydrostatic pressure due to the weight of the gas above the liquid, and the hydrostatic pressure of the fluid as Figure 5-13 illustrates. Gas (density = g) Liquid (density = l) Figure Pressure at the bottom of a closed tank. Festo Didactic

2 Ex. 5-3 Wet Reference Leg Discussion Using the definition of static pressure and hydrostatic pressure from Unit 4, the total pressure at the bottom of a closed tank is: (5-11) where is the total pressure at the bottom of the tank is the density of the gas above the liquid is the height of the column of gas is the density of the liquid in the tank is the height of the column of liquid In most cases, the density of the gas is much less than the density of the process liquid, thus the pressure due to the weight of the gas can be neglected and Equation (5-11) becomes: (5-12) There are two types of installations to measure a level in a closed tank using a differential-pressure transmitter. Figure 5-14 illustrates both of them. Figure 5-14 (a) illustrates a dry reference leg installation and Figure 5-14 (b) illustrates a wet reference leg installation. a) Dry reference leg b) Wet reference leg Figure Measuring level in a closed tank. Both the wet reference leg and the dry reference leg installation use the same principle. The reference leg allows the low-pressure side of the differentialpressure transmitter to receive the pressure of the gas above the process fluid. The difference between a dry reference leg and a wet reference leg lies in the filling of the reference leg. In a dry reference leg installation, the process gas fills the reference leg while in a wet reference leg installation, the process fluid or an inert liquid fills the reference leg. A wet reference leg installation is required if the vapors are corrosive, if they can clog the pipe or the transmitter, or if the vapors can condense in the reference leg. Dry reference leg In a dry reference leg installation, the differential-pressure transmitter compares the pressure in the reference leg (P R ) to the pressure at the high-pressure tap of 132 Festo Didactic

3 Ex. 5-3 Wet Reference Leg Discussion the tank (P T ) and returns the pressure differential. This pressure differential corresponds to the hydrostatic pressure created by process fluid above the highpressure tap. From this pressure differential, one can easily deduce the level from Equation (3-7). Modern differential-pressure transmitters enable the conversion of the pressure differential to a level, if the density of the process fluid is known. Figure 5-15 shows a typical dry reference leg installation. Shut-off valve Reference leg Shut-off valve Minimum measurable level Three-valve manifold Shut-off valve Separator Drain valve Figure Dry reference leg installation. Measurement errors When using a dry reference leg installation, level-measurement errors usually come from changes in the temperature of the liquid in the tank or from an accumulation of liquid in the reference leg. If the temperature of the process fluid increases, its density decreases and the fluid takes more space in the tank. Thus, the actual level of liquid in the tank is higher than the level that the transmitter indicates. To prevent such an error, a transmitter with a temperature compensation mechanism can be used. Liquid can find its way to the reference leg either if the tank is filled with liquid above the tap connecting the reference leg to the tank or if the gas at the top of the tank condenses into the reference leg. In both cases, the liquid in the reference leg exerts an additional pressure on the low-pressure side of the transmitter and the transmitter displays a level lower than the actual level. Festo Didactic

4 Ex. 5-3 Wet Reference Leg Procedure Outline Wet reference leg In a wet reference leg installation, the differential-pressure transmitter still compares the pressure in the reference leg to the pressure at the high-pressure tap of the tank but, in this case, a liquid fills the reference leg. A condensing chamber or pot is sometimes present at the top of the reference leg to facilitate the condensation of the vapors. The pipe connecting the condensing chamber to the tank is sloped toward the tank to allow the condensate to return to the tank. The process fluid is usually used to fill the reference leg. If the process fluid is corrosive and might damage the differential-pressure transmitter, an inert liquid is used instead. Figure 5-16 shows a typical wet reference leg installation. Shut-off valve Condensing chamber Reference leg Shut-off valve Drain valve Drain valve Minimum measurable level Three-valve manifold Drain valves Figure Wet reference leg installation. Measurement errors Similar to a dry leg installation, measurement errors in a wet leg installation usually come from an uncompensated difference of temperature between the fluid in the reference leg and the fluid in the tank. PROCEDURE OUTLINE The Procedure is divided into the following sections: Setup and connections PROCEDURE Setup and connections 1. Connect the equipment as the piping and instrumentation diagram in Figure 5-11 shows and use Figure 5-12 to position the equipment correctly on the frame of the training system. To set up your system for this exercise, start with the basic setup presented in the Familiarization with the Training System manual and add the equipment listed in Table Festo Didactic

5 Ex. 5-3 Wet Reference Leg Procedure Table 5-8. Devices required for this exercise. Name Model Identification Differential-pressure transmitter (low-pressure range) LI 1 Solenoid valve S Digital pressure gauge B PI 1 Electrical unit Pneumatic unit Accessories Calibrator ---- Vent tube Wet leg Calibrator (4-20 ma) 24 V from the Electrical Unit Figure P&ID. Festo Didactic

6 Ex. 5-3 Wet Reference Leg Procedure Figure Setup. 2. Connect the control valve to the pneumatic unit. 3. Connect the pneumatic unit to a dry-air source with an output pressure of at least 700 kpa (100 psi). 4. Wire the emergency push-button so that you can cut power in case of an emergency. 5. Do not power up the instrumentation workstation before your instructor has validated your setup. 6. Connect the solenoid valve so that a voltage of 24 V dc actuates the solenoid when you turn the power on. 136 Festo Didactic

7 Ex. 5-3 Wet Reference Leg Procedure 7. Install the differential-pressure transmitter and configure it to read the pressure differential between the wet leg and the bottom of the column. 8. Configure the pressure gauge to read the pressure at the top of the column. 9. Before proceeding further, complete the following checklist to make sure you have set up the system properly. The points on this checklist are crucial elements for the proper completion of this exercise. This checklist is not exhaustive, be sure to follow the instructions in the Familiarization with the Training System manual as well. f All unused male adapters on the column are capped and the flange is properly tightened. The solenoid valve under the column is wired so that the valve opens when the system is turned on. The hand valves are in the positions shown in the P&ID. The control valve is fully open. The pneumatic connections are correct. The vent tube is properly installed and HV3 is open. The wet leg is properly installed and its hand valve is open. The low-pressure range differential-pressure transmitter is used. The pressure-reducing valve of the pressure unit is closed. 10. Ask your instructor to check and approve your setup. 11. Power up the electrical unit. 12. Use the calibrator to send a 4 ma signal to the current to pressure converter of the control valve. 13. Test your system for leaks. Use the drive to make the pump run at low speed in order to produce a small flow rate. Gradually increase the flow rate, up to 50% of the maximum flow rate the pumping unit can deliver. Repair all leaks. 14. Close HV5 and let the level of water in the column rise to about above 25 cm (10 in). Use the calibrator to close the control valve and stop the water flow to the column. 15. Bleed the differential-pressure transmitter. Festo Didactic

8 Ex. 5-3 Wet Reference Leg Procedure 16. Empty the column and adjust the zero of the differential-pressure transmitter to read a pressure differential of 0 kpa (0 psi). 17. To measure the level inside the pressurized column using the wet leg, you must fill the wet leg with water. To do so, close the hand valve of the wet leg, fill the column with at least 80 cm (32 in) of water, open the wet leg valve to allow water to fill the wet leg, and quickly close the valve of the wet leg to capture the water in the wet leg. Make sure the wet leg is completely full. If not, try again. Refer to the Familiarization with the Training System manual for details on the installation and utilization of the wet leg. 18. Once the wet leg is completely filled with water, adjust the zero of the differential-pressure transmitter to read a pressure differential of 0 kpa (0 psi) when the column is empty. 19. Close HV3 and HV5 to pressurize the column. 20. Open the control valve, and let the level of water in the column rise. Since the column is pressurized, the level should stabilize around 65 cm (26 in). Keep an eye on the pressure gauge connected to the top of the column. Make sure the pressure inside the column does not rise above 240 kpa (35 psi). 21. When the level is stable, use the calibrator to close the control valve and keep the column pressurized. 22. Record below the level at which the water has stabilized in the column and the pressure at the top of the column. Level: Pressure inside the column: 23. What phenomenon do you observe on the wall of the column? 24. Use HV4 to adjust the level inside the column to 60 cm (24 in). The column is pressurized, be sure to open HV4 slowly when adjusting the level inside the column. 25. On the differential-pressure transmitter, read the pressure between the wet leg and the bottom of the column and record it in Table Festo Didactic

9 Ex. 5-3 Wet Reference Leg Conclusion 26. On the pressure gauge, read the pressure inside the column and record it in Table 5-9. Table 5-9. Pressure measurement using a wet leg installation. Level cm (in) P kpa (psi) Pressure inside the column kpa (psi) Level calculated using P cm (in) 60 (24) 27. Use HV4 to decrease the water level in the column by steps of 5 cm (or 2 in) until the column is empty. In Table 5-9, record the pressure reading of the differential-pressure transmitter and the pressure reading of the pressure gauge. For each reading, wait for the pressure to stabilize before recording it. 28. Using the pressure differential recorded in Table 5-9, calculate the theoretical level of water in the column. 29. Use the data in Table 5-9 to plot a graph of the pressure differential as a function of the level (as read on the column rule). 30. Open HV3 to depressurize the column and open HV4 to empty the column. 31. Use the main switch to cut the power to the Instrumentation and Process Control Training System. CONCLUSION In this exercise, you learned to measure the level inside a pressurized vessel using a wet leg installation Festo Didactic

10 Ex. 5-3 Wet Reference Leg Review Questions REVIEW QUESTIONS 1. Which type of installation is required to measure the level inside a pressurized vessel using a differential-pressure transmitter? 2. When can you neglect the pressure due to the weight of the gas above the liquid when measuring the level in a pressurized vessel using a differentialpressure transmitter? 3. In which condition is a wet leg installation required to measure the level inside a pressurized vessel? 4. What is the difference between a wet leg and a dry leg installation? 5. What can cause an error in the level measured with a wet reference leg installation? 140 Festo Didactic

Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler.

Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler. Exercise 5-2 Bubblers EXERCISE OBJECTIVE Learn to measure the level in a vessel using a bubbler. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Bubblers How to measure

More information

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION

Exercise 2-2. Second-Order Interacting Processes EXERCISE OBJECTIVE DISCUSSION OUTLINE. The actual setup DISCUSSION Exercise 2-2 Second-Order Interacting Processes EXERCISE OBJECTIVE Familiarize yourself with second-order interacting processes and experiment with the finer points of controller tuning to gain a deeper

More information

The Discussion of this exercise covers the following points: Range with an elevated or suppressed zero Suppressed-zero range Elevated-zero range

The Discussion of this exercise covers the following points: Range with an elevated or suppressed zero Suppressed-zero range Elevated-zero range Exercise 4-3 Zero Suppression and Zero Elevation EXERCISE OBJECTIVE In this exercise, you will learn the effect that mounting a pressure transmitter above or below the reference level has on the hydrostatic

More information

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps Exercise 4-2 Centrifugal Pumps EXERCISE OBJECTIVE Familiarize yourself with the basics of liquid pumps, specifically with the basics of centrifugal pumps. DISCUSSION OUTLINE The Discussion of this exercise

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

Process Control Measurement Pressure, Flow, and Level Courseware Sample

Process Control Measurement Pressure, Flow, and Level Courseware Sample Process Control Measurement Pressure, Flow, and Level Courseware Sample 85981-F0 Order no.: 85981-10 First Edition Revision level: 07/2015 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec,

More information

Heat Pump Connections and Interior Piping

Heat Pump Connections and Interior Piping Job Sheet 3 Heat Pump Connections and Interior Piping OBJECTIVES In this job sheet, you will observe how the presence of air in the ground loop affects the geothermal heat pump performance. You will also

More information

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump.

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump. Exercise 2-3 Centrifugal Pumps EXERCISE OBJECTIVE In this exercise, you will become familiar with the operation of a centrifugal pump and read its performance chart. You will also observe the effect that

More information

CONTROL and INSTRUMENTATION

CONTROL and INSTRUMENTATION CONTROL and INSTRUMENTATION COURSE 500: 5 DAYS: Max 8 Candidates This course covers the key aspects of current instrumentation and process control technology and is designed to enable maintenance personnel

More information

Job Sheet 1. Geothermal Energy

Job Sheet 1. Geothermal Energy Job Sheet 1 Geothermal Energy OBJECTIVES In this job sheet, you will become familiar with the training system components. You will operate your training system in heating and cooling mode and observe the

More information

Manual for continuous distillation

Manual for continuous distillation Manual for continuous distillation 1. Week 1: Objectives: Run the column at total reflux. When steady state is reached, take the sample from the top and bottom of the column in order to determine the overall

More information

InstrumentationTools.com

InstrumentationTools.com Author: Instrumentation Tools Categories: Level Measurement Basics of DP Level Measurement Level the parameters that exist in virtually every industrial process, there are many ways to measure the level,

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Bubble Tube Installations

Bubble Tube Installations Instruction MI 020-328 September 2013 Bubble Tube Installations For Liquid Level, Density, and Interface Level Measurements 2 Contents Introduction... 5 Abbreviations... 5 Principle of Operation... 5 Alternative

More information

Successful completion of the course leads to the award of the Technical Training Solutions Certificate of Competence 510: Instrumentation.

Successful completion of the course leads to the award of the Technical Training Solutions Certificate of Competence 510: Instrumentation. INSTRUMENTATION COURSE 510: 3 DAYS: Max 8 Candidates This course covers the key aspects of industrial instrumentation and is designed to enable maintenance personnel to carry out commissioning, calibration

More information

DPC-30 DPC-100. Reference Manual

DPC-30 DPC-100. Reference Manual DPC-30 DPC-100 Reference Manual 1. Introduction 1.1 Description The Martel DPC Digital Pneumatic Calibrator improves upon traditional dial gauge pneumatic calibrators. The Martel DPC improves accuracy,

More information

Cover Page for Lab Report Group Portion. Head Losses in Pipes

Cover Page for Lab Report Group Portion. Head Losses in Pipes Cover Page for Lab Report Group Portion Head Losses in Pipes Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 February 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

2600T Series Pressure Transmitter Models 264DC Differential and 264HC Gage Level Transmitters. Kent-Taylor

2600T Series Pressure Transmitter Models 264DC Differential and 264HC Gage Level Transmitters. Kent-Taylor INDUSTRIAL INSTRUMENTS AND CONTROLS SPECIALIST Kent-Taylor 2600T Series Pressure Transmitter Models 264DC Differential and 264HC Gage Level Transmitters Features Include Base accuracy : ±0.075% Span limits

More information

Model 130M Pneumatic Controller

Model 130M Pneumatic Controller Instruction MI 017-450 May 1978 Model 130M Pneumatic Controller Installation and Operation Manual Control Unit Controller Model 130M Controller is a pneumatic, shelf-mounted instrument with a separate

More information

Float Operated Level Controllers

Float Operated Level Controllers CONTENTS Float Operated Level Controllers IM0015 Nov. 2014 PAGE Introduction 1 Scope 1 Description 1 Specification 1 Control Installation 2 INTRODUCTION Side Mount Back Mount Prior to installing, the instructions

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 4-1 Float Switches EXERCISE OBJECTIVE In this exercise, you will study the construction and operation of a magnetic reed float switch. You will use a float switch to limit the amount of liquid

More information

Liquid Level Measurement

Liquid Level Measurement Technical Article Liquid Level Measurement A pressure transmitter can be used to determine the liquid level in a tank, well, river or other body of liquid. The pressure at the bottom of a liquid filled

More information

Level MEASUREMENT 1/2016

Level MEASUREMENT 1/2016 Level MEASUREMENT 1/2016 AGENDA 2 A. Introduction B. Float method C. Displacer method D. Hydrostatic pressure method E. Capacitance method G. Ultrasonic method H. Radar method I. Laser method J. Level

More information

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications Application Description AG/266PILD-EN Rev. C 2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic Pressure Measurement Engineered solutions for all applications Increase plant productivity

More information

Introductory Lab: Vacuum Methods

Introductory Lab: Vacuum Methods Introductory Lab: Vacuum Methods Experiments in Modern Physics (P451) In this lab you will become familiar with the various components of the lab vacuum system. There are many books on this topic one of

More information

Operating Instructions

Operating Instructions Operating Instructions Preparation for Start-up 1. If the computer system is logged off, log into the computer system. Log into the operator account on the computer. Please ask your TA for username and

More information

Ultrasonic Level Transmitter

Ultrasonic Level Transmitter Process Control Ultrasonic Level Transmitter Courseware Sample 85991-F0 Order no.: 85991-10 First Edition Revision level: 10/2017 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada

More information

Fisher DVI Desuperheater Venturi Inline

Fisher DVI Desuperheater Venturi Inline Instruction Manual DVI Desuperheater Fisher DVI Desuperheater Venturi Inline Contents Introduction... 1 Scope of Manual... 1 Description... 1 Principle of Operation... 2 Installation... 3 Operating Instructions...

More information

Liquid level measurement using hydrostatic pressure and buoyancy

Liquid level measurement using hydrostatic pressure and buoyancy iquid level measurement using hydrostatic pressure and buoyancy This worksheet and all related files are licensed under the Creative Commons Attribution icense, version 1.0. To view a copy of this license,

More information

Armfield Distillation Column Operation Guidelines

Armfield Distillation Column Operation Guidelines Armfield Distillation Column Operation Guidelines 11-2016 R.Cox Safety SAFETY GLASSES ARE REQUIRED WHEN OPERATING THE DISTILLATION COLUMN Wear gloves when mixing alcohol feedstock The column will become

More information

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C Exercise 2-3 EXERCISE OBJECTIVE C C C To describe the operation of a flow control valve; To establish the relationship between flow rate and velocity; To operate meter-in, meter-out, and bypass flow control

More information

Inert Air (N2) Systems Manual

Inert Air (N2) Systems Manual INSTRUCTION MANUAL Inert Air (N2) Systems Manual N2-MANUAL 2.10 READ AND UNDERSTAND THIS MANUAL PRIOR TO OPERATING OR SERVICING THIS PRODUCT. GENERAL INFORMATION Positive pressure nitrogen gas pressurizing

More information

Experiment 8: Minor Losses

Experiment 8: Minor Losses Experiment 8: Minor Losses Purpose: To determine the loss factors for flow through a range of pipe fittings including bends, a contraction, an enlargement and a gate-valve. Introduction: Energy losses

More information

BUBBLER CONTROL SYSTEM

BUBBLER CONTROL SYSTEM BUBBLER CONTROL SYSTEM Description: The HDBCS is a fully automatic bubbler system, which does liquid level measurements in water and wastewater applications. It is a dual air compressor system with, air

More information

Hydrostatics Physics Lab XI

Hydrostatics Physics Lab XI Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in

More information

The HumiSys. RH Generator. Operation. Applications. Designed, built, and supported by InstruQuest Inc.

The HumiSys. RH Generator. Operation. Applications. Designed, built, and supported by InstruQuest Inc. The HumiSys RH Generator Designed, built, and supported by InstruQuest Inc. Versatile Relative Humidity Generation and Multi-Sensor System The new HumiSys with single or dual RH probes capabilities is

More information

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions

L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions L 100 Bubble-Tube Level System Installation, Operation and Maintenance Instructions Figure 1 Contents Section Description Page 1.0 Introduction 2 2.0 Specifications 3 3.0 Installation 3 4.0 Warranty 6

More information

SERIES 500 VARIABLE RANGE PNEUMATIC DIFFERENTIAL PRESSURE TRANSMITTER

SERIES 500 VARIABLE RANGE PNEUMATIC DIFFERENTIAL PRESSURE TRANSMITTER Man500e 09/2006 Installation Operation and Maintenance Instructions SERIES 500 VARIABLE RANGE PNEUMATIC DIFFERENTIAL PRESSURE TRANSMITTER INDEX 1. INSTALLATION 2. COMPRESSED AIR SUPPLY 3. FLOW MEASURE

More information

Expert Hydrostatic Level Transmitters

Expert Hydrostatic Level Transmitters Expert Hydrostatic s General Features MJK Expert hydrostatic level transmitters are designed for level measurement by submerging the transmitter in open channels, drains and tanks. Expert hydrostatic level

More information

Multi-Process Station

Multi-Process Station Process Control Multi-Process Station Courseware Sample 85629-F0 Order no.: 85629-00 First Edition Revision level: 06/2015 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 2009 Internet:

More information

product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels

product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels 12.09 product manual HM-4140, HM-4150, HM-4160 HM-4160A HM-4150 Humboldt FlexPanels Introduction: This manual covers the installation and operation of Humboldt FlexPanels for Triaxial and Permeability

More information

WPB 5 / 7 / 10 INSTALLATION, OPERATION, & MAINTENANCE

WPB 5 / 7 / 10 INSTALLATION, OPERATION, & MAINTENANCE PACIFIC LIQUID & AIR SYSTEMS WPB 5 / 7 / 10 INSTALLATION, OPERATION, & MAINTENANCE IN THE BEGINNING Before installing or operating this system, familiarize yourself with these instructions. You should

More information

TECHNICAL DATA. Q = C v P S

TECHNICAL DATA. Q = C v P S Page 1 of 13 1. DESCRIPTION The Viking 6 Model G-6000 Dry Valve Riser Assembly consists of a small profile, light weight, pilot operated valve that is used to separate the water supply from the dry sprinkler

More information

OPERATION MANUAL NTF-15

OPERATION MANUAL NTF-15 OPERATION MANUAL NTF-15 Nitrogen Tire Filling Valve Stem Caps (Qty=200) Order P/N 436075 RTI Technologies, Inc 10 Innovation Drive York, PA 17402 800-468-2321 www.rtitech.com 035-81235-00 (Rev B) TABLE

More information

NGP-250/500 Nitrogen Generator Quick Start Guide

NGP-250/500 Nitrogen Generator Quick Start Guide NGP-250/500 Nitrogen Generator Quick Start Guide Version: A July 2013 Potter Electric Signal Company, LLC 5757 Phantom Dr., Suite 125 P. O. Box 42037 Hazelwood, MO 63042 Phone: (314) 595-6900 Document

More information

Exercise 8. Closed-Loop Pressure Control, Proportional-Plus-Integral Mode EXERCISE OBJECTIVE

Exercise 8. Closed-Loop Pressure Control, Proportional-Plus-Integral Mode EXERCISE OBJECTIVE Exercise 8 Closed-Loop Pressure Control, EXERCISE OBJECTIVE To understand open and closed-loop pressure control; To learn how to sense the pressure in a pneumatic circuit; To control the pressure in a

More information

OPERATION MANUAL NTF-60 Plus

OPERATION MANUAL NTF-60 Plus OPERATION MANUAL NTF-60 Plus Nitrogen Tire Filling Valve Stem Caps (Qty=200) Order P/N 436075 RTI Technologies, Inc 10 Innovation Drive York, PA 17402 800-468-2321 www.rtitech.com 035-81264-00 (Rev A)

More information

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS. This work covers part of outcome 2 of the Edexcel standard module:

FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS. This work covers part of outcome 2 of the Edexcel standard module: FLUID POWER FLUID POWER EQUIPMENT TUTORIAL ACCUMULATORS This work covers part of outcome 2 of the Edexcel standard module: UNIT 21746P APPLIED PNEUMATICS AND HYDRAULICS The material needed for outcome

More information

3 GALLON, OILLESS PANCAKE COMPRESSOR INSTRUCTIONS. Item #31289

3 GALLON, OILLESS PANCAKE COMPRESSOR INSTRUCTIONS. Item #31289 3 GALLON, OILLESS PANCAKE COMPRESSOR INSTRUCTIONS Item #31289 The EASTWOOD 3 GALLON, OILLESS PANCAKE COMPRESSOR, with an Integral Air Regulator, efficiently supplies all compressed air requirements for

More information

PALO VERDE NUCLEAR GENERATING STATION

PALO VERDE NUCLEAR GENERATING STATION PALO VERDE NUCLEAR GENERATING STATION I&C Program Classroom Lesson I&C Program Date: 4/10/2012 4:49:50 PM LP Number: NIA97C000304 Rev Author: DANIEL R. REED Title: Level Measurement Technical Review: Duration

More information

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller CHEMICAL ENGINEERING LABORATORY CHEG 239W Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller Objective The experiment involves tuning a commercial process controller for temperature

More information

Cover Page for Lab Report Group Portion. Lift on a Wing

Cover Page for Lab Report Group Portion. Lift on a Wing Cover Page for Lab Report Group Portion Lift on a Wing Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 17 January 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Design DSA Steam-Atomized Desuperheater

Design DSA Steam-Atomized Desuperheater Instruction Manual DSA Desuperheater Design DSA Steam-Atomized Desuperheater Contents Introduction............................... 1 Scope of Manual......................... 1 Description..............................

More information

Improving distillation tower operation

Improving distillation tower operation Improving distillation tower operation Measuring differential pressure across long sections of distillation columns has always been challenging, but purpose-built sensor systems provide a solution Fast

More information

4150K and 4160K Series Wizard II Pressure Controllers and Transmitters

4150K and 4160K Series Wizard II Pressure Controllers and Transmitters Instruction Manual Form 5177 March 1999 4150K and 4160K Series 4150K and 4160K Series Wizard II Pressure Controllers and Transmitters Contents Introduction.............................. 2 Scope of Manual.............................

More information

TEK-M ANIFOLD 7500A. Manifolds. Flow Level Temperature Pressure Valves Analyzers Accessories TekValSys ACCESSORIES

TEK-M ANIFOLD 7500A. Manifolds.   Flow Level Temperature Pressure Valves Analyzers Accessories TekValSys ACCESSORIES Technology Solutions TEK-M ANIFOLD 7500A Manifolds ACCESSORIES www.tek-trol.com Flow Level Temperature Pressure Valves Analyzers Accessories TekValSys Introduction Tek-Trol s Tek-Manifold 7500A is available

More information

Gerald D. Anderson. Education Technical Specialist

Gerald D. Anderson. Education Technical Specialist Gerald D. Anderson Education Technical Specialist The factors which influence selection of equipment for a liquid level control loop interact significantly. Analyses of these factors and their interactions

More information

FX134, FX1234, FX3030 Problem and Solutions

FX134, FX1234, FX3030 Problem and Solutions FX134, FX1234, FX3030 Problem and Solutions Unit Will Not Power Up Turn the power switch on. The unit LCD will display revision program and filter life within 3 to 5 seconds after turning on unit. If this

More information

Vacuum Pumpdown and Venting Procedure, CRaTER Thermal Vacuum System. Dwg. No

Vacuum Pumpdown and Venting Procedure, CRaTER Thermal Vacuum System. Dwg. No Rev. ECO Description Checked Approval Date 01 32- Release M. Smith Vacuum Pumpdown and Venting Procedure, CRaTER Thermal Vacuum System Dwg. No. 32-06003.05 Revision 01 June 18, 2007 1 1. Introduction 1.1.

More information

PX3005. Rangeable Industrial Pressure Transmitter M-5721/1018

PX3005. Rangeable Industrial Pressure Transmitter M-5721/1018 PX3005 Rangeable Industrial Pressure Transmitter INTRUCTION HEET -5721/1018 hop online at omega.com e-mail: info@omega.com For latest product manuals: omegamanual.info ! Pressure / differential pressure

More information

6800 Maintenance Instruction System Flush Procedure

6800 Maintenance Instruction System Flush Procedure Equipment Required FA74005 FA65318 FA900005 FA900003 Damper Drain Tube 6800 Cover Removal Tool Beaker 0.25 Litre Solvent Cleaning Bottle FA940021 Syringe Polypropylene 50 ml as required FA999045 Gloves

More information

ACCESSORY KIT INSTALLATION MANUAL

ACCESSORY KIT INSTALLATION MANUAL ACCESSORY KIT INSTALLATION MANUAL LP (PROPANE) CONVERSION KIT 1NP0366 FOR USE WITH MODELS: G8C & GF8 This conversion kit shall be installed by a qualified service agency in accordance with these instructions

More information

AUTOMATIC HOSE TEST UNIT, TYPE SPU

AUTOMATIC HOSE TEST UNIT, TYPE SPU VALVES AND FITTINGS UP TO 14,000 BAR TEST AND CONTROL EQUIPMENT H IGH PRESSURE TECHNOLOGY AUTOMATIC HOSE TEST UNIT, TYPE SPU Pressure range from 1 up to 10,000 bar User-friendly touch panel operation HIGH-PRESSURE

More information

TECHNICAL DATA 3 MODEL G-3000 DRY VALVE RISER ASSEMBLY

TECHNICAL DATA 3 MODEL G-3000 DRY VALVE RISER ASSEMBLY Page 1 of 13 1. DESCRIPTION The Viking 3 Model G-3000 Dry Valve Riser Assembly is equipped with a small profile, light weight, pilot operated valve that is used to separate the water supply from the dry

More information

1. Study the performance of a binary distillation column operated in batch mode.

1. Study the performance of a binary distillation column operated in batch mode. Goals for batch distillation using the East distillation column: 1. Study the performance of a binary distillation column operated in batch mode. 2. Determine the overall and local efficiency of the column

More information

TECHNICAL DATA. Q= Cv S

TECHNICAL DATA. Q= Cv S Page 1 of 13 1. DESCRIPTION The Viking 4 inch Model G-4000 Dry Valve Riser Assembly consists of a small profile, light weight, pilot operated valve that is used to separate the water supply from the dry

More information

TR Electronic Pressure Regulator. User s Manual

TR Electronic Pressure Regulator. User s Manual TR Electronic Pressure Regulator Page 2 of 13 Table of Contents Warnings, Cautions & Notices... 3 Factory Default Setting... 4 Quick Start Procedure... 5 Configuration Tab... 8 Setup Tab... 9 Internal

More information

TECHNICAL DATA Q = C. v P S. 2 Model G-2000 Dry valve. Page 1 of 13

TECHNICAL DATA Q = C. v P S. 2 Model G-2000 Dry valve. Page 1 of 13 Page 1 of 13 1. Description The Viking 2 Model G-2000 Dry Valve Riser Assembly consists of a small profile, light weight, pilot operated valve that is used to separate the water supply from the dry sprinkler

More information

How to specify a product. Process Sensors and Mechanical Instruments

How to specify a product. Process Sensors and Mechanical Instruments How to specify a product Process Sensors and Mechanical Instruments Keep the overview. Here is some guideline information on how to specify our products. Intended as supplementary help to specification

More information

WIDDER TOOLS. HPICAL Calibration Station 1 (203)

WIDDER TOOLS. HPICAL Calibration Station  1 (203) WIDDER TOOLS HPICAL-15000 Calibration Station WWW.WIDDERTOOLS.COM 1 1. TEST SET-UP a. Be sure air and water supply lines are installed per basic set-up & installation instructions supplied with calibration

More information

Introduction. Part one: Identify the Hydraulic Trainer Components

Introduction. Part one: Identify the Hydraulic Trainer Components The University Of Jordan School of Engineering Mechatronics Engineering Department Fluid Power Engineering Lab Experiments No.4 Introduction to Hydraulic Trainer Objective: Students will be able to identify

More information

O2100C Oxygen Measurement Module Technical Use Notes do not use other wall adapters with the O2100Cmodule. 10% / V 5% / V 2% / V 1% / V 10% / V

O2100C Oxygen Measurement Module Technical Use Notes do not use other wall adapters with the O2100Cmodule. 10% / V 5% / V 2% / V 1% / V 10% / V O2100C Oxygen Measurement Module The O2100C module measures the partial pressure of O2 and thus the module output is proportional to the pressure in the sample cell. Gas sampled must be free of liquids

More information

Fisher DSA Steam-Atomized Desuperheater

Fisher DSA Steam-Atomized Desuperheater Instruction Manual DSA Desuperheater Fisher DSA Steam-Atomized Desuperheater Contents Introduction... 1 Scope of Manual... 1 Description... 1 Principle of Operation... 2 Installation... 2 Operating Instructions...

More information

GREIG FILTERS, INC. OPERATION MANUAL

GREIG FILTERS, INC. OPERATION MANUAL GREIG FILTERS, INC. OPERATION MANUAL MODEL DCFH 3P 15/3 100 S4 DOE/222 DUAL CARTRIDGE FILTER HOUSING TABLE OF CONTENTS I. INTRODUCTION II. CARTRIDGE FILTER HOUSING UNIT A. OPERATION B. INSTALLATION C.

More information

6900 Maintenance Instruction System Flush

6900 Maintenance Instruction System Flush Equipment Required FA74005 Damper Drain Tube FA16005 Cover Removal Tool FA900005 Beaker 0.25 Litre FA900003 Solvent Cleaning Bottle FA940021 Syringe Polypropylene 50 ml as required FA999045 Gloves Latex

More information

GM Series Dual-Block Multi-Function Gas Control Valves

GM Series Dual-Block Multi-Function Gas Control Valves Installation Sheets Manual 121 Gas Combustion Combination Controls and Systems Section G Technical Bulletin GM Issue Date 0297 GM Series Dual-Block Multi-Function Gas Control Valves Figure 1: GM Series

More information

Discontinued. Powers Controls. Technical Instructions Document No P25 RV Rev. 1, May, RV 201 Pressure Reducing Valves.

Discontinued. Powers Controls. Technical Instructions Document No P25 RV Rev. 1, May, RV 201 Pressure Reducing Valves. Powers Controls RV 201 Pressure Reducing Valves Description Features Product Numbers Dual Pressure PRV Technical Instructions Document No. 155-049P25 RV 201-1 Single Pressure PRV The RV 201 Pressure Reducing

More information

Technical Manual. Liquid Level Transmitter CT801-LB/S

Technical Manual. Liquid Level Transmitter CT801-LB/S CT801-LB/S Technical Manual SAS au Capital de 2 158 244-444 871 933 R.C.S. Bourges - APE : 2651B Headquarter : 9, rue Isaac Newton - 18000 Bourges - France Technical Manual CT801-LB/S 1 st Edition Released

More information

P-5215 Differential Pressure Transmitter

P-5215 Differential Pressure Transmitter P-5215 Differential Pressure Transmitter Pneumatic Control Manual 717.1 Pressure Section Product Bulletin P-5215 Issue Date 0891 Features and Benefits Ultra Sensitive Feedback Circuit - Enhances System

More information

Coriolis Mass Flow Meter

Coriolis Mass Flow Meter Coriolis Mass Flow Meter TMFW Series Mini Type Coriolis Mass Flow Meter Xi an Tosilon Automation Co., Ltd No.299, Daqing Rd, Lianhu District, Xi'an Shaanxi, China Tel: +86-29-8823 8550 info@tosilon.com;

More information

Type , , S2.20 Specialized test procedure Procedure for testing LPG bulk meters using a vapour displacement prover

Type , , S2.20 Specialized test procedure Procedure for testing LPG bulk meters using a vapour displacement prover Field Inspection Manual Part: 4-STP Section: 26 Page: 1 of 14 Type 52.11-13, 52.21-23, S2.20 Specialized test procedure Procedure for testing LPG bulk meters Application This test is applied to LPG bulk

More information

Integral type Differential pressure flowmeter VNT Series

Integral type Differential pressure flowmeter VNT Series Integral type Differential pressure flowmeter VNT Series OUTLINE VH series Wafer-Cone differential pressure flowmeter and high precision differential pressure transmitter are integrated into one flowmeter.

More information

High-performance submersible pressure transmitter For level measurement Model LH-10

High-performance submersible pressure transmitter For level measurement Model LH-10 Electronic pressure measurement High-performance submersible pressure transmitter For level measurement Model LH-10 WIKA data sheet PE 81.09 Applications Level measurement in rivers and lakes Deep well

More information

T EK-SUB 4800C 19 mm Submersible Level Transmitter

T EK-SUB 4800C 19 mm Submersible Level Transmitter Technology Solutions T EK-SUB 4800C 19 mm Submersible Level Transmitter Instruction Manual Document Number: IM-4800C www.tek-trol.com Table of Contents 1 Safety Instructions... 2 1.1 Intended Use... 2

More information

SERVICE MANUAL No. I-0043

SERVICE MANUAL No. I-0043 Bettis Canada Ltd. 4112 91A Street Edmonton, Alberta, Canada T6E 5V2 Tel: (403) 450-3600 Fax: (403) 450-1400 SERVICE MANUAL No. I-0043 Edmonton GAS/HYDRAULIC ADDITIONAL COMPONENTS CUSTOMER: P.O.#: W.O.#:

More information

BUBBLER CONTROL SYSTEM

BUBBLER CONTROL SYSTEM BUBBLER CONTROL SYSTEM Description: The LDBCS is a fully automatic bubbler system, which does liquid level measurements in water and wastewater applications. It is a dual air compressor system with, air

More information

ACCESSORY KIT INSTALLATION INSTRUCTIONS

ACCESSORY KIT INSTALLATION INSTRUCTIONS ACCESSORY KIT INSTALLATION INSTRUCTIONS 1NP0680 - PROPANE CONVERSION FOR USE WITH MODELS: PM8, PC8, PM9, PC9, FL9M, FL9C, FC9M, FC9C This conversion kit is to be installed by a qualified service agency

More information

H.T.S.T. EQUIPMENT TEST PROCEDURES. Field Reference. Sequence of Testing. Pasteurizer Not Operating 3, 1, 4, 2, 7, 10, 8, 5B, 5E, 5C (dual stem), 9

H.T.S.T. EQUIPMENT TEST PROCEDURES. Field Reference. Sequence of Testing. Pasteurizer Not Operating 3, 1, 4, 2, 7, 10, 8, 5B, 5E, 5C (dual stem), 9 H.T.S.T. EQUIPMENT TEST PROCEDURES Field Reference Sequence of Testing Equipment testing should be conducted in the following sequence to minimize equipment run times. Pasteurizer Not Operating 3, 1, 4,

More information

Cover Page for Lab Report Group Portion. Drag on Spheres

Cover Page for Lab Report Group Portion. Drag on Spheres Cover Page for Lab Report Group Portion Drag on Spheres Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 29 September 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Function. brass EN CW617N brass EN CW617N brass EN CW614N. brass EN CW614N brass EN CW617N EPDM

Function. brass EN CW617N brass EN CW617N brass EN CW614N. brass EN CW614N brass EN CW617N EPDM Balancing valves series - cert. n 000 ISO 900 ALEFFI 0/0 GB Function Balancing valves are hydraulic devices that can precisely regulate the flow rate of the fluid that supplies a system s emitters. Hydraulic

More information

English. Introduction. Safety Instructions. All Products. Inspection and Maintenance Schedules. Parts Ordering. Specifications WARNING WARNING

English. Introduction. Safety Instructions. All Products. Inspection and Maintenance Schedules. Parts Ordering. Specifications WARNING WARNING Contents All Products... Gb-1 Control Valves... Gb-2 Control Valve Actuators... Gb-3 Regulators... Gb-3 Relief Valves... Gb-4 Instruments, Switches, and Accessories... Gb-4 Products Covered by Battery

More information

PRESSURE COMPARATOR 10000PSI 700bar. Operator Instructions CRYSTAL. engineering corporation

PRESSURE COMPARATOR 10000PSI 700bar. Operator Instructions CRYSTAL. engineering corporation PRESSURE COMPARATOR GauGeCaLXP 10000PSI 700bar Operator Instructions Page 2 GaugeCalXP Operator Instructions PRESSURE is Our BUSINESS Introduction Thank you for purchasing a GaugeCalXP Pressure tor from

More information

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION

ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION Application Note Doc. G8108-001 Rev. A - 23-Jul-02 ACCURACY, PERFORMANCE, AND HANDLING OF OIL-FILLED DIGIQUARTZ PRESSURE INSTRUMENTATION For more information regarding Digiquartz products contact: Paroscientific,

More information

Rejuvenation Instructions

Rejuvenation Instructions Rejuvenation Instructions #401 Air Systems UPR This NRI covers the following: Understanding the applications and operation of flow meters. Understand the application and operation of test pressure gauges.

More information

TECHNICAL DATA. System water supply pressure enters the priming chamber of the deluge valve (A.1) through the 1/4 (8 mm) priming line, which

TECHNICAL DATA. System water supply pressure enters the priming chamber of the deluge valve (A.1) through the 1/4 (8 mm) priming line, which January 27, 2012 307a 1. (Refer to Figures 1-3.) A Viking Non-Interlocked Preaction system utilizes a Viking Deluge Valve to control water flow into system piping equipped with closed sprinklers. Under

More information

ACCU-PULSE Installation and Operation Instructions

ACCU-PULSE Installation and Operation Instructions ACCU-PULSE Installation and Operation Instructions Pump Discharge Installation: Chargeable Models Step 1: Mounting Position Mount ACCU-PULSE as close to the pump discharge as possible to absorb the pulse

More information

HYDROSTATIC LEAK TEST PROCEDURE

HYDROSTATIC LEAK TEST PROCEDURE This information is proprietary and shall not be disclosed outside your organization, nor shall it be duplicated, used or disclosed for purposes other than as permitted under the agreement with Kinetics

More information

EXPERIMENT 2 LEVEL CONTROL SYSTEM

EXPERIMENT 2 LEVEL CONTROL SYSTEM EXPERIMENT 2 LEVEL CONTROL SYSTEM 1.0 OBJECTIVE To study the response of level control process in open tank using the PID controller. 2.0 INTRODUCTION TO THE APPARATUS (MODEL WLF922). a) The process consists

More information

TECHNICAL DATA SINGLE INTERLOCKED PREACTION SYSTEM WITH PNEUMATIC RELEASE

TECHNICAL DATA SINGLE INTERLOCKED PREACTION SYSTEM WITH PNEUMATIC RELEASE 1 of 10 1. DESCRIPTION (Refer to Figures 1-3.) Viking supervised Single Interlocked Preaction Systems utilize a Viking Deluge Valve and a pneumatically pressurized automatic sprinkler system. The system

More information

TECHNICAL DATA. Q = C v P S

TECHNICAL DATA. Q = C v P S January 6, 2012 Preaction 348a 1. Description Viking supervised Surefire Preaction Systems utilize the Viking G-6000P Valve. The small profile, lightweight, pilot operated Viking G-6000P Valve comes complete

More information