H16 Losses in Piping Systems

Size: px
Start display at page:

Download "H16 Losses in Piping Systems"

Transcription

1 H16 Losses in Piping Systems The equipment described in this manual is manufactured and distributed by TECQUIPMENT LIMITED Suppliers of technological laboratory equipment designed for teaching. BONSALL STREET, LONG EATON, NOTTINGHAM, NG10 2AN, ENGLAND. Tel: +44 (0) : Fax: +44 (0) General Enquiries: CompuServe, mhs:sales@tecquip : Internet, sales@tecquip.co.uk Parts & Service: CompuServe, mhs:service@tecquip : Internet, service@tecquip.co.uk Information is available on the Internet at:

2 1. 2. TecQuipment Limited No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system without the express permission of TecQuipment Limited. Exception to this restriction is given to bona fide customers in educational or training establishments in the normal pursuit of their teaching duties. Whilst all due care has been taken to ensure that the contents of this manual are accurate and up to date, errors or omissions may occur from time to time. If any errors are discovered in this manual please inform TecQuipment Ltd. so the problem may be rectified. A Packing Contents List is supplied with the equipment and it is recommended that the contents of the package(s) are carefully checked against the list to ensure that no items are missing, damaged or discarded with the packing materials. In the event that any items are missing or damaged, contact your local TecQuipment agent or TecQuipment directly as soon as possible.

3 SECTION 1.0 INTRODUCTION One of the most common problems in fluid mechanics is the estimation of pressure loss. This apparatus enables pressure loss measurements to be made on several small bore pipe circuit components, typical of those found in central heating installations. This apparatus is designed for use with the TecQuipment Hydraulic Bench H1, although the equipment can equally well be supplied from some other source if required. However, al1 future reference to the bench in this manual refers directly to the TecQuipment bench. 1.1 Description of Apparatus The apparatus, shown diagrammatically in Figure 1.1, consists of two separate hydraulic circuits, one painted dark blue, one painted light blue, each one containing a number of pipe system components. Both circuits are supplied with water from the same hydraulic bench. The components in each of the circuits are as follows: Dark Blue Circuit Light Blue Circuit 1. Gate Valve 2. Standard Elbow Mitre Bend 4. Straight Pipe 5. Globe Valve 6. Sudden Expansion 7. Sudden Contraction 8. ls0mm 90 Radius Bend mm 90 Radius Bend mm 90 Radius Bend

4

5 Key to Apparatus Arrangement A B C D E F G H J K L Straight Pipe 13.7mm Bore 90 Sharp Bend (Mitre) Proprietary 90 Elbow Gate Valve Sudden Enlargement mrn/26.4mm Sudden Contraction mrn/13.7rnrn Smooth 90 Bend 50mm Radius Smooth 90 Bend 100mrn Radius Smooth 90 Bend ls0mm Radius Globe Valve Straight Pipe 26.4mm Bore In all cases (except the gate and globe valves) the pressure change across each of the components is measured by a pair of pressurized Piezometer tubes. In the case of the valves pressure measurement is made by U-tubes containing mercury.

6 SECTION 2.0 THEORY Figure 2.1 Figure 2.2 Figure 2.3 For an incompressible fluid flowing through a pipe the following equations apply: (Continuity) (Bernoulli) Notation: Q Volumetric flow rate (m 3 /s) V Mean Velocity (m/s) A Cross sectional area (m 3 ) Z Height above datum (m)

7 P Static pressure (N/m 2 ) h L Head Loss (m) ρ Density (kg/m 3 ) g Acceleration due to gravity (9.81m/s 2 ) 2.1 Head Loss The head loss in a pipe circuit falls into two categories: (a) That due to viscous resistance extending throughout the total length of the circuit, and; (b) That due to localized effects such as valves, sudden changes in area of flow, and bends. The overall head loss is a combination of both these categories. Because of mutual interference between neighboring components in a complex circuit the total head loss may differ from that estimated from the losses due to the individual components considered in isolation. Head Loss in Straight Pipes The head loss along a length, L, of straight pipe of constant diameter, d, is given by the expression: where f is a dimensionless constant which is a function of the Reynolds number of the flow and the roughness of the internal surface of the pipe. Head Loss due to Sudden Changes in Area of Flow Sudden Expansion: The head loss at a sudden expansion is given by the expression: ( )

8 Sudden Contraction: The head loss at a sudden contraction is given by the expression: where K is a dimensionless coefficient which depends upon the area ratio as shown in Table 2.1. This table can be found in most good textbooks on fluid mechanics. A 2 /A K Table 2.1 Loss Coefficient For Sudden Contractions Head Loss Due To Bends The head loss due to a bend is given by the expression: where K is a dimensionless coefficient which depends upon the bend radius/pipe radius ratio and the angle of the bend. Note: The loss given by this expression is not the total loss caused by the bend but the excess loss above that which would be caused by a straight pipe equal in length to the length of the pipe axis. See Figure 4.5, which shows a graph of typical loss coefficients. Head Loss due to Valves The head loss due to a valve is given by the expression:

9 where the value of K depends upon the type of valve and the degrees of opening. Table 2.2 gives typical values of loss coefficients for gate and globe valves. Globe Valve, Fully Open 10.0 Gate Valve, Fully Open 0.2 Gate Valve, Half Open 5.6 Table Principles of Pressure Loss Measurements Figure 2.4 Pressurised Piezometer Tubes to Measure Pressure Loss between Two Points at Different Elevations Considering Figure 2.4, apply Bernoulli's equation between points 1 and 2:

10 but: (2-1) therefore ( ) (2-2) Consider Piezometer tubes: ρ [ ( )] (2-3) also (2-4) giving ( ) (2-5) Comparing Equations (2-2) and (2-5) gives (2-6) Principle of Pressure Loss Measurement Considering Figure 2.5, since points 1 and 2 have the same elevation and pipe diameter: ( ) = h L (2-7) Consider the U-tube. Pressure in both limbs of the U-tube is equal at level 00. Therefore equating pressure at 00: ( ) (2-8)

11 Figure 2.5 U- Tube Containing Mercury used to measure Pressure Loss across Valves giving ( ) (2-9) hence: ( ) (2-10) Considering Equations (2-7) and (2-10) and taking the specific gravity of mercury as 13.6: h L = 12.6x (2-11)

12 SECTION 3.0 INSTRUCTIONS FOR USE (1) Connect the hydraulic bench supply to the inlet of the apparatus and direct the outlet hose into the hydraulic bench weighing tank. (2) Close the globe valve, open the gate valve and admit water to the Dark Blue circuit by starting the pump and opening the outlet valve on hydraulic bench. (3) Allow water to flow for two or three minutes. (4) Close the gate valve and manipulate all of the trapped air into the air space in piezometer tubes. Check that the piezometer tubes all indicate zero pressure difference. (5) Open the gate valve and by manipulating the bleed screws on the U- tube fill both-limbs with water ensuring no air remains. (6) Close the gate valve, open the globe valve and repeat the above procedure for the Light Blue circuit. The apparatus is now set up for measurement to be made on the components in either circuit. The-datum position of the piezometer can be adjusted to any desired position either by pumping air into the manifold with the bicycle pump supplied, or by gently allowing air to escape through the manifold valve. Ensure that there are no water locks in these manifolds as these will tend to suppress the head of water recorded and so provide incorrect readings. 3.1 Filling the Mercury Manometer Important: Mercury and its vapors are poisonous and should be treated with great care. Any local regulations regarding the handling and use of mercury should be strictly adhered to.

13 Due to regulations concerning the transport of mercury, TecQuipment Ltd. are unable to supply this item. To fill the mercury manometer, it is recommended that a suitable syringe and catheter tube are used (not supplied) and the mercury acquired locally. If you are wearing any items of gold or silver, remove them. Remove the manometer from the H16 before filling with mercury. The object is to fill the dead-ended limb with a continuous column of mercury and then invert the column so that a vacuum is formed in the closed end of the tube. Hold the manometer upside down and support it firmly. Thread a suitable catheter tube into the manometer tube, ensuring the catheter tube end touches the sealed end of the glass column. Fill a syringe with 10ml of mercury and connect to the catheter tube. Slowly fill the glass column using the syringe, and as the mercury fills the column, withdraw the tube ensuring there are no air bubbles left. Fill up to the bend and return the manometer to its normal position. The optimum level for the mercury is 400mm from the bottom of the U-Tube. When the manometer has the correct amount of mercury in it, a small quantity of water should be poured into the reservoir to cover the mercury and so prevent vapors from escaping into the air. 3.2 Experimental Procedure The following procedure- assumes that pressure loss measurements are to be made on all the circuit components. Fully open the water control valve on the hydraulic bench. With the globe valve closed, fully open the gate valve to obtain maximum flow through the Dark Blue circuit. Record the readings on the piezometer tubes and the U- tube. Collect a sufficient quantity of water in the weighting tank to ensure that the weighing takes place over a minimum period of 60 seconds. Repeat the above procedure for a total of ten different flow rates, obtained by closing the gate valve, equally spaced over the full flow range.

14 With simple mercury in glass thermometer record the water temperature in the sump tank of the bench each time a reading is taken. Close the gate valve, open the globe and repeat the experimental procedure for the Light Blue circuit. Before switching off the pump, close both the globe valve and the gate valve. This procedure prevents air gaining access to the system and so saves time in subsequent setting up..-

15 SECTION 4.0 TYPICAL SET OF RESULTS AND CALCULATIONS 4.1 Results Basic Data Pipe Diameter (internal) Pipe Diameter [between sudden expansion (internal) and contraction] Pipe Material Distance between pressure tappings for straight pipe and bend experiments = 13.7mrn = 26.4mrn Copper Tube = 0.914m Bend Radii 90 Elbow (mitre) 90 Proprietary elbow 90 Smooth bend 90 Smooth bend 90 smooth bend =0 = 12.7mm = 50mm = 100mm = 150mm Identification of Manometer Tubes and Components Manometer Tube Unit Number 1 Proprietary Elbow Bend 2 3 Straight Pipe 4 5 Mitre bend 6 7 Expansion 8 9 Contraction mm bend mm bend mm bend 16

16 4.2 Straight Pipe Loss The object of this experiment is to obtain the following relationships: (a) (b) Head loss as a function of volume flow rate; Friction Factor as a function of Reynolds Number. Test Time To Piezometer Tube Readings (cm) U-Tube Number Collect 18 kg Water (cm) Hg Water (s) Gate-Valve * * Fully Open Water Temperature 23 C Table 4.1 Experimental Results for Dark Blue Circuit Specimen Calculation From Table 4.1, test number 1 Mass flow rate Head loss

17 Volume flow rate (Q) Area of flow (A) Mean Velocity (V) Reynolds Number (Re) For water at 23 C Therefore Re Friction Factor (f) Figure 4.1 shows the head loss - volume flow rate relationship plotted as a graph of log hl against log Q. The graph shows that the relationship is of the form h L α Q n with n = 1.73

18 This value is close to the normally accepted range of 1.75 to 2.00 for turbulent flow. The lower value n is found as in this apparatus, in comparatively smooth pipes at comparatively low Reynolds Number. Figure 4.2 shows the Friction Factor - Reynolds Number relationship plotted as a graph of friction factor against Reynolds Number. The graph also shows for comparison the relationship circulated from Blasius's equation for hydraulically smooth pipes. Blasius's equation: f In the range 104 < Re < 10 5 As would be expected the graph shows that the friction factor for the copper pipe in the apparatus is greater than that predicted for a smooth pipe at the same Reynolds Number. Figure 4.1 Head Loss - Volume Flow Rate

19 5. TECQUIPMENT H16 LOSSES IN PIPING SYSTEMS Figure 4:2 Friction Factor - Reynolds Number 4.3 Sudden Expansion The object of this experiment is to compare the measured head rise across a sudden expansion with the rise calculated on the assumption of: (a) (b) No head loss; Head loss given by the expression: ( )

20 Test Time To Piezometer Tube Readings (cm) V-Tube Number Collect 18 kg Water (cm) Hg Water (s) Globe Valve Table 4.2(a) Experimental Results For Light Blue Circuit Test Time To Piezometer Tube Readings (cm) V-Tube Number Collect 18 kg Water (cm) Hg Water (s) Globe Valve Table 4.2(b) Experimental Results For Light Blue Circuit (continued)

21 Specimen Calculation From Table 4.2 test number 11. Measured head rise = 48mm (a) Assuming no head loss ( ) Since (Bernoulli) [ ( ) ] (Continuity) [ ( ) ] From the table, = 1.67m/s therefore h 2 - h 1 = [ ( ) ] = 0.132m

22 Therefore head rise across the sudden expansion assuming no head loss is 132mm water. (b) Assuming ( ) ( ) (Bernoulli) ( ) ( ) On rearranging and inserting values of d. = 13.7mm and d 2 = 26.4mm, this reduces to which when V 1 = 1.67m/ s gives Therefore head rise across the sudden expansion assuming the simple expression for head loss is 56mm water. Figure 4.3 shows the full set of results for this experiment plotted as a graph of measured head rise against calculated head rise. Comparison with the dashed line on the graph shows clearly that the head rise across the sudden expansion is given more accurately by the assumption of a simple head loss expansion than by the assumption of no head loss.

23 Figure 4.3 Head Rise Across a Sudden Enlargement 4.4 Sudden Contraction The object of this experiment is to compare the measured fall in head across a sudden contraction, with the fall calculated in the assumption of: (a) (b) No head loss; Head loss given by the expression

24 Specimen Calculation From Table 4.2, test number 11. Measured head fall = 221mm water (a) Assuming no head loss Combining Bernoulli's equation and the continuity equation gives: [ ( ) ] Which when V 2 = 1.67m/s gives Therefore head fall across the sudden contraction assuming no head loss is 132mm water. (b) Assuming [ ( ) ] ( ) [ ]

25 From Table 1, when K = giving Which when V 2 = 1.67m/s gives h 1 h 2 = 0.185m _ Therefore head fall across the sudden contraction assuming loss coefficient of is 18.5cm water. Figure 4.4 shows the full set of results for this experiment plotted as a graph of measured head fall against calculated head fall.

26 Calculated decrease in head (cm of water) Figure 4.4 Head Decrease across a Sudden Contraction The graph shows that the actual fall in head is greater than predicted by the accepted value of loss coefficient for this particular area ratio. The actual value of loss coefficient can be obtained as follows: Let h m = measured fall in head and K' = actual loss coefficient then

27 hence which when v 2 = 1.67 m/s gives K' = Bends The aim here is to measure the loss coefficient for five bends. There is some confusion over terminology, which should be noted; there are the total bend losses (K L h L ) and those due solely to bend geometry, ignoring frictional losses (K B, h B ). (Total measured head loss - straight line loss) i. e. i.e. (Head gradient for bend - k x head gradient for straight pipe) Where k = 1 for K B For either, 6. Plotted on Figure 4.5 are experimental results for K B and K L for the 5 types of bends and also some tabulated data for K L. The last was obtained from 'Handbook of Fluid Mechanics' by VL Streeter. It should be noted though, that these results are by no means universally accepted and other sources give different values. Further, the experiment assumes that the head loss is independent of Reynolds Number and this is not exactly correct.

28 Figure 4.5 Graph of Loss Coefficient Is the form of Kg what you would expect? Does putting vanes in an elbow have any effect? Which do you consider more useful to measure, K L or K B?

29 4.6 Valves The object of this experiment is to determine the relationship between loss coefficient and volume flow rate for a globe type valve and a gate type valve. Specimen Calculation Globe Valve From Table 4.2, test number 11. Volume flow rate = (valve fully open) U-tube reading = mercury Therefore h L = = water Velocity (V) = Giving K = = 15.3 Figure 4.6 shows the full set of results for both valves in the form of a graph of loss coefficient against percentage volume flow.

30 Percentage Flow Rate Figure 4.6 Loss Coefficients for Globe and Gate Valves 7.

31 8. TECQUIPMENT H16 LOSSES IN PIPING SYSTEMS Normal manufacturing tolerances assume greater importance when the physical scale is small. This effect may be particularly noticeable in relation to the internal finish of the tube near the pressure tappings. The utmost care is taken during manufacturing to ensure a smooth uninterrupted. Bore of the tube in the region of each pressure tapping, to obtain maximum accuracy of pressure reading. Concerning again all published information relating to pipe systems, the Reynolds Numbers are large, in the region of 1 x 10 5 and above. The maximum Reynolds Number obtained in these experiments, using the hydraulic bench, HI, is 3 x 10 4 although this has not adversely affected the results. However, as previously stated in the introduction to this manual, an alternative source of supply (provided by the customer) could be used if desired, to increase the flow rate. In this case an alternative flow meter would also be necessary. The three factors discussed very briefly above are offered as a guide to explain discrepancies between experimental and published results, since in most cases all three are involved, although much more personal investigation is required by the student to obtain maximum value from using this equipment. In conclusion the general trends and magnitudes obtained give a valuable indication of pressure loss from the various components in the pipe system. The student is therefore given a realistic appreciation of relating experimental to theoretical or published information.

32 SECTION 5.0 GENERAL REVIEWS OF THE EQUIPMENT AND RESULTS An attempt has been made in this apparatus to combine a large number of pipe components into a manageable and compact pipe system and so provide the student user with the maximum scope for investigation. This is made possible by using small bore pipe tubing. However, in practice, so many restrictions, bends and the like may never be encountered in such short pipe lengths. The normally accepted design criteria of placing the downstream pressure tapping pipe diameters away from the obstruction i.e. the 90 bends, has been adhered to. This ensures that this tapping is well away from any disturbances due to the obstruction and in a region where there is normal steady flow conditions. Also sufficient pipe length has been left between each component in the circuit; to obviate any adverse influence neighboring components may tend to have on each other. Any discrepancies between actual experimental and theoretical or published results may be attributed to three main factors: (a) (b) (c) Relatively small physical scale of the pipe work; Relatively small pressure differences in some cases; Low Reynolds Numbers. The relatively small pressure differences, although easily readable, are encountered on the smooth 90 bends and sudden expansion. The results on these components should therefore be taken with most care to obtain maximum accuracy from the equipment. The results obtained however, are quite realistic as can be seen from their comparison with published data, as shown in Figure 4.5. Although there is wide divergence even amongst published data, refer to page 472 of Engineering Fluid Mechanics, it is interesting to note that all curves seem to show a minimum value of the loss coefficient 'K' where the ratio" " is between 2 and 4. It is important to realize and remember throughout the review of the results that all published data have been obtained using much larger bore tubing (76mm and above) and considering each component in isolation and not in a compound circuit.. by Charles Jaeger and published by Blackie and Son L

Experiment 8: Minor Losses

Experiment 8: Minor Losses Experiment 8: Minor Losses Purpose: To determine the loss factors for flow through a range of pipe fittings including bends, a contraction, an enlargement and a gate-valve. Introduction: Energy losses

More information

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.

The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. Fluids 1a. [1 mark] The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. State the difference in terms of the velocity of the

More information

Instruction Manual. Pipe Friction Training Panel

Instruction Manual. Pipe Friction Training Panel Instruction Manual HL 102 Pipe Friction Training Panel 100 90 80 70 60 50 40 30 20 10 HL 102 Instruction Manual This manual must be kept by the unit. Before operating the unit: - Read this manual. - All

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface

More information

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

More information

Lab. Manual. Fluid Mechanics. The Department of Civil and Architectural Engineering

Lab. Manual. Fluid Mechanics. The Department of Civil and Architectural Engineering Lab. Manual of Fluid Mechanics The Department of Civil and Architectural Engineering General Safety rules to be followed in Fluid Mechanics Lab: 1. Always wear shoes before entering lab. 2. Do not touch

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND Faculty of Engineering and Applied Science FLUID MECHANICS LABORATORY PIPE FRICTION

MEMORIAL UNIVERSITY OF NEWFOUNDLAND Faculty of Engineering and Applied Science FLUID MECHANICS LABORATORY PIPE FRICTION MEMORIAL UNIVERSITY OF NEWFOUNDLAND Faculty of Engineering and Applied Science FLUID MECHANICS LABORATORY PIPE FRICTION Objective To estimate the fluid pressure drops and roughness specifications for copper

More information

Experiment Instructions. Circulating Pumps Training Panel

Experiment Instructions. Circulating Pumps Training Panel Experiment Instructions Circulating Pumps Training Panel Experiment Instructions This manual must be kept by the unit. Before operating the unit: - Read this manual. - All participants must be instructed

More information

ME 333 Fluid Mechanics. Lab Session VISCOUS LOSSES IN PIPES

ME 333 Fluid Mechanics. Lab Session VISCOUS LOSSES IN PIPES ME 333 Fluid Mechanics Lab Session VISCOUS LOSSES IN PIPES Introduction Flow in pipes, laminar or turbulent, is subject to pressure losses that result from the viscous stresses on the wall of the pipe.

More information

Lab #4 Pipe Flow, Minor and Major Losses, and Walking in Osborne Reynolds Shoes CEE 331 Fall 2006

Lab #4 Pipe Flow, Minor and Major Losses, and Walking in Osborne Reynolds Shoes CEE 331 Fall 2006 CEE 331 Lab 4 Page 1 of 5 Lab #4 Pipe Flow, Minor and Major Losses, and Walking in Osborne Reynolds Shoes CEE 331 Fall 2006 Safety The major safety hazard in this laboratory is a shock hazard. Given that

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

Chapter 9 Fluids and Buoyant Force

Chapter 9 Fluids and Buoyant Force Chapter 9 Fluids and Buoyant Force In Physics, liquids and gases are collectively called fluids. 3/0/018 8:56 AM 1 Fluids and Buoyant Force Formula for Mass Density density mass volume m V water 1000 kg

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

Cover Page for Lab Report Group Portion. Drag on Spheres

Cover Page for Lab Report Group Portion. Drag on Spheres Cover Page for Lab Report Group Portion Drag on Spheres Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 29 September 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Old-Exam.Questions-Ch-14 T072 T071

Old-Exam.Questions-Ch-14 T072 T071 Old-Exam.Questions-Ch-14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density

More information

Cover Page for Lab Report Group Portion. Head Losses in Pipes

Cover Page for Lab Report Group Portion. Head Losses in Pipes Cover Page for Lab Report Group Portion Head Losses in Pipes Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 February 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

Third measurement MEASUREMENT OF PRESSURE

Third measurement MEASUREMENT OF PRESSURE 1. Pressure gauges using liquids Third measurement MEASUREMENT OF PRESSURE U tube manometers are the simplest instruments to measure pressure with. In Fig.22 there can be seen three kinds of U tube manometers

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

By Syed Ahmed Amin Shah 4 th semester Class No 8 Submitted To Engr. Saeed Ahmed

By Syed Ahmed Amin Shah 4 th semester Class No 8 Submitted To Engr. Saeed Ahmed EXPERIMENT # 01 DEMONSTRATION OF VARIOUS PARTS OF HYDRAULIC BENCH. HYDRAULIC BENCH Hydraulic bench is a very useful apparatus in hydraulics and fluid mechanics it is involved in majority of experiments

More information

Effect of Fluid Density and Temperature on Discharge Coefficient of Ogee Spillways Using Physical Models

Effect of Fluid Density and Temperature on Discharge Coefficient of Ogee Spillways Using Physical Models RESEARCH ARTICLE Effect of Fluid Density and Temperature on Discharge Coefficient of Ogee Spillways Using Physical Models M. SREENIVASULU REDDY 1 DR Y. RAMALINGA REDDY 2 Assistant Professor, School of

More information

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model Fluid Flow Equipment: Water reservoir, output tubes of various dimensions (length, diameter), beaker, electronic scale for each table. Computer and Logger Pro software. Lots of ice.temperature probe on

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D non-metallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights

More information

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points. Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and

More information

DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY

DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY FLUID MECHANICS (2141906) INDEX Sr. No. 1. 2. 3. 4. Experiment Start Date End Date Sign Grade To validate Bernoulli s theorem as applied to the flow of water

More information

MEMORANDUM. Investigation of Variability of Bourdon Gauge Sets in the Chemical Engineering Transport Laboratory

MEMORANDUM. Investigation of Variability of Bourdon Gauge Sets in the Chemical Engineering Transport Laboratory 1 MEMORANDUM TO: FROM: Prof. Davis Hubbard Prof. Faith A. Morrison DATE: 22 April 2014 RE: Investigation of Variability of Bourdon Gauge Sets in the Chemical Engineering Transport Laboratory Introduction

More information

This experiment will develop skills in graphing and graphical analysis.

This experiment will develop skills in graphing and graphical analysis. Chapter 11 Fluid Flow 11.1 Purpose The purpose of this experiment is to measure water flow through capillary tubes at different pressures, to study resistance to flow using tubes of different diameter,

More information

Laboratory studies of water column separation

Laboratory studies of water column separation IOP Conference Series: Materials Science and Engineering OPEN ACCESS Laboratory studies of water column separation To cite this article: R Autrique and E Rodal 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52

More information

PHYSICS - CLUTCH CH 17: FLUID MECHANICS.

PHYSICS - CLUTCH CH 17: FLUID MECHANICS. !! www.clutchprep.com INTRO TO DENSITY LIQUIDS and GASES are types of. So we use the term to refer generally to both Liquids AND Gases. The DENSITY of a material is a measure of how tight the molecules

More information

Cover Page for Lab Report Group Portion. Lift on a Wing

Cover Page for Lab Report Group Portion. Lift on a Wing Cover Page for Lab Report Group Portion Lift on a Wing Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 17 January 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

The Discussion of this exercise covers the following points: Range with an elevated or suppressed zero Suppressed-zero range Elevated-zero range

The Discussion of this exercise covers the following points: Range with an elevated or suppressed zero Suppressed-zero range Elevated-zero range Exercise 4-3 Zero Suppression and Zero Elevation EXERCISE OBJECTIVE In this exercise, you will learn the effect that mounting a pressure transmitter above or below the reference level has on the hydrostatic

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

1. Air is blown through a pipe AB at a rate of 15 litre per minute. The cross-sectional area of broad

1. Air is blown through a pipe AB at a rate of 15 litre per minute. The cross-sectional area of broad Keshaw Classes IIT/JEE Medical Classes 5-A 11028 / 9, WEA, Sat Nagar, Karol Bagh New Delhi-110005 Mob:9910915514,9953150192 Ph:011-45660510 E-mail : keshawclasses@gmail.com Web:www.keshawclasses.com Solids

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 2 Reading Assignments You can find the answers of some of the following

More information

CHAPTER 7 : SMOKE METERS AND THEIR INSTALLATIONS

CHAPTER 7 : SMOKE METERS AND THEIR INSTALLATIONS CHAPTER 7 : SMOKE METERS AND THEIR INSTALLATIONS 1 Scope : This Chapter covers the requirements of smoke meters and their installation on engines for full load and free acceleration tests, mentioned in

More information

08.60 Pycnometer. operating instructions. All it takes for environmental research. Contents

08.60 Pycnometer. operating instructions. All it takes for environmental research. Contents 08.60 Pycnometer operating instructions Contents On these operating instructions...2 1. Introduction...2 2. Principle of the air pycnometer according to Langer...2 3. Applications...2 4. Preparing the

More information

Lab Problems. Lab Problems for Chapter Fluid Characterization by Use of a Stormer Viscometer L-1

Lab Problems. Lab Problems for Chapter Fluid Characterization by Use of a Stormer Viscometer L-1 Lab Problems This section contains end-of-the-chapter problems that involve data obtained from various simple laboratory experiments. These lab problems for any chapter can be obtained by clicking on the

More information

EFFECTS OF CHEMICAL ADDITIVES ON THE PRESSURE DROP IN THE PIPES

EFFECTS OF CHEMICAL ADDITIVES ON THE PRESSURE DROP IN THE PIPES International Journal of Bio-Technology andresearch (IJBTR) ISSN(P): 2249-6858; ISSN(E): 2249-796X Vol. 4, Issue 1, Feb 2014, 1-6 TJPRC Pvt. Ltd. EFFECTS OF CHEMICAL ADDITIVES ON THE PRESSURE DROP IN THE

More information

Quiz name: Chapter 13 Test Review - Fluids

Quiz name: Chapter 13 Test Review - Fluids Name: Quiz name: Chapter 13 Test Review - Fluids Date: 1. All fluids are A gases B liquids C gasses or liquids D non-metallic E transparent 2. 1 Pa is A 1 N/m B 1 m/n C 1 kg/(m s) D 1 kg/(m s 2 ) E 1 N/m

More information

Lesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids

Lesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids Lesson : luid statics, Continuity equation (Sections 9.-9.7) Chapter 9 luids States of Matter - Solid, liquid, gas. luids (liquids and gases) do not hold their shapes. In many cases we can think of liquids

More information

BOYLE S / CHARLES LAW APPARATUS - 1m long

BOYLE S / CHARLES LAW APPARATUS - 1m long BOYLE S / CHARLES LAW APPARATUS - 1m long Cat: MF0340-101 (combination Boyle s and Charles without mercury) DESCRIPTION: The IEC Boyle's & Charles Law apparatus is a high quality instrument designed to

More information

OIL AND GAS INDUSTRY

OIL AND GAS INDUSTRY This case study discusses the sizing of a coalescer filter and demonstrates its fouling life cycle analysis using a Flownex model which implements two new pressure loss components: - A rated pressure loss

More information

Pressure is defined as force per unit area. Any fluid can exert a force

Pressure is defined as force per unit area. Any fluid can exert a force Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary

More information

Tutorial. BOSfluids. Relief valve

Tutorial. BOSfluids. Relief valve Tutorial Relief valve The Relief valve tutorial describes the theory and modeling process of a pressure relief valve or safety valve. It covers the algorithm BOSfluids uses to model the valve and a worked

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

LAB 13: FLUIDS OBJECTIVES

LAB 13: FLUIDS OBJECTIVES 217 Name Date Partners LAB 13: FLUIDS Fluids are an important part of our body OBJECTIVES OVERVIEW Fluid Properties To learn how some fundamental physical principles apply to fluids. To understand the

More information

LAB 13: FLUIDS OBJECTIVES

LAB 13: FLUIDS OBJECTIVES 205 Name Date Partners LAB 13: FLUIDS Fluids are an important part of our body OBJECTIVES OVERVIEW Fluid Properties To learn how some fundamental physical principles apply to fluids. To understand the

More information

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

More information

Experimental study for flow characteristics and performance evaluation of butterfly valves

Experimental study for flow characteristics and performance evaluation of butterfly valves IOP Conference Series: Earth and Environmental Science Experimental study for flow characteristics and performance evaluation of butterfly valves To cite this article: C K Kim et al 2010 IOP Conf. Ser.:

More information

BY THOMAS M. WALSKI, BRIAN LUBENOW, AND JEFFREY SPAIDE. When they install a branch from a water distribution main,

BY THOMAS M. WALSKI, BRIAN LUBENOW, AND JEFFREY SPAIDE. When they install a branch from a water distribution main, BY THOMAS M. WALSKI, BRIAN LUBENOW, AND JEFFREY SPAIDE When they install a branch from a water distribution main, water utility managers often debate the benefits of using a tap as opposed to shutting

More information

Micro Motion Pressure Drop Testing

Micro Motion Pressure Drop Testing 12/2018 Micro Motion Pressure Drop Testing www.emerson.com/micromotion Introduction Micro Motion has traditionally taken a very conservative approach to pressure drop, with single pressure measurements

More information

Static Fluids. **All simulations and videos required for this package can be found on my website, here:

Static Fluids. **All simulations and videos required for this package can be found on my website, here: DP Physics HL Static Fluids **All simulations and videos required for this package can be found on my website, here: http://ismackinsey.weebly.com/fluids-hl.html Fluids are substances that can flow, so

More information

NCERT. To study the variation in volume (V) with pressure (P) for a sample of air at constant temperature by plotting graphs between P and V, and

NCERT. To study the variation in volume (V) with pressure (P) for a sample of air at constant temperature by plotting graphs between P and V, and EXPERIMENT AIM To study the variation in volume (V) with pressure (P) for a sample of air at constant temperature by plotting graphs between P and V, and between P and V. APPARATUS AND MATERIAL REQUIRED

More information

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE

COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B. By Kimbal A. Hall, PE COMPUTATIONAL FLOW MODEL OF WESTFALL'S LEADING TAB FLOW CONDITIONER AGM-09-R-08 Rev. B By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY September 2009 ALDEN RESEARCH LABORATORY, INC.

More information

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE

MODELING AND SIMULATION OF VALVE COEFFICIENTS AND CAVITATION CHARACTERISTICS IN A BALL VALVE Proceedings of the 37 th International & 4 th National Conference on Fluid Mechanics and Fluid Power FMFP2010 December 16-18, 2010, IIT Madras, Chennai, India FMFP2010 341 MODELING AND SIMULATION OF VALVE

More information

Hydrostatics Physics Lab XI

Hydrostatics Physics Lab XI Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in

More information

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 Section 1.2 Example. The discharge in a channel with bottom width 3 m is 12 m 3 s 1. If Manning s n is 0.013 m -1/3 s and the streamwise slope is 1 in 200,

More information

Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle

Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle Fluids in Motion The Equation of Continuity DEFINITION OF MASS DENSITY The mass density ρ is

More information

Properties of Fluids SPH4C

Properties of Fluids SPH4C Properties of Fluids SPH4C Fluids Liquids and gases are both fluids: a fluid is any substance that flows and takes the shape of its container. Fluids Liquids and gases are both fluids: a fluid is any substance

More information

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

SPH 4C Unit 4 Hydraulics and Pneumatic Systems SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that

More information

Webassign 1 2.notebook. September 30, 2015

Webassign 1 2.notebook. September 30, 2015 1. Question DetailsCJ9 11.P.055. [2029001] A patient recovering from surgery is being given fluid intravenously. The fluid has a density of 1070 kg/m 3, and9.99 10 4 m 3 of it flows into the patient every

More information

Assistant Lecturer Anees Kadhum AL Saadi

Assistant Lecturer Anees Kadhum AL Saadi Pressure Variation with Depth Pressure in a static fluid does not change in the horizontal direction as the horizontal forces balance each other out. However, pressure in a static fluid does change with

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3 1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate

More information

Operating instructions Pitot Static Tube

Operating instructions Pitot Static Tube Operating instructions Pitot Static Tube halstrup-walcher GmbH Stegener Straße 10 D-79199 Kirchzarten, Germany Phone: +49 (0) 76 61/39 63-0 Fax: +49 (0) 76 61/39 63-99 E-mail: info@halstrup-walcher.de

More information

485 Annubar Primary Flow Element Installation Effects

485 Annubar Primary Flow Element Installation Effects ROSEMOUNT 485 ANNUBAR 485 Annubar Primary Flow Element Installation Effects CONTENTS Mounting hole diameter Alignment error Piping Geometry Induced Flow Disturbances Pipe reducers and expansions Control

More information

To plot the following performance characteristics; A pump is a device, which lifts water from a lower level to a higher

To plot the following performance characteristics; A pump is a device, which lifts water from a lower level to a higher LABORATORY MANUAL ON RECIPROCATING PUMP TEST RIG Prepared By Prof. (Dr.) M. K. Roul Professor and Principal Department of Mechanical Engineering Gandhi Institute for Technological Advancement (GITA), Bhubaneswar-752054

More information

Constant Pressure Inlet (CCN) Operator Manual

Constant Pressure Inlet (CCN) Operator Manual Constant Pressure Inlet (CCN) Operator Manual DOC-0125 Revision J 2545 Central Avenue Boulder, CO 80301-5727 USA C O P Y R I G H T 2 0 1 1 D R O P L E T M E A S U R E M E N T T E C H N O L O G I E S, I

More information

CHM Basics of Gases (r14) Charles Taylor 1/9

CHM Basics of Gases (r14) Charles Taylor 1/9 CHM 110 - Basics of Gases (r14)- 2014 Charles Taylor 1/9 Introduction The gas phase is noticeably different from the other two phases of matter. Here are some of the more obvious differences. Gases are

More information

Hydrostatic pressure Consider a tank of fluid which contains a very thin plate of (neutrally buoyant) material with area A. This situation is shown in Figure below. If the plate is in equilibrium (it does

More information

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration Paper 2.2 Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration Mr William Freund, Daniel Measurement and Control Mr Klaus Zanker, Daniel Measurement and Control Mr Dale Goodson,

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

Hydrostatics. Physics 1425 Lecture 25. Michael Fowler, UVa

Hydrostatics. Physics 1425 Lecture 25. Michael Fowler, UVa Hydrostatics Physics 1425 Lecture 25 Michael Fowler, UVa Basic Concepts Density Pressure: Pascal s Principle The Crown and the Bathtub Around 250 BC, the king of Syracuse commissioned a new crown,and gave

More information

Flow in a shock tube

Flow in a shock tube Flow in a shock tube April 30, 05 Summary In the lab the shock Mach number as well as the Mach number downstream the moving shock are determined for different pressure ratios between the high and low pressure

More information

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant.

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant. PTT 04/ Applied Fluid Mechanics Sem, Session015/016 ASSIGNMENT 1 CHAPTER AND CHAPTER 1. The air in an automobile tire with a volume of 0.0740 m is at 0 C and 140 kpa. Determine the amount of air that must

More information

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder

Experimental Investigation Of Flow Past A Rough Surfaced Cylinder (AET- 29th March 214) RESEARCH ARTICLE OPEN ACCESS Experimental Investigation Of Flow Past A Rough Surfaced Cylinder Monalisa Mallick 1, A. Kumar 2 1 (Department of Civil Engineering, National Institute

More information

Compiled by: B Beard. Approved by: SH Carstens. Description of requirements and procedures for compact provers to be used as verification standards.

Compiled by: B Beard. Approved by: SH Carstens. Description of requirements and procedures for compact provers to be used as verification standards. 1. Scope Description of requirements and procedures for compact provers to be used as verification standards. 2. Reference documents Trade Metrology Act SANS1698 3. Policy A. BASIC REQUIREMENTS Compact

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 3 Reading Assignments You can find the answers of some of the following

More information

AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION

AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION Engineering MECHANICS, Vol. 20, 2013, No. 3/4, p. 213 220 213 AIR EJECTOR WITH A DIFFUSER THAT INCLUDES BOUNDARY LAYER SUCTION Václav Dvořák* The article deals with axial-symmetric subsonic air-to-air

More information

Write important assumptions used in derivation of Bernoulli s equation. Apart from an airplane wing, give an example based on Bernoulli s principle

Write important assumptions used in derivation of Bernoulli s equation. Apart from an airplane wing, give an example based on Bernoulli s principle HW#3 Sum07 #1. Answer in 4 to 5 lines in the space provided for each question: (a) A tank partially filled with water has a balloon well below the free surface and anchored to the bottom by a string. The

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement CH2250: Techniques in Laboratory Chemistry Outline Measuring Mass Measuring Volume Significant figures Mass Measurement Mass Measurement Measure mass not weight Mass is measured with a balance (a scale

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid

More information

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure

Applications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases

More information

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases DEMONSTRATION 2.1 Chapter 2: Gases PROPERTIES OF CO 2 This demonstration has two aims: firstly, to show that carbon dioxide gas is denser than air; secondly, to show that carbon dioxide will not support

More information

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum? AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a water-filled container. The

More information

RESIDENTIAL WATER DISTRIBUTION

RESIDENTIAL WATER DISTRIBUTION RESIDENTIAL WATER DISTRIBUTION This case study demonstrates the steady-state simulation of the fresh water (drinking water) reticulation system in a small village. WATER RETICULATION Page1 WATER RETICULATION

More information

Background information. normal force on a surface area of the surface

Background information. normal force on a surface area of the surface Experiment 5a Class: Name: ( ) Date: 5a Boyle s law Objective To investigate the relationship between the pressure and volume of a fixed mass of gas at a constant temperature. Background information Pressure

More information

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE)

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE) Guidelines for Processing Plant Page : 1 of 64 Feb 2007 (ENGINEERING DESIGN GUIDELINE) Author: A L Ling Checked by: Karl Kolmetz TABLE OF CONTENT INTRODUCTION Scope 5 General Design Consideration Type

More information

The Gas Laws: Boyle's Law and Charles Law

The Gas Laws: Boyle's Law and Charles Law Exercise 6 Page 1 Illinois Central College CHEMISTRY 130 Name The Gas Laws: Boyle's Law and Charles Law Objective The simple laws governing the properties of gases can be readily demonstrated experimentally.

More information

Process Dynamics, Operations, and Control Lecture Notes - 20

Process Dynamics, Operations, and Control Lecture Notes - 20 Lesson 0. Control valves 0.0 Context Controller output is a signal that varies between 0 and 100%. Putting this signal to use requires a final control element, a device that responds to the controller

More information

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

More information

MS.RAJA ELGADY/PRESSURE PAPER 3

MS.RAJA ELGADY/PRESSURE PAPER 3 1- (a) A water tank has a rectangular base of dimensions 1.5m by 1.2m and contains 1440 kg of water. Calculate (i) the weight of the water, weight =...... [1] (ii) the pressure exerted by the water on

More information

Investigation of Boyle s Law: methods

Investigation of Boyle s Law: methods Name: Teacher: Class: Investigation of Boyle s Law: methods Your task is to investigate the relationship between volume, pressure and temperature for a gas. You must write detailed methods and select appropriate

More information

G.C.E (A/L) Examination March In collaboration with

G.C.E (A/L) Examination March In collaboration with ; G.C.E (A/L) Examination March - 2018 Conducted by Field Work Centre, Thondaimanaru In collaboration with FWC Provincial Department of Education Northern Province Grade:- 12 (2019) Physics Part - II Structured

More information

Module 6. Tightness Testing

Module 6. Tightness Testing Module 6 Tightness Testing IGE / UP / 1B New Tightness Testing Procedure Covers pipework up to 35mm and installation volumes of 0.035m3 Objectives By the end of Module 6, Tightness Testing and Direct Purging

More information

9 Mixing. I Fundamental relations and definitions. Milan Jahoda revision Radim Petříček, Lukáš Valenz

9 Mixing. I Fundamental relations and definitions. Milan Jahoda revision Radim Petříček, Lukáš Valenz 9 ixing ilan Jahoda revision 14-7-017 Radim Petříček, Lukáš Valenz I Fundamental relations and definitions ixing is a hydrodynamic process, in which different methods are used to bring about motion of

More information

Purpose. Introduction

Purpose. Introduction Purpose The objective of this experiment is to determine the density of an unknown liquid and solid. The students will become familiar with the techniques for measuring mass and volume of several samples

More information

EDUCTOR. principle of operation

EDUCTOR. principle of operation EDUCTOR principle of operation condensate and mixing eductor s are designed to mix two liquids intimately in various proportions in operations where the pressure liquid is the greater proportion of the

More information