FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER F: CONTAINMENT AND SAFEGUARD SYSTEMS 7. CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS])

Size: px
Start display at page:

Download "FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER F: CONTAINMENT AND SAFEGUARD SYSTEMS 7. CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS])"

Transcription

1 PAGE : 1 / CONTAINMENT HEAT REMOVAL SYSTEM (EVU [CHRS]) 7.0. SAFETY REQUIREMENTS Safety functions The main functions of the EVU system [CHRS] are to limit the pressure inside the containment and to ensure decay heat removal from the containment in severe accidents (RRC-B). - Control of reactivity The system does not directly contribute to performing the safety function of reactivity control. - Decay heat removal a) The EVU system [CHRS] transfers the decay heat from the IRWST to the ultimate cooling water system using a dedicated cooling system: during severe accidents (RRC-B), in RRC-A pipe breaks with loss of the ISBP [LHSI], transiently in certain PCC-4 pipe breaks with the RIS [SIS] in RRA [RHR] mode, a ) The intermediate cooling system of the EVU [CHRS] train 1 also provides cooling of the third PTR [FPCS] train when the latter is operating (PCC or RRC-A). - Containment of radioactive substances b) The EVU system [CHRS] transfers decay heat from the containment atmosphere to the IRWST during a severe accident (RRC-B) in order to maintain the containment pressure at values that are compatible with maintaining its integrity. c) The EVU system [CHRS] carries out flooding of the corium spreading compartment with water from the IRWST during a severe accident (RRC-B). d) The EVU system [CHRS] ensures cooling of the reactor building foundation raft during a severe accident (RRC-B). e) The EVU system [CHRS] participates in containment isolation during accidents that do not require its operation. f) The part of the EVU [CHRS] (main system) located outside the containment constitutes a containment barrier (to maintain the containment integrity and to contain radioactive substances) during an accident that requires its operation Functional criteria The EVU system [CHRS] meets the following functional criteria:

2 PAGE : 2 / 16 Not applicable. - Control of reactivity - Decay heat removal a) The EVU system [CHRS] cooling capacity must be sufficient to ensure, in all system operating situations, decay heat transfer from the IRWST to the SRU [ultimate heat sink] (see Chapter I.1.6). The risk of EVU [CHRS] filter clogging must be taken into account. a ) The intermediate cooling system of the EVU [CHRS] train 1 must be in service when the third PTR [FPCS] train is started up (see Chapter I.1.3). - Containment of radioactive substances b) The EVU system [CHRS] suction capacity must be sufficient to ensure the heat transfer from the containment atmosphere to the IRWST, so that the containment pressure limits are met (see pressure curve). c) The EVU system [CHRS] flooding capacity must be sufficient to ensure the passive flooding function of the corium spreading compartment in order to cool the corium. d) The EVU system [CHRS] cooling capacity must be sufficient to ensure the foundation raft cooling function in order to protect the latter. e) It must be possible to isolate the part of the EVU system [CHRS] located outside the containment from the containment in the event of an accident that does not require its operation. f) Provisions must be made to prevent any leak on the main system outside the containment. Note 1: The EVU system [CHRS] must enable an RCV [CVCS] pump suction line to be connected to the IRWST, in the event of an accident that does not require its operation (see Chapter I.3.2). Given the containment characteristics (volume, design, thermal inertia of the containment structures) and those of the IRWST, a grace period of at least 12 hours must be available after the start of a severe accident (during this period, no system is to be required for maintaining the containment pressure at a level below the design pressure; see note 2). Note 2: This 12-hour time period is not an EVU system [CHRS] start-up criterion, but only a design value for designing the system capacities.

3 PAGE : 3 / 16 Short-term functional criterion: - Starting up two EVU [CHRS] trains after a 12-hour grace period must be able to reduce the containment pressure below 2 bar within 24 hours, - Starting up an EVU [CHRS] train after a 12-hour grace period must enable the containment pressure to be maintained below the design pressure (5.5 bar). Long-term functional criterion: Over the long term, one EVU [CHRS] train must enable the containment pressure to be maintained below 2 bar. Pressure curve: If 2 trains are started up 12 hrs after the severe accident. The containment pressure limit curve Absolute pressure in MPa 0, Time in hours Requirements relating to the design Requirements from safety classifications - Safety classification The EVU [CHRS] is classified in accordance with the classification presented in Chapter C.2. - Single failure criterion (active and passive) For components that provide F1 functions (containment isolation), the single failure criterion is applied to ensure a sufficient degree of redundancy. - Emergency power supplies The EVU system [CHRS] has an emergency power supply so that the operation is ensured in the event of station blackout.

4 PAGE : 4 / 16 - Qualification for operating conditions The requirements relating to the EVU system [CHRS] qualification are presented in Chapter C.7. - Mechanical, electrical, instrumentation and control classifications The EVU system [CHRS] mechanical, electrical and instrumentation and control classifications are defined in accordance with the classifications presented in Chapter C.2. - Seismic classification The EVU system [CHRS] seismic classification is defined in accordance with the classification rules presented in Chapter C.2. - Periodic tests Periodic tests are performed regularly on the EVU system [CHRS] to ensure its availability. The classified systems must be easily accessible to allow periodic tests to be carried out Other statutory requirements - Official documents, laws, orders and decrees To follow. - Basic Safety Rules Not applicable. - Technical guidelines EPR Technical Guidelines are presented in Chapter C.1.2. Specific requirements for the EVU system [CHRS] are: - Section A.1.3: General strategy relating to severe accidents - Section B.1.4.2: Prevention of containment bypasses - Section B.2.3.5: The containment heat removal function - Section E.2.3.1: Corium cooling capacity outside the vessel - Section E.2.3.2: Removal of containment heat without venting - Specific EPR documents Not applicable Hazards Internal and external hazards taken into account in the EVU [CHRS] design are presented in Chapters C.3 and C.4.

5 PAGE : 5 / SYSTEM FUNCTION The EVU [CHRS] has no function during normal operation. The main functions of the EVU system [CHRS] are to limit the pressure inside the containment and to ensure decay heat removal from the containment during severe accidents (RRC-B). The EVU system [CHRS] also ensures cooling of the 3 rd PTR [FPCS] train and decay heat transfer from the IRWST to the ultimate cooling water using a dedicated cooling system in RRC- A pipe breaks with loss of the ISBP [LHSI] and transiently in certain PCC-4 pipe breaks outside the containment with the RIS [SIS] in RRA [RHR] mode DESIGN BASIS The EVU [CHRS] design is based on an assumed thermal power of 4,500 MWth. The EVU [CHRS] is designed for the most conservative conditions of decay heat and IRWST temperature, irrespective of the system operating conditions (RRC-A, RRC-B and PCC-4) and the SRU [ultimate heat sink] (see Chapter I.1.6). Redundancy Application of the single failure criterion is not required as the EVU [CHRS] is an F2 classified system. However, the EVU [CHRS] comprises two separate trains so that the long-term failure of a train does not prevent the system from fulfilling its function. Long-term reparability It is possible to carry out long-term maintenance operations on the main system pumps and heat exchangers following a severe accident. Additional design requirements - Spray nozzles must be protected from blocking. - The main pumps must be able to operate with water containing small particles; they must remain operational over long periods of time and be leaktight. - All sensitive parts (seals, flanges, etc.) must be able to withstand high irradiation (Chapter C.7) EQUIPMENT DESCRIPTION AND CHARACTERISTICS Description The EVU [CHRS] consists of two trains (see F.2.7 FIG 1), each one including: 1) A main system with: a suction line from the IRWST using a dedicated filter for the EVU [CHRS] belonging to the RIS [SIS],

6 PAGE : 6 / 16 a pump and a heat exchanger. The heat exchanger, used to remove the decay heat from the containment, is supplied by a dedicated intermediate cooling system, a spray system (consisting of a ring equipped with spray nozzles) to reduce the pressure and the temperature inside the containment, a passive flooding system located in a compartment separate from the spreading compartment and the IRWST. This system includes a flooding valve maintained closed by a system of cables. During a core meltdown, the corium melts the cable(s) and the valve opens under the pressure of the water, a corium spreading compartment active flooding line (for long-term severe accident management), a cooling system for the foundation raft and the corium located below the spreading compartment layer of sacrificial concrete, ensuring that the water is poured from above into the spreading compartment. The cooling system for the foundation raft structure and corium is connected to the IRWST and to the active flooding lines via the flooding valves, a line dedicated to unclogging the sump filters. This line from an EVU [CHRS] train returns water into the sumps of the two EVU [CHRS] trains. It therefore enables the suction filter from the other EVU [CHRS] train to be unclogged in "crossed" unclogging mode ("direct" unclogging is not effective in this configuration see Chapter F.3.2). The line is also used as a test line. a second unclogging line which is connected between the RIS [SIS] and EVU [CHRS] systems. The water is drawn from an RIS [SIS] sump and discharged into an EVU [CHRS] sump. This line allows an EVU [CHRS] filter to be unclogged in "direct" mode (diversification from the "crossed" unclogging mode see Chapter F.3.2). A connection to the RCV [CVCS] on the suction line of the two trains, and to the discharge nozzle, or on the unclogging line of train 2.

7 PAGE : 7 / 16 2) An intermediate cooling system consisting of: a pump used to supply the EVU [CHRS] main system heat exchanger and, for one train only, to supply the heat exchanger of the third PTR [FPCS] train, a heat exchanger supplied by the EVU [CHRS] dedicated cooling system (SRU [ultimate heat sink]), an expansion tank maintained pressurised by dedicated means and an intermediate system feedwater supply system to meet makeup water requirements, 3) A dedicated cooling system, the SRU [ultimate heat sink] (see Chapter I.2.6) OPERATING CONDITIONS Normal operation When the unit is in normal operation, the EVU system [CHRS] is not in service: - the pumps are shut down, - the flooding valves are closed, - the containment isolation valves are closed, - the intermediate cooling systems are pressurised. However, the third train of the PTR [FPCS] may be started up in the case of non-availability of a main PTR [FPCS] train during preventive maintenance of the PTR [FPCS] or its support systems. The SRU [ultimate heat sink] and the intermediate system for the EVU [CHRS] train 1 are in service when the third PTR [FPCS] train is started up Severe accidents The system is designed to operate in the event of severe accidents with core meltdown (RRC-B). The safety injection system is (or was) out of service. Emergency plant cooldown diesel generator sets are available in the event of station blackout. Other emergency plant auxiliaries (RRI [CCWS] and SEC [ESWS] Systems, emergency power supply) are not necessary. Passive flooding of the corium

8 PAGE : 8 / 16 The arrival of corium in the spreading compartment melts the cables connected to the flooding valves. The cables therefore no longer maintain the flooding valves in their closed position. The flooding valves are located in a separate compartment from the spreading compartment and the IRWST. These valves open under the static pressure of the water. The water from the IRWST circulates through the discharge channel, which is now open, into the cooling channels in the foundation raft. When these channels are full, the water pours from above onto the corium and the latter is flooded (see Chapter F.2.6). Spraying On contact with the corium, the water flowing from the IRWST boils and the corium is cooled. The steam production causes the containment pressure and temperature to increase. 12 hours after the start of a severe accident, if necessary, the operator starts up the one or both trains to maintain the containment pressure and temperature within design limits. The EVU [CHRS] may be started up before the end of the 12-hour grace period. Startup is manual and the decision to start the EVU [CHRS] is based mainly on a pressure criterion. Water is drawn from the IRWST and is cooled in the heat exchangers before being sprayed into the containment from the reactor building dome. Once the pressure has dropped below its long-term nominal limit (2 bar) and after at least 15 days if MOX fuel is used (10 days with UO 2 fuel), a single train is enough to maintain the pressure below 2 bar. Furthermore, when spray is no longer needed to maintain a low containment pressure, corium cooling may also be provided by the active flooding line: the water heated by the corium returns to the IRWST by overflowing from the spreading compartment RRC-A accident The EVU [CHRS] is also required to operate in RRC-A pipe breaks with loss of the ISBP [LHSI]. In this case, the EVU [CHRS] is used to ensure decay heat removal via the IRWST. This is the only RRC-A accident requiring the EVU [CHRS] to be operated PCC-4 accident The EVU system [CHRS] is also required to operate during certain PCC-4 pipe breaks with the RIS [SIS] in RRA [RHR] mode. In this case, the EVU [CHRS] is used to remove the decay heat via the IRWST PRELIMINARY SAFETY ANALYSIS Compliance with the regulations To follow. - Official documents, laws, orders and decrees

9 PAGE : 9 / 16 - Basic Safety Rules Not applicable. - Technical guidelines To meet the requirements of Technical Guidelines listed in section E.2.3.2: Removal of the containment heat without venting, the EVU [CHRS] design features are as follows: Potential leaks from the system During a severe accident, contaminated fluid circulates in the EVU [CHRS] main systems. The following precautions are taken to limit the doses outside containment: 1) The EVU [CHRS] main system components outside containment are classified in accordance with the classification presented in Chapter C.2. 2) The main system equipment located outside containment is leaktight: - bellows seal valves or leakoff connection valves, - tubular heat exchangers, - pump with double mechanical seals with an injection system at the seals to ensure the leaktightness. 3) Sensors are placed on the EVU [CHRS] main system to rapidly detect leaks and reduce the risk of leaks. 4) Appropriate instrumentation is installed (activity, dose level, water level). 5) The EVU [CHRS] main system components located outside containment (valves, penetrations, pumps, heat exchangers, etc.) are installed in dedicated compartments with specific protection (air lock, thick walls, etc.) 6) Filtered ventilation before discharge into the stack enables dedicated rooms to be isolated: At the same time as starting up the EVU [CHRS], the air supply to the EVU [CHRS] compartments is isolated by leaktight dampers. If the EVU [CHRS] is started up, air from the EVU [CHRS] rooms is extracted and filtered via DWL [CSBVS] iodine filtering system. This maintains a constant negative pressure and prevents the contamination from spreading. The exhausted air passes through high efficiency filters and iodine traps before being released into the stack. 7) Each EVU [CHRS] train may be isolated if a leak is detected in its room by activity sensors or by water level sensors in the room.

10 PAGE : 10 / 16 8) The pressure of the EVU [CHRS] dedicated intermediate cooling system is greater than the operating pressure of the EVU [CHRS] main system. This ensures the absence of leaks from the main system into the cooling system, via the main heat exchanger in the event of a tube rupture in the latter. This pressurisation is maintained during normal operation to ensure the availability of the EVU [CHRS] system if demanded. Also, a dedicated system enables the water inventory to be maintained (small leaks) in the cooling system without having to depressurise the system. 9) Detection means are provided to enable the dedicated intermediate cooling system to be isolated in the event of a leak in the main heat exchanger (frequent water makeup, low level in the tank). 10) Given that a single isolation valve exists on each of the lines between the IRWST and a main EVU [CHRS] pump, each isolation valve (outside containment) is designed with a special leaktight device and the section of the pipe between the IRWST and the valve is contained in a leaktight sheath (with double seals) thus offering a double anti-leak penetration barrier. Common causes of failure of the EVU [CHRS] with other systems The common causes of potential failure for the EVU [CHRS] and RIS [SIS] functions may include: - loss of the RIS [SIS] IRWST (following a loss of water or blockage of the water intake channels), - loss of common auxiliary functions (cooling water, power supply), The methods implemented to eliminate or limit the consequences of these common causes are described below: - Loss of water from the IRWST: The IRWST is lined to protect the concrete against the permanent presence of water during the reactor life. The liner is not required to ensure the leaktightness and even if it is damaged, there are no consequences on the correct operation of the IRWST. To prevent the possible loss of water due to the presence of a leak in a pipe connected to the IRWST, any train from the safety injection system in which water circulates outside the containment is isolated (with an F1A classified isolation) if a leak indication appears outside the containment (via water level and/or pressure measurement in the RIS [SIS] pump rooms). - Clogging of the water intake channels in the IRWST: Provisions are made to prevent the sumps from blocking: - provision of suction protection via filters, - use of suitable thermal insulation (type of components), - use of suitable devices for retaining insulation and other materials. Also, additional provisions are made to prevent clogging; in particular: - separate suction lines are used for the RIS [SIS] and the EVU [CHRS]

11 PAGE : 11 / 16 - there is geographical separation of the sumps used by the RIS [SIS] and the EVU [CHRS] - an EVU [CHRS] filter back-flushing system (counter-current water injection inside the filters) is employed. This system enables these filters to be unclogged if blocked. A dedicated unclogging line exists for each EVU [CHRS] train (see Chapters C.1 and F.3.2 ). - Loss of common auxiliary functions: The dedicated cooling systems and the power supply by the emergency plant diesel generator sets have been implemented to improve the system efficiency and to meet the objectives in respect of probabilistic safety analysis. Long-term corium stabilisation in the spreading compartment After the flooding valves have passively opened, the heat extracted by natural circulation in the cooling channels is sufficient to ensure corium stabilisation, even over the long-term. In the long term, the EVU [CHRS] also facilitates active cooling by supplying the recovery tank with cold water Prevention of spray nozzle blockage Screen filters with adequate diameters are located upstream of the IRWST suction lines. - Specific EPR documents Not applicable Compliance with the functional criteria Safety function a) is carried out by cooling the water from the IRWST via the EVU [CHRS] main heat exchanger which is cooled using a dedicated intermediate cooling system. The intermediate cooling system is cooled in turn by the SRU [ultimate heat sink]. An unclogging system reduces the risk of the filters blocking. Safety function a ) is carried out by using the PTR/EVU [FPCS/[CHRS] heat exchanger which is cooled by the EVU [CHRS] intermediate cooling system (train 1), itself cooled by the SRU system [ultimate heat sink]. Safety function b) is carried out by drawing cold water from the IRWST and spraying it through spray rings at the top of the containment. The spray water causes the containment atmospheric steam to be cooled and condensed. The condensate falls by gravity into the IRWST. The condensed water is recirculated through heat exchangers and returned to the spray nozzles. The decay heat is transferred to the containment atmosphere by boiling in the corium recovery area. The boiled water is replaced by water from the IRWST. Safety function c) is carried out by opening the dedicated flooding valves which connect the IRWST and the spreading compartment through the foundation raft cooling system. The flooding valves are opened passively when the corium melts the cables in the spreading compartment, and the water flows in under gravity. Over the long term, when spraying is no longer necessary, the EVU [CHRS] can continue to provide active corium cooling (subcooled water heat removal)

12 PAGE : 12 / 16 Safety function d) is carried out by the foundation raft cooling system located below the spreading compartment layer of sacrificial concrete. The foundation raft cooling system is supplied passively by the natural circulation of water from the IRWST when the flooding valves are opened. It may be supplied actively during long-term accident management. Safety function e) is carried out by the EVU [CHRS] containment isolation valves and the IRWST double seal valves (see Chapter F.3.2) during accidents which do not require the EVU [CHRS] to operate. Safety function f) is carried out by the robust mechanical design of the EVU [CHRS] main system. During an accident requiring its operation, the containment function is provided by the parts of the EVU [CHRS] located outside containment Compliance with the design requirements See within Sub-chapter F Safety classifications The EVU system [CHRS] is designed in accordance with the safety classification principles presented in Chapter C Single failure criterion Two containment isolation valves are installed on each line crossing the containment to meet the single failure criterion (for isolating the containment during an accident that does not require the EVU [CHRS] to be operated). Although application of the single failure criterion is not required for the EVU [CHRS], the EVU [CHRS] system consists of two separate trains, so that long-term failure of one train does not prevent the system from operating Qualification The part of the EVU [CHRS] that performs F1 or F2 classified functions is designed in accordance with that presented in chapter C Instrumentation and control The EVU system [CHRS] mechanical, electrical and instrumentation and control classifications are defined in accordance with the classification principles presented in chapter C Emergency power supplies Although not required for non-f1 function elements, the EVU system [CHRS] may be powered by emergency power supplies (emergency plant cooldown diesel generator sets).

13 PAGE : 13 / Hazards Internal hazards Summary tables of the hazards taken into account Protection required in principle General protection Specific protection introduced in the system design Pipe ruptures - - For the internal hazards Tank, pump and valve - - that may result from an ruptures RRC-A accident (small Internal projectiles - - break APRP [LOCA] with Dropped load - - ISBP [LHSI] loss) and from Internal explosion - - an RRC-B accident. Fire - - Internal flooding - - External hazards Protection required in principle General protection Specific protection introduced in the system design Earthquake Yes Location in the BAS [safeguard buildings] and BR [reactor building] Aircraft crash No - - External No - - explosion External Yes Location in the BAS [safeguard - flooding buildings] and BR [reactor building] Snow and Yes Location in the BAS [safeguard - wind buildings] and BR [reactor building] Extreme cold Yes Location in the BAS [safeguard - buildings] and BR [reactor building] Seismic design for the entire system Other requirements This system is taken into account in the demonstration of the practical elimination of the containment bypass risk (see Chapter R.1).

14 PAGE : 14 / 16 Tests 7.6. TESTS, INSPECTION AND MAINTENANCE The EVU [CHRS] is designed to allow periodic tests to be carried out that aim to ensure: - the structural integrity and leaktightness of equipment - the availability of the systems and active components - the availability of the entire system in conditions that are as close as possible to design conditions; all the operational sequences to activate the system are carried out, including switching the normal power supplies to emergency power supplies and operation of the dedicated cooling system. Preventive maintenance Preventive maintenance is possible during plant operation. Long-term maintenance Long-term maintenance is possible following a severe accident. If maintenance takes place on the main system pumps and heat exchangers, then additional equipment may be connected to the system, allowing the volume of water contained in the system to be directly injected into the BR [reactor building] and the part of the system affected by the maintenance to be decontaminated FLOW DIAGRAMS See F.2.7 FIG 1.

15 FIGURE : 1 PAGE :15 / 16 F.2.7 FIG 1: EVU [CHRS] FUNCTIONAL FLOW DIAGRAM

16 FIGURE : 1 PAGE :16 / FIG 1: EVU [CHRS] FUNCTIONAL FLOW DIAGRAM

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS. A high-capacity EBA system [CSVS] [main purge]

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS. A high-capacity EBA system [CSVS] [main purge] PAGE : 1 / 9 5. CONTAINMENT PURGE (EBA [CSVS]) The Reactor Building purge system comprises the following: A high-capacity EBA system [CSVS] [main purge] A low-capacity EBA system [CSVS] [mini-purge] 5.1.

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER P: REFERENCE OPERATING CONDITION STUDIES (PCC)

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER P: REFERENCE OPERATING CONDITION STUDIES (PCC) PAGE : 1 / 11 1. PASSIVE SINGLE FAILURE ANALYSIS The aim of the accident analysis in Chapter P is to demonstrate that the safety objectives have been fully achieved, despite the most adverse single failure.

More information

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS 2. VOLUME AND CHEMICAL CONTROL (RCV [CVCS])

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER I: AUXILIARY SYSTEMS 2. VOLUME AND CHEMICAL CONTROL (RCV [CVCS]) PAGE : 1 / 16 2. VOLUME AND CHEMICAL CONTROL (RCV [CVCS]) 2.0. SAFETY REQUIREMENTS 2.0.1. Safety functions 2.0.1.1. Control of reactivity In normal operation, the RCV [CVCS] regulates and adjusts (jointly

More information

UKEPR Issue 04

UKEPR Issue 04 Title: PCSR Sub-chapter 6.8 Main steam relief train system - VDA [MSRT] Total number of pages: 16 Page No.: I / III Chapter Pilot: M. LACHAISE Name/Initials Date 25-06-2012 Approved for EDF by: A. PETIT

More information

DISTRIBUTION LIST. Preliminary Safety Report Chapter 7 Safety Systems UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF

DISTRIBUTION LIST. Preliminary Safety Report Chapter 7 Safety Systems UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF Rev: 000 Page: 2 / 82 DISTRIBUTION LIST Recipients GNS Executive GNS all staff Cross Box GNS and BRB all staff CGN EDF Regulators Public Rev: 000 Page: 3 / 82 SENSITIVE INFORMATION RECORD Section Number

More information

CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION

CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION PAGE : 1 / 8 CONTENTS OF THE PCSR CHAPTER 1 - INTRODUCTION AND GENERAL DESCRIPTION SUB-CHAPTER 1.1 INTRODUCTION SUB-CHAPTER 1.2 GENERAL DESCRIPTION OF THE UNIT SUB-CHAPTER 1.3 COMPARISON WITH REACTORS

More information

UKEPR Issue 04

UKEPR Issue 04 Title: PCSR Sub-chapter 14.2 Analysis of the Passive Single Failure Total number of pages: 53 Page No.: I / IV Chapter Pilot: F. CERRU Name/Initials Date 12-11-2012 Approved for EDF by: A. MARECHAL Approved

More information

IAEA SAFETY STANDARDS for protecting people and the environment

IAEA SAFETY STANDARDS for protecting people and the environment Date: 2016-08-31 IAEA SAFETY STANDARDS for protecting people and the environment STATUS: STEP 8a For Submission to Member States DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

More information

IAEA SAFETY STANDARDS for protecting people and the environment

IAEA SAFETY STANDARDS for protecting people and the environment IAEA SAFETY STANDARDS for protecting people and the environment DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS DRAFT SAFETY GUIDE DS 482 STATUS: STEP 11 Submission to Review

More information

NOT PROTECTIVELY MARKED. REDACTED PUBLIC VERSION HPC PCSR3 Sub-chapter 16.2 PSA Results and Discussion NNB GENERATION COMPANY (HPC) LTD

NOT PROTECTIVELY MARKED. REDACTED PUBLIC VERSION HPC PCSR3 Sub-chapter 16.2 PSA Results and Discussion NNB GENERATION COMPANY (HPC) LTD HPC PCSR3 Sub-chapter 16.2 PSA Results and Discussion Page No.: i / iii NNB GENERATION COMPANY (HPC) LTD HPC PCSR3: CHAPTER 16 PROBABILISTIC SAFETY ASSESSMENT SUB-CHAPTER 16.2 PSA RESULTS AND DISCUSSION

More information

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY STANDARDS SERIES No. NS-G-1.10 DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY GUIDE DS 482 2016-04-20 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, C-41 (May 13)

More information

Engineering & Projects Organization

Engineering & Projects Organization Engineering & Projects Organization Note from : Date: 11/09/2012 To : Copy : N : PEPR-F.10.1665 Rev. 3 Subject: EPR UK - GDA GDA issue FS04 Single Tube Steam Generator Tube Rupture Analysis for the UK

More information

OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply

OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply OIL SUPPLY SYSTEMS ABOVE 45kW OUTPUT 4.1 Oil Supply 4.1.1 General The primary function of a system for handling fuel oil is to transfer oil from the storage tank to the oil burner at specified conditions

More information

SAFETY APPROACHES. The practical elimination approach of accident situations for water-cooled nuclear power reactors

SAFETY APPROACHES. The practical elimination approach of accident situations for water-cooled nuclear power reactors SAFETY APPROACHES The practical elimination approach of accident situations for water-cooled nuclear power reactors 2017 SUMMARY The implementation of the defence in depth principle and current regulations

More information

IEM on Severe Accident Management in the light of the accident at the Fukushima Daïchi NPP

IEM on Severe Accident Management in the light of the accident at the Fukushima Daïchi NPP IEM on Severe Accident Management in the light of the accident at the Fukushima Daïchi NPP Progress, challenges and perspectives in the field of design features, as regards SAMG IAEA, March 2014 Introduction

More information

Review and Assessment of Engineering Factors

Review and Assessment of Engineering Factors Review and Assessment of Engineering Factors 2013 Learning Objectives After going through this presentation the participants are expected to be familiar with: Engineering factors as follows; Defense in

More information

HTR Systems and Components

HTR Systems and Components IAEA Course on HTR Technology Beijing, 22-26.October 2012 HTR Systems and Components Dr. Gerd Brinkmann Dieter Vanvor AREVA NP GMBH Henry-Dunant-Strasse 50 91058 Erlangen phone +49 9131 900 96840/95821

More information

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS

DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY STANDARDS SERIES No. NS-G-1.10 DESIGN OF REACTOR CONTAINMENT STRUCTURE AND SYSTEMS FOR NUCLEAR POWER PLANTS SAFETY GUIDE DS 482 2016-04-20 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, C-41 (May 13)

More information

Safety and efficiency go hand in hand at MVM Paks NPP

Safety and efficiency go hand in hand at MVM Paks NPP International Forum Atomexpo 2018 Safety and efficiency go hand in hand at MVM Paks NPP József Elter MVM Paks Nuclear Power Plant Ltd. Hungary Start up Four of the VVER-440/V213 unit Power units up-rate

More information

Digester Processes. 1. Raw Sludge Pumping System

Digester Processes. 1. Raw Sludge Pumping System Digester Processes 1. Raw Sludge Pumping System Removes accumulated sludge from the primary clarifiers, pumped through 1 of 2 pipes either 150 or 200mm in diameter (Fig. 1.1). Fig 1.1 Pipes feeding Digesters

More information

STEP 3 INTERNAL HAZARDS ASSESSMENT OF THE EDF and AREVA UK EPR DIVISION 6 ASSESSMENT REPORT NO. AR 09/026-P

STEP 3 INTERNAL HAZARDS ASSESSMENT OF THE EDF and AREVA UK EPR DIVISION 6 ASSESSMENT REPORT NO. AR 09/026-P Health and Safety Executive NUCLEAR DIRECTORATE GENERIC DESIGN ASSESSMENT NEW CIVIL REACTOR BUILD STEP 3 INTERNAL HAZARDS ASSESSMENT OF THE EDF and AREVA UK EPR DIVISION 6 ASSESSMENT REPORT NO. AR 09/026-P

More information

Pressure Equipment Directive (PED) 97/23/EC Page 033 of 124

Pressure Equipment Directive (PED) 97/23/EC Page 033 of 124 Pressure Equipment Directive (PED) 97/23/EC Page 033 of 124 13.7 Pressure Equipment Directive (PED) 97/23/EC 1 The Pressure Equipment Directive (PED) 97/23/EC applies to the design, manufacturing and conformity

More information

Custom-Engineered Solutions for the Nuclear Power Industry from SOR

Custom-Engineered Solutions for the Nuclear Power Industry from SOR Custom-Engineered Solutions for the Nuclear Power Industry from SOR As the world s aging nuclear power plants continue to be challenged with maintenance and Instrumentation Solutions for the Nuclear Power

More information

Nuclear safety Lecture 4. The accident of the TMI-2 (1979)

Nuclear safety Lecture 4. The accident of the TMI-2 (1979) Nuclear safety Lecture 4. The accident of the TMI-2 (1979) Ildikó Boros BME NTI 27 February 2017 The China Syndrome Opening: 16 March 1979 Story: the operator of the Ventana NPP tries to hide the safety

More information

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

AP1000 European 19. Probabilistic Risk Assessment Design Control Document APPENDIX 19E SHUTDOWN EVALUATION 19E.1 Introduction Westinghouse has considered shutdown operations in the design of the A1000 nuclear power plant. The AP1000 defense-in-depth design philosophy to provide

More information

An Improved Modeling Method for ISLOCA for RI-ISI and Other Risk Informed Applications

An Improved Modeling Method for ISLOCA for RI-ISI and Other Risk Informed Applications An Improved odeling ethod for ISLOCA for RI-ISI and Other Risk Informed Applications Young G. Jo 1) 1) Southern Nuclear Operating Company, Birmingham, AL, USA ABSTRACT In this study, an improved modeling

More information

NORMAL OPERATING PROCEDURES Operating Parameter Information

NORMAL OPERATING PROCEDURES Operating Parameter Information Operating Parameter Information Each operator performing the normal operating procedures (routine checks) of the facility should be familiar with the current normal operating parameters of all systems

More information

ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS

ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS Annex 3, page 2 ANNEX AMENDMENTS TO THE INTERNATIONAL CODE FOR FIRE SAFETY SYSTEMS (FSS CODE) CHAPTER 15 INERT GAS SYSTEMS The text of existing chapter 15 is replaced by the following: "1 Application This

More information

Periodical surveys of cargo installations on ships carrying liquefied gases in bulk

Periodical surveys of cargo installations on ships carrying liquefied gases in bulk (June 1999) (Rev.1 Mar 2006) (Rev.2 May 2007) (Rev.3 Mar 2010) (Corr.1 Feb 2011) (Rev.4 Oct 2013) Periodical surveys of cargo installations on ships carrying liquefied gases in bulk 1 General 1.1 Scope

More information

EMERGENCY CORE COOLING SYSTEM SIMPLIFICATION

EMERGENCY CORE COOLING SYSTEM SIMPLIFICATION EMERGENCY CORE COOLING SYSTEM SIMPLIFICATION XA9846601 R.S. HART Sheridan Park Research Community, Atomic Energy of Canada Ltd, Mississauga, Ontario D.B. RHODES Chalk River Laboratories, Atomic Energy

More information

Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design

Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design Considerations for the Practical Application of the Safety Requirements for Nuclear Power Plant Design Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects

More information

LP Separator Level Control by Variable Speed and Multi Stage Brine Reinjection Pumps at Kawerau and Nga Awa Purua Geothermal Projects, New Zealand

LP Separator Level Control by Variable Speed and Multi Stage Brine Reinjection Pumps at Kawerau and Nga Awa Purua Geothermal Projects, New Zealand Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 LP Separator Level Control by Variable Speed and Multi Stage Brine Reinjection Pumps at Kawerau and Nga Awa Purua Geothermal

More information

TSS21 Sealed Thermostatic Steam Tracer Trap

TSS21 Sealed Thermostatic Steam Tracer Trap 1255050/4 IM-P125-10 ST Issue 4 TSS21 Sealed Thermostatic Steam Tracer Trap Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4. Commissioning

More information

Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities

Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities Complementarity between Safety and Physical Protection in the Protection against Acts of Sabotage of Nuclear Facilities Robert Venot Institut de Radioprotection et de Sûreté Nucléaire 77-83, avenue du

More information

The «practical elimination» approach for pressurized water reactors

The «practical elimination» approach for pressurized water reactors The «practical elimination» approach for pressurized water reactors V. TIBERI K.HERVIOU International Conference on Topical Issues in Nuclear Installation Safety: Safety Demonstration of Advanced Water

More information

The Nitrogen Threat. The simple answer to a serious problem. 1. Why nitrogen is a risky threat to our reactors? 2. Current strategies to deal with it.

The Nitrogen Threat. The simple answer to a serious problem. 1. Why nitrogen is a risky threat to our reactors? 2. Current strategies to deal with it. International Conference on Topical Issues in Nuclear Installation Safety: Safety Demonstration of Advanced Water Cooled Nuclear Power Plants. The simple answer to a serious problem Vienna. 6 9 June 2017

More information

ASVAD THE SIMPLE ANSWER TO A SERIOUS PROBLEM. Automatic Safety Valve for Accumulator Depressurization. (p.p.)

ASVAD THE SIMPLE ANSWER TO A SERIOUS PROBLEM. Automatic Safety Valve for Accumulator Depressurization. (p.p.) ASVAD Automatic Safety Valve for Accumulator Depressurization (p.p.) THE SIMPLE ANSWER TO A SERIOUS PROBLEM International Experts Meeting on Strengthening Research and Development Effectiveness in the

More information

Proficiency Module Syllabus. P601 - Thorough Examination and Testing of Local Exhaust Ventilation Systems

Proficiency Module Syllabus. P601 - Thorough Examination and Testing of Local Exhaust Ventilation Systems Proficiency Module Syllabus P601 - Thorough Examination and Testing of Local Exhaust Ventilation Systems Aim To provide the methodology, theoretical and practical knowledge to enable candidates to: Understand

More information

DISTRIBUTION LIST. Preliminary Safety Report Chapter 19 Internal Hazards UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF

DISTRIBUTION LIST. Preliminary Safety Report Chapter 19 Internal Hazards UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF Rev: 000 Page: 2 / 20 DISTRIBUTION LIST Recipients GNS Executive GNS all staff Cross Box GNS and BRB all staff CGN EDF Regulators Public Rev: 000 Page: 3 / 20 SENSITIVE INFORMATION RECORD Section Number

More information

Spirax Compact FREME Flash Recovery Energy Management Equipment

Spirax Compact FREME Flash Recovery Energy Management Equipment IM-UK-cFREME UK Issue 1 Spirax Compact FREME Flash Recovery Energy Management Equipment Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4.

More information

Assessment of Internal Hazards

Assessment of Internal Hazards Joint ICTP- Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety Trieste, 12-23 October 2015 Assessment of Internal Hazards Javier Yllera Department

More information

English. Introduction. Safety Instructions. All Products. Inspection and Maintenance Schedules. Parts Ordering. Specifications WARNING WARNING

English. Introduction. Safety Instructions. All Products. Inspection and Maintenance Schedules. Parts Ordering. Specifications WARNING WARNING Contents All Products... Gb-1 Control Valves... Gb-2 Control Valve Actuators... Gb-3 Regulators... Gb-3 Relief Valves... Gb-4 Instruments, Switches, and Accessories... Gb-4 Products Covered by Battery

More information

REDUNDANT PROPULSION SHIPS RULES FOR CLASSIFICATION OF NEWBUILDINGS DET NORSKE VERITAS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2

REDUNDANT PROPULSION SHIPS RULES FOR CLASSIFICATION OF NEWBUILDINGS DET NORSKE VERITAS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2 RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS SPECIAL EQUIPMENT AND SYSTEMS ADDITIONAL CLASS PART 6 CHAPTER 2 REDUNDANT PROPULSION JANUARY 1996 CONTENTS PAGE Sec. 1 General Requirements... 5 Sec. 2 System

More information

IC67 - Pre-Instructional Survey

IC67 - Pre-Instructional Survey IC67 - Pre-Instructional Survey 1. What does the term code refer to in the installation of power plant piping? a. National welders code b. Fire protection code c. ASME Boiler and Pressure Vessel Code Section

More information

Safety Classification of Structures, Systems and Components in Nuclear Power Plants

Safety Classification of Structures, Systems and Components in Nuclear Power Plants DS367 Draft 5.1 IAEA SAFETY STANDARDS for protecting people and the environment Date: 04/11/2008 Status: for Member States comments Reviewed in NS-SSCS Please submit your comments by 20 March 2009 Safety

More information

UKEPR Issue 01

UKEPR Issue 01 Title: PCSR Appendix 14C Analysis of single failure for main steam line break Total number of pages: 93 Page No.: I / IV Chapter Pilot: F. CERRU Name/Initials Date 26-07-2012 Approved for EDF by: A. PETIT

More information

SAMPLING SYSTEMS FOR LIQUIDS AND GASES FOR ALL TYPES OF APPLICATIONS

SAMPLING SYSTEMS FOR LIQUIDS AND GASES FOR ALL TYPES OF APPLICATIONS GLOBAL SOLUTIONS IN FLOW SYSTEMS INSTRUMENTATION AND AUTOMATION SAMPLING SYSTEMS FOR LIQUIDS AND GASES FOR ALL TYPES OF APPLICATIONS Process sampling systems In the current chemical and petrochemical industry,

More information

Installation and commissioning instructions 255 series and 256 series

Installation and commissioning instructions 255 series and 256 series Installation and commissioning instructions 255 series and 256 series Table of contents 1 General information... 3 1.1 About these instructions... 3 1.2 About this product... 3 1.3 Appropriate usage...

More information

OPERATING PROCEDURES

OPERATING PROCEDURES OPERATING PROCEDURES 1.0 Purpose This element identifies Petsec s Operating Procedures for its Safety and Environmental Management System (SEMS) Program; it applies to all Petsec operations. Petsec is

More information

SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 440/270 REACTOR

SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 440/270 REACTOR PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 216, 2, p. 57 62 P h y s i c s SENSITIVITY ANALYSIS OF THE FIRST CIRCUIT OF COLD CHANNEL PIPELINE RUPTURE SIZE FOR WWER 44/27

More information

TEPCO s Safety Assurance Philosophy on Nuclear Power Generation Plants

TEPCO s Safety Assurance Philosophy on Nuclear Power Generation Plants TEPCO s Safety Assurance Philosophy on Nuclear Power Generation Plants January 25, 2013 Tokyo Electric Power Company, Inc. This English translation has been prepared with the intention of creating an accurate

More information

CSO/STORMWATER MANAGEMENT. HYDROVEX HHV-E Vortex Driven Regulator

CSO/STORMWATER MANAGEMENT. HYDROVEX HHV-E Vortex Driven Regulator CSO/STORMWATER MANAGEMENT HYDROVEX HHV-E Vortex Driven Regulator HYDROVEX HHV-E VORTEX DRIVEN REGULATOR APPLICATION The hydro electronic HYDROVEX HHV driven regulator, type E is specially designed for

More information

GUIDE YVL 3.7 / 26 Se p t e m b e r 2008

GUIDE YVL 3.7 / 26 Se p t e m b e r 2008 GUIDE YVL 3.7 / 26 Se p t e m b e r 2008 Pressure equipment of nuclear facilities Commissioning inspection 1 Ge n e r a l 3 2 Contents of the commissioning inspection 3 3 First phase of the commissioning

More information

Cold-acclimatised pipelines

Cold-acclimatised pipelines Cold-acclimatised pipelines Maintaining flow and pressure when the temperature is low can present serious but manageable challenges. Field instrumentation can help, but it must be deployed and maintained

More information

SAFETY MANUAL FOR FLAMMABLE PRODUCT TRANSFER

SAFETY MANUAL FOR FLAMMABLE PRODUCT TRANSFER SAFETY MANUAL FOR FLAMMABLE PRODUCT TRANSFER SUPPLIMENT TO eom IMPORTANT READ THIS MANUAL BEFORE PRODUCT INSTALLATION, OPERATION, INSPECTION & MAINTENANCE Tougher and more rigid guidelines are being established

More information

WATER TREATMENT SYSTEM OPERATION MANUAL

WATER TREATMENT SYSTEM OPERATION MANUAL WATER TREATMENT SYSTEM OPERATION MANUAL SYSTEM COMPONENTS A demonstration video of the system is available on our YouTube channel. You can view it by clicking on the following link. youtube.com/watch?v=mwlcfeliuzc

More information

Frequently Asked Questions Directive 056 Facilities Technical

Frequently Asked Questions Directive 056 Facilities Technical Frequently Asked Questions Directive 056 Facilities Technical October 2017 This document clarifies and supports some of the technical requirements related to Directive 056: Energy Development Applications

More information

Reclaim Basic Set Up

Reclaim Basic Set Up This purpose of the document is to simplify the set up and understand the Gas Services reclaim system functions. The Gas Services Reclaim Manual is to be used for reference, maintenance, and servicing.

More information

NUBIKI Nuclear Safety Research Institute, Budapest, Hungary

NUBIKI Nuclear Safety Research Institute, Budapest, Hungary System Reliability Analysis and Probabilistic Safety Assessment to Support the Design of a New Containment Cooling System for Severe Accident Management at NPP Paks Tamas Siklossy* a, Attila Bareith a,

More information

AIR-OPERATED DOUBLE DIAPHRAGM PUMP USER S MANUAL

AIR-OPERATED DOUBLE DIAPHRAGM PUMP USER S MANUAL 00, 0, 000 00, 000, 00 A. TECHNICAL INFORMATION Model 00 Inlet/Outlet " Air Inlet /" 0 / 000 /" /" 00 /" /" 000 /" /" 00 /" /" Flow Rate GPM/ 0LPM GPM/ 0LPM GPM/ LPM GPM/ LPM GPM/ 0LPM GPM/ 0LPM Maximum

More information

Spiratec ST14, ST16 and ST17 Sensor Chambers and sensors

Spiratec ST14, ST16 and ST17 Sensor Chambers and sensors 0862050/1 IM-P086-18 MI Issue 1 Spiratec ST14, ST16 and ST17 Sensor Chambers and sensors Installation and Maintenance Instructions 1. Safety Information 2. General product information 3. Installation 4.

More information

RESOLUTION MSC.397(95) (adopted on 11 June 2015) AMENDMENTS TO PART A OF THE SEAFARERS' TRAINING, CERTIFICATION AND WATCHKEEPING (STCW) CODE

RESOLUTION MSC.397(95) (adopted on 11 June 2015) AMENDMENTS TO PART A OF THE SEAFARERS' TRAINING, CERTIFICATION AND WATCHKEEPING (STCW) CODE RESOLUTION MSC.397(95) (adopted on 11 June 2015) THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) of the Convention on the International Maritime Organization concerning the functions of the Committee,

More information

MST21 Stainless Steel Balanced Pressure Thermostatic Steam Trap

MST21 Stainless Steel Balanced Pressure Thermostatic Steam Trap 1250650/6 IM-P125-07 ST Issue 6 MST21 Stainless Steel Balanced Pressure Thermostatic Steam Trap Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation

More information

Mechanical Seal Piping Plans

Mechanical Seal Piping Plans Mechanical Seal Piping Plans Single Seals plans 01, 02, 11, 13, 14, 21, 23, 31, 32, 41 Dual Seals plans 52, 53A, 53B, 53C, 54 Quench Seals plans 62, 65 Gas Seals plans 72, 74, 75, 76 Mechanical Seal Piping

More information

PASSENGER SHIPS Guidelines for preparation of Hull Structural Surveys

PASSENGER SHIPS Guidelines for preparation of Hull Structural Surveys (Feb 2010) PASSENGER SHIPS Guidelines for preparation of Hull Structural Surveys Contents 1 Introduction 2 Preparations for Survey 2.1 General 2.2 Conditions for survey 2.3 Access to structures 2.4 Survey

More information

TRI LOK SAFETY MANUAL TRI LOK TRIPLE OFFSET BUTTERFLY VALVE. The High Performance Company

TRI LOK SAFETY MANUAL TRI LOK TRIPLE OFFSET BUTTERFLY VALVE. The High Performance Company TRI LOK TRI LOK TRIPLE OFFSET BUTTERFLY VALVE SAFETY MANUAL The High Performance Company Table of Contents 1.0 Introduction...1 1.1 Terms and Abbreviations... 1 1.2 Acronyms... 1 1.3 Product Support...

More information

IAEA Training in Level 2 PSA MODULE 8: Coupling Source Terms to Probabilistic Event Analysis (CET end-state binning)

IAEA Training in Level 2 PSA MODULE 8: Coupling Source Terms to Probabilistic Event Analysis (CET end-state binning) IAEA Training in Level 2 PSA MODULE 8: Coupling Source Terms to Probabilistic Event Analysis (CET end-state binning) The Problem A probabilistic treatment of severe accident progression leads to numerous

More information

Pressure Automated Calibration Equipment

Pressure Automated Calibration Equipment GE Measurement & control Pressure Automated Calibration Equipment Safety Instructions and User Guide - K0447 PACE5000 PACE6000 K0447 Issue No. 9 1 10 1 PACE5000 1 2 3 4 5 PACE6000 2 6 7 8 3 4 5 6 7 8 9

More information

Integrated Coping Strategies for Beyond-Design-Basis External Events

Integrated Coping Strategies for Beyond-Design-Basis External Events IAEA IEM on SAM in the Light of the Fukushima Daiichi NPP, 17-20 March 2014, Vienna, Austria Integrated Coping Strategies for Beyond-Design-Basis External Events Jaewhan Kim and Kwang-Il Ahn KAERI Contents

More information

HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE

HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE HEALTH AND SAFETY EXECUTIVE HM NUCLEAR INSTALLATIONS INSPECTORATE New Reactor Generic Design Assessment (GDA) - Step 2 Preliminary Review Assessment of: Structural Integrity Aspects of AREVA/EdF EPR HM

More information

APPLICATION OF THE FAILURE MODES AND EFFECTS ANALYSIS TECHNIQUE TO THE EMERGENCY COOLING SYSTEM OF AN EXPERIMENTAL NUCLEAR POWER PLANT

APPLICATION OF THE FAILURE MODES AND EFFECTS ANALYSIS TECHNIQUE TO THE EMERGENCY COOLING SYSTEM OF AN EXPERIMENTAL NUCLEAR POWER PLANT 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 APPLICATION

More information

Extensive Damage Mitigation Guidelines (EDMG)

Extensive Damage Mitigation Guidelines (EDMG) Extensive Damage Mitigation Guidelines (EDMG) Roy Harter RLH Global Services Regional Workshop on Sharing Best Practices in Development and Implementation of Severe Accident Management Guidelines October

More information

Installation of Ballast Water Management Systems

Installation of Ballast Water Management Systems (Sept 2015) (Rev.1 May 2016) Installation of Ballast Water Management Systems 1. Application In addition to the requirements contained in BWM Convention (2004), the following requirements are applied to

More information

Workshop Information IAEA Workshop

Workshop Information IAEA Workshop IAEA Training Course on Safety Assessment of NPPs to Assist Decision Making Safety Assessment of General Design Aspects of NPPs (Part 2) Lecturer Lesson Lesson III III 1_2 1_2 Workshop Information IAEA

More information

-. 30ýv. Entergy ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL. 05/01101 Supplement Volume 2 of 2. (Sections 3.7 and 3.

-. 30ýv. Entergy ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL. 05/01101 Supplement Volume 2 of 2. (Sections 3.7 and 3. ARKANSAS NUCLEAR ONE - UNIT I IMPROVED TECHNICAL SPECIFICATIONS SUBMITTAL -. 30ýv May 1, 2001 05/01101 Supplement Volume 2 of 2 (Sections 3.7 and 3.8) Entergy MSSVs 3.7.1 3.7 PLANT SYSTEMS 3.7.1 Main Steam

More information

ECONORESS ELECTRONIC EPS & EPT - ENHANCED PRESSURISATION SET INSTALLATION OPERATION & MAINTENANCE DOCUMENTATION

ECONORESS ELECTRONIC EPS & EPT - ENHANCED PRESSURISATION SET INSTALLATION OPERATION & MAINTENANCE DOCUMENTATION ECONORESS ELECTRONIC EPS & EPT - ENHANCED PRESSURISATION SET INSTALLATION OPERATION & MAINTENANCE DOCUMENTATION OCT2010 STOKVIS ENERGY SYSTEMS 96R WALTON ROAD EAST MOLESEY SURREY KT8 0DL TEL: 020 87833050

More information

Regulatory requirements with respect to Spent Fuel Pool Cooling

Regulatory requirements with respect to Spent Fuel Pool Cooling Regulatory requirements with respect to Spent Fuel Pool Cooling Dr. Christoph Pistner Annual Meeting on Nuclear Technology Hamburg, 12.05.2016 Important Documents Safety Requirements for Nuclear Power

More information

GAS SYSTErv' At~t~ULUS OBJECTIVES: Approval Issue. <=> Page 3. <=> Pages 3-4. <=> Page 4. <=> Page 5. <=> Pages 6 7. <=> Pages 7-8.

GAS SYSTErv' At~t~ULUS OBJECTIVES: Approval Issue. <=> Page 3. <=> Pages 3-4. <=> Page 4. <=> Page 5. <=> Pages 6 7. <=> Pages 7-8. Approval Issue Module 14 Course 233 - Reaaor 8 Auxiliaries - Module 14 - Annulus Gas At~t~ULUS GAS SYSTErv' OBJECTIVES: After completing this module you will be able to: 14.1 State three important benefits

More information

Drum / cylinder handling

Drum / cylinder handling Page 1 of 8 Drum / cylinder handling This Technical Measures Document covers the storage and handling of toxic and flammable substances in drums and cylinders and refers to relevant codes of practice and

More information

Safety Standards. of the Nuclear Safety Standards Commission (KTA)

Safety Standards. of the Nuclear Safety Standards Commission (KTA) Safety Standards of the Nuclear Safety Standards Commission (KTA) KTA 3502 (2012-11) Accident Measuring Systems (Störfallinstrumentierung) If there is any doubt regarding the information contained in this

More information

MSC-P and MSC-N Manifolds for Steam Distribution and Condensate Collection

MSC-P and MSC-N Manifolds for Steam Distribution and Condensate Collection 1170850/1 IM-P117-36 ST Issue 1 MSC-P and MSC-N Manifolds for Steam Distribution and Condensate Collection Installation and Maintenance Instructions 1. Safety information 2. General product information

More information

CARTRIDGE FILTERS TECHNICAL MANUAL MT 080. Installation, commissioning and maintenance instructions. 08/02 Edition

CARTRIDGE FILTERS TECHNICAL MANUAL MT 080. Installation, commissioning and maintenance instructions. 08/02 Edition CARTRIDGE FILTERS TECHNICAL MANUAL MT 080 Installation, commissioning and maintenance instructions 08/02 Edition 1 2 CONTENTS 1.0 PAGE INTRODUCTION 1.1 MAIN FEATURES 1.2 OPERATION 1.3 CLOSING OF HEAD WITH

More information

Maintenance handbook

Maintenance handbook Maintenance handbook ontents HPU IDENTIFIATION SHEET... 4 1. MAINTENANE... 5 1.1 Filling level... 5 1.2 Fluid top-up... 5 1.3 Fluid replacing... 5 1.4 Fluid temperature control... 6 1.5 Functional control...

More information

HANDBOOK SAFETY DEVICES. Ed SAFETY DEVICES DS-ED 01/ ENG 1

HANDBOOK SAFETY DEVICES. Ed SAFETY DEVICES DS-ED 01/ ENG 1 HANDBOOK Ed. 2017 DS-ED 01/2017 - ENG 1 CHAPTER 9 BURSTING DISC DEVICES IN SERIES 3070 SCOPE Use: protection against possible overpressure of the apparatuses listed below, with regard to the operating

More information

Water Mist Systems Inspection, Testing, and Maintenance of Water Mist Systems

Water Mist Systems Inspection, Testing, and Maintenance of Water Mist Systems Water Mist Systems Inspection, Testing, and Maintenance of Water Mist Systems Name of Property: Address: Phone Number: Inspector: Contract No.: Date: This Report Covers: Monthly Quarterly Annual Other

More information

RECOMMENDED GOOD PRACTICE

RECOMMENDED GOOD PRACTICE RECOMMENDED GOOD PRACTICE EMERGENCY SHUTDOWN PROCEDURE (ESP) AND PROCEDURE FOR TESTING ESP SYSTEM FOR BLACK LIQUOR RECOVERY BOILERS THE BLACK LIQUOR RECOVERY BOILER ADVISORY COMMITTEE October 2009 Table

More information

Cycle Isolation Monitoring

Cycle Isolation Monitoring Cycle Isolation Monitoring True North Consulting Greg Alder Santee Cooper Leif Svensen Scientech Symposium 2009 January 14-15, 15, 2009 Clearwater Beach, Florida Introduction Generating plants often suffer

More information

Module No. # 01 Lecture No. # 6.2 HAZOP (continued)

Module No. # 01 Lecture No. # 6.2 HAZOP (continued) Health, Safety and Environmental Management in Petroleum and Offshore Engineering Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute Of Technology, Madras Module No. # 01

More information

553 Series.

553 Series. 38467.03 www.caleffi.com Pre-adjustable filling units Copyright 01 Caleffi 3 Series Function The automatic filling valve is a device consisting of a pressure reducing valve with compensating seat, visual

More information

Safety Standards. of the Nuclear Safety Standards Commission (KTA) Ventilation Systems in Nuclear Power Plants

Safety Standards. of the Nuclear Safety Standards Commission (KTA) Ventilation Systems in Nuclear Power Plants Safety Standards of the Nuclear Safety Standards Commission (KTA) KTA 3601 (11/2017) Ventilation Systems in Nuclear Power Plants (Lüftungstechnische Anlagen in Kernkraftwerken) The previous versions of

More information

QuickHeat TM Packaged Heat Exchanger Solutions

QuickHeat TM Packaged Heat Exchanger Solutions 4831999/1 IM-P483-03 CH Issue 1 QuickHeat TM Packaged Heat Exchanger Solutions Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation 4. Commissioning

More information

13. Evaporative Emission Control System

13. Evaporative Emission Control System EG-62 ENGINE 3MZ-FE ENGINE 13. Evaporative Emission Control System General The construction of the evaporative emission control system has been changed to comply with the LEV-II (Low Emission Vehicle-II)

More information

Office for Nuclear Regulation

Office for Nuclear Regulation Generic Design Assessment New Civil Reactor Build GDA Close-out for the EDF and AREVA UK EPR Reactor GDA Issue GI-UKEPR-FS-02 Diversity for Frequent Faults Assessment Report: ONR-GDA-AR-12-011 March 2013

More information

GSA POLICY ON LOCAL EXHAUST AND OTHER VENTILATION (FUME CUPBOARDS)

GSA POLICY ON LOCAL EXHAUST AND OTHER VENTILATION (FUME CUPBOARDS) GSA POLICY ON LOCAL EXHAUST AND OTHER VENTILATION (FUME CUPBOARDS) Local Exhaust Ventilation Inspection & Maintenance 1 LOCAL EXHAUST AND OTHER VENTILATION Contents 1. Introduction 2. Design specifications

More information

On-Stream Tightness Testing of Vacuum Process Installations

On-Stream Tightness Testing of Vacuum Process Installations ECNDT 2006 - Tu.2.6.3 On-Stream Tightness Testing of Vacuum Process Installations André de JONGE, Leak Detection Group, DCI Meettechniek B.V., Kapelle, The Netherlands DCI Meettechniek. -DCI was founded

More information

Safety Engineering - Hazard Identification Techniques - M. Jahoda

Safety Engineering - Hazard Identification Techniques - M. Jahoda Safety Engineering - Hazard Identification Techniques - M. Jahoda Hazard identification The risk management of a plant 2 Identification of the hazards involved in the operation of the plant, due to the

More information

Safety in Petroleum Industry

Safety in Petroleum Industry Chemical ( Industrial ) Disaster Management Conference, Bangalore 30 January 2014 Safety in Petroleum Industry Refineries and Petrochemical plants are highly energyintensive Handle highly inflammable and

More information

Mechanical Seal Piping Plans

Mechanical Seal Piping Plans Mechanical Seal Piping Plans Single Seals plans 01, 02, 03, 11, 13, 14, 21, 23, 31, 32, 41 Dual Seals plans 52, 53A, 53B, 53C, 54, 55 Quench Seals plans 62, 65A, 65B, 66A, 66B Gas Seals plans 72, 74, 75,

More information

Serie ECO 3F. Flanged back flow preventer with controllable reduced pressure zone. made in. Application fields. Protection

Serie ECO 3F. Flanged back flow preventer with controllable reduced pressure zone. made in. Application fields. Protection Flanged back flow preventer with controllable reduced pressure zone made in Application fields WATER FIRE FIGHTING DRINKING WATER 64 www.brandoni.it The ECO 3F flanged backflow preventers, which have a

More information

THE NITROGEN INJECTION THREAT IN PWR REACTORS

THE NITROGEN INJECTION THREAT IN PWR REACTORS THE NITROGEN INJECTION THREAT IN PWR REACTORS Weakness of current strategies & ASVAD, the new passive solution. Arnaldo Laborda Rami ASVAD INTL. SL (SPAIN) Tarragona (SPAIN) Email: alaborda@asvad-nuclear.com

More information