Part 1: Distillation and Analysis of an Unknown Alcohol Mixture

Size: px
Start display at page:

Download "Part 1: Distillation and Analysis of an Unknown Alcohol Mixture"

Transcription

1 Experiment DE: Part 1 Experiment DE has multiple goals, including -separation and quantification of a 2-component mixture (fractional distillation and GC); preliminary ID of both components -preparation and purification of an ester using one of the original components (Fisher esterification & simple distillation) -structural identification of the ester (NMR & IR) Part 1: Distillation and Analysis of an Unknown Alcohol Mixture Before beginning, under "Techniques" on the Chem 113A website, review the photos and descriptions for Simple and Fractional Distillation. You should also watch the video showing Simple Distillation (fractional distillation follows a similar technique). See the Figure Fractional Distillation at the end of this document. Key Points for Simple and Fractional Distillations: -always apply a thin coating of grease on all ground-glass joints before assembling the apparatus; wipe off any excess before assembly -DO NOT forget fresh boiling stones before you turn on the heat; IMPORTANT: if you forget to add boiling stones and your solution is already warm to the touch, DO NOT add boiling stones to a hot solution or it will suddenly "flash" and spray hot liquid out of the top! Instead, turn off the heat, and carefully lower the thermowell. Add fresh boiling stones when the solution is lukewarm to the touch. -as the distllation proceeds. Periodically check the joints to make sure ther is no gap where vapors can escape (if you smell a lot of alcohol, either you or a lab mate, may have a leak); adjust your connections as necessary. -any time a distillation is taking place, there is high potential for a water leak or flood; put your books and computers/smartphones on top of the center bench or by the windows! Procedure: Experiment DE Part I: Separation of a 2-Component Mixture by Fractional Distillation. Obtain 50mL of an unknown alcohol mixture from the instructor: write the CODE in your notebook immediately. We will tell you the following about these alcohols: A) both are from the list of possible alcohols below (Table 1) B) both are saturated (no double bonds) and acyclic (no rings) C) they may be straight-chain or branched alcohols D) they may have 3, 4, 5, or 6 carbons Your goals for Part I are to separate the two alcohols by fractional distillation and determine the % composition in the mixture. One of your purified alcohols will be used to prepare an ester in Part II.

2 Fractional Distillation Check out a thermometer and a pair of heat-resistent gloves from the Service Center (both must be returned at the end of the period, or a late fine will apply). Before you begin your distillation, you must calibrate your thermometer using boiling water. The instructor will have a boiling water station ready, immerse your thermometer and note if it reads 100 o C. If your thermometer reads higher or lower than 100 o C, note the difference: this will be your "correction factor" to apply to the distillation temperatures of your 2 alcohols. If the water is not yet boiling, set up your fractional distillation apparatus while waiting. Put 50mL of alcohol mixture and 3-4 boiling stones in a 100mL round bottom flask (the flask with the ground-glass joint, not the boiling flask!). Review the Key Points for Distillation above. Assemble a fractional distillation apparatus as shown in the Figure below. A model will also be available in the lab. Lightly grease all joints and pay particular attention to the position of the clamps, all of which are needed. The vertical column must have steel wool in the inner tube. The purpose of the steel wool is to increase the surface area inside the condensor so that the vapors will undergo many cycles of condensation and evaporation (called "theoretical plates"). The more theoretical plates in the system, the greater the efficiency of the separation. Be careful to not tighten clamp C too tightly, or it may cause the glass to break when it gets hot. Use ring stands (not the fixed "monkey bars"). Note the direction of the water hoses for the condensor.; turn the water on to a slow trickle, not "full blast!" The position of the thermometer bulb is especially important: too high or too low may lead to an inaccurate temperature reading. Ask your instructor to check your apparatus before you turn on the heat. S/he may wrap your vertical condensor with foil to insulate it. Check that your heating mantle is plugged in to the variable transformer. Begin by turning it to no higher than a setting of 4.5. After awhile, you should see the solution boiling vigorously. Distillation will begin only when the vapors reach the top of the stillhead (above the vertical column), then spill over into the water-cooled condenser. This can take awhile, so be patient! As your solution is heating, label your 25 and 50mL Erlenmeyer flasks as "A," "B," "C," and "D". Note the marking for 10mL volumes on each. In your notebook, prepare a table with two columns labeled "Time (min)" and "Temperature ( o C)". Enter values under "Time" starting at 0min, then 2, 4, 6, 8, 10, etc. When the first drops drip into Flask A, note the temperature reading at 0min on the table, then at 2 minute intervals. An ideal distillation rate is 1 drop every 1-3 seconds. If your rate is slower than this, you may wish to slowly raise the heat, but only by small increments (0.1 to 0.2 on the thermowell dial) - it takes several minutes to see a response. [Question: how would your separation be affected if the heating rate is too high?} When Flask A reaches 10mL volume, switch to Flask B - note where the change occurs on your Table. When Flask B reaches 10mL switch to Flask C, and so on until Flask D reaches 10mL.

3 You may observe that when disillation begins the temperature will likely remain fairly stable for awhile (a "plateau"), but at some point, you may notice the temperature change (either go up or down). If the rate of distillation slows noticeably, increase the heating of the thermowell in small increments until distillation resumes at a reasonable rate. (what causes this to happen?) When the volume of Flask D reaches 10mL, turn off the heat. DO NOT let all of the liquid evaporate or your flask will get very hot and may crack. Put on the heat-resistent gloves and carefully lower the ring clamp holding the thermowell from the flask {CAREFUL : Hot!!}. Let the flask cool, then dispose leftover alcohol in the appropriate waste container. It is not necessary to wash any of the distillation glassware; let your glassware dry in the hood and put away in your drawer when it is cool enough to handle. Especially do NOT put any water in the condenser with the steel wool (why not?). Cover the A, B, C, and D flasks with Duraseal TM tightly, secure with rubber bands, and put away in your drawer/locker. Return the thermometer and gloves to the Stockroom on the same day. In your notebook, plot the time vs. temperature data. Use this plot to get a preliminary identification of your 2 unknown alcohols using the boiling points of alcohols given in Table A below. In Part II, you will use spectroscopic data to confirm your unknown alcohol structure. Your plot will also help you to estimate the % composition of your mixture and compare it to GC data you will obtain in Part II. Analysis of Fractions A and D by Gas Chromatography (GC) In order to check the purity of your alcohols, they will be analyzed by gas chromatography (GC). Label two small test tubes as "A" and "D". Put one drop of your A fraction in "A" and one drop of your D fraction in "D" (use a clean pipette for each!). Add 1mL of "GC Dilution Ether"(found in the hood) to each tube, cover with Duraseal TM and put them in a small beaker. Note in most cases we will not be analyzing Fraction B or C, unless this is necessary. Check out a GC syringe from the Service Center (must return to avoid a fine) Your instructor will arrange an order for students in your section to measure their GCs. Check out a GC syringe just before you are scheduled to measure your samples. Our GC instrument can accomodate 2 students at a time, but it will still require time to process the entire class. While you are waiting for the GC, use this time to measure the IR spectra of A and D, and work on spectroscopy problems The GC plot will tell you the purity of your A and D fractions. [Later, you will use GC again on your original mixture to determine the % composition of your 2 alcohols).

4 Table A: List of Possible Alcohols* *Your two alcohols (and of course the alcohols in the reference mixture) are liquid, saturated, acyclic alcohols from among this list: Physical Properties of Various Alcohols** Compound Bp ( C) Mp ( C) Methanol 65 Ethanol 78 2-Propanol 82 2-Methyl-2-propanol Propen-1-ol 97 2-Methyl-2-butanol Methyl-1-propanol Buten-1-ol Butanol Penten-2-ol 119 Isoamyl alcohol Penten-1-ol Pentanol 138 Cyclopentanol Ethyl-1-butanol Methylcyclopentanol Hexanol 156 Cyclohexanol Heptanol 177 **the alcohols used in Experiment DE are saturated and acyclic alcohols, and have from 3 to 6 carbon atoms

5 Experiment DE, Part I - Fractional Distillation Apparatus REMEMBER TO LIGHTLY GREASE ALL JOINTS! thermometer entire thermometer bulb must be below the bend in the adaptor! Kem (spring) clamps water OUT Clamp C - keep LOOSE, don't overtighten! water IN Kem clamp use the West condensor that contains steel wool X - no water Clamp B X - no water Clamp A A B C D 3-4 boiling stones 100mL round bottom flask four 25 or 50mL Erlenmeyer Flasks labelled "A" "B" "C" "D" Place thermowell on a ring clamp attached to a ring stand a few inches above the base Thermowell (NO SAND!) When distillation is in progress, check periodically that all joints are connected.

Chemistry 261 Laboratory Experiment 6: Reduced Pressure Distillation of a Mixture of High Boiling Alcohols

Chemistry 261 Laboratory Experiment 6: Reduced Pressure Distillation of a Mixture of High Boiling Alcohols Chemistry 261 Laboratory Experiment 6: Reduced Pressure Distillation of a Mixture of High Boiling Alcohols Reading from Zubrick, 10 th edition Jointware, pages 30-40 Sources of Heat, pages 131-139 Clamping,

More information

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas?

1. If grams of the vapor of a volatile liquid can fill a 498 ml flask at o C and 775 mm Hg, what is the molecular mass of the gas? MOLECULAR MASS OFA VOLATILE LIQUID A lab to study the ideal gas law Introduction The ideal gas law indicates that the observed properties of a gas sample are directly related to the number of moles of

More information

Intermolecular Forces

Intermolecular Forces Experiment 2 Intermolecular Forces Prepared by Ross S. Nord, Eastern Michigan University with large parts adapted from Chemistry with Computers by Dan D. Holmquist and Donald D. Volz PURPOSE The purpose

More information

7.9. Flash Column Chromatography Guide

7.9. Flash Column Chromatography Guide WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level ofsafety training, special facilities and equipment, and supervision by appropriate individuals.

More information

11.1 Dumas Method - Pre-Lab Questions

11.1 Dumas Method - Pre-Lab Questions 11.1 Dumas Method - Pre-Lab Questions Name: Instructor: Date: Section/Group: Show all work for full credit. 1. If a 275-mL gas container has pressure of 732.6 mm Hg at -28 C, how many moles of gas are

More information

CHEM254 #4 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1

CHEM254 #4 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1 CHEM254 #4 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1 Background In this project, we will perform a Grignard reaction using a pre-made Grignard reagent. Grignard reagents can

More information

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point.

Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Chemistry 1020 Identification of an Unknown Liquid Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Text reference solubility, density,

More information

General Safety Rules

General Safety Rules General Safety Rules 1. The goggles provided by the university are to be properly worn at all times in the lab. 2. You are to be properly dressed in the lab. a. Close-toed shoes. b. At least a short sleeve

More information

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt Experiment 13 Molar Mass of a Gas Purpose In this experiment you will use the ideal gas law to calculate the molar mass of a volatile liquid compound by measuring the mass, volume, temperature, and pressure

More information

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8. Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

More information

CHM 2045L Physical Properties

CHM 2045L Physical Properties CHM 2045L Physical Properties Purpose: To observe and record some common physical properties. Background: Physical properties can tell us a lot about an unknown chemical. In this experiment you will look

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

Hands-On Experiment Density and Measurement

Hands-On Experiment Density and Measurement Hands-On Experiment Density and Measurement GOALS: 1. To measure liquid volume as accurately as possible with graduated cylinders. 2. To measure the volume of irregular shaped solid objects by liquid volume

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS!

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! EXPERIMENT # 6 Name: PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS! 1. Calculate the height of a corresponding column of mercury (in mm) that is at

More information

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

Setting up and running a column

Setting up and running a column Setting up and running a column PART 1: What you need and theory PART 2: Using a bellow and packing the column PART 3: Loading sample to silica PART 4: Running column PART 5: TLC analysis and combining

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

Introduction. Objectives. Hazards. Procedure

Introduction. Objectives. Hazards. Procedure Experiment: Exploring Gases Note to Students: Check with your instructor to see which parts of this lab (Parts A, B, or C) you will complete. Introduction Gases are made up of molecules that are in constant

More information

Lab: Safety Due: Lab # 0

Lab: Safety Due: Lab # 0 Name: Lab Section: Lab: Safety Due: Lab # 0 Purpose Science is a hands-on laboratory class. You will be doing many laboratory activities which require the use of hazardous chemicals. Safety in the science

More information

Adaptations of Desert Plants

Adaptations of Desert Plants Adaptations of Desert Plants Topic The shape and surface area of a leaf are related to its ability to gain and release water. Introduction Deserts are biomes that present great difficulties to their inhabitants.

More information

CHE 4115 Chemical Processes Laboratory 2 Experiment 1. Batch Distillation

CHE 4115 Chemical Processes Laboratory 2 Experiment 1. Batch Distillation CHE 4115 Chemical Processes Laboratory 2 Experiment 1 Batch Distillation BACKGROUND Distillation is one of the most commonly used unit operations in chemical engineering. In general, a distillation operation

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure 1, it

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

Lab Equipment ANALYTICAL BALANCE

Lab Equipment ANALYTICAL BALANCE Lab Equipment ANALYTICAL BALANCE Analytical balances are used for very accurate, quantitative measurements of mass to the nearest 0.001 g. (Some read to 0.0001 g.) These are delicate instruments, subject

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids Calculator 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Working correctly with gas

Working correctly with gas Working correctly with gas When working with a reactive gas in a cylinder, there is an inherent risk. Special care has to be taken to allow safe handling. This example is with HCl. 1) Fixing the gas bottle.

More information

Manual for continuous distillation

Manual for continuous distillation Manual for continuous distillation 1. Week 1: Objectives: Run the column at total reflux. When steady state is reached, take the sample from the top and bottom of the column in order to determine the overall

More information

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 ELECTRONIC LABORATORY NOTEBOOK (ELN) INSTRUCTIONS Read the directions and

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

Flinn Scientific's Student Safety Contract

Flinn Scientific's Student Safety Contract Flinn Scientific's Student Safety Contract Purpose Science is a hands-on laboratory class. You will be doing many laboratory activities that require the use of hazardous chemicals. Safety in the science

More information

University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING

University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING University of New Haven DEPARTMENT OF CHEMISTRY and CHEMICAL ENGINEERING A. Instructions: Student: Read carefully the following laboratory rules, safety precaution, and regulations. Your laboratory conduct

More information

Part A: 20 minutes plus 30 minutes setting time Part B: day 1, 20 minutes; then 5 minutes each day for about 5 days

Part A: 20 minutes plus 30 minutes setting time Part B: day 1, 20 minutes; then 5 minutes each day for about 5 days The Bugs On Our Skin Topic Study of the microorganisms found on skin Introduction We spend considerable time cleaning ourselves, but we cannot rid ourselves of all the microbes on our bodies. Forensic

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Wolfson Campus Natural Science Department. Biology Laboratory. Student Safety Contract

Wolfson Campus Natural Science Department. Biology Laboratory. Student Safety Contract Wolfson Campus Natural Science Department Biology Laboratory Student Safety Contract July 2000 Wolfson Campus Student Safety Contract-Biology Laboratory Purpose The Biology laboratory is a hands-on learning

More information

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract Experiment 9: Gas Laws VC 09 Abstract In this laboratory activity, you will experimentally confirm Boyle s Law, determine absolute zero from Gay-Lussac's Law, and determine the molecular weight of acetone,

More information

ORGANIC CHEMISTRY LABORATORY I CH 337

ORGANIC CHEMISTRY LABORATORY I CH 337 ORGANIC CHEMISTRY LABORATORY I CH 337 Summer 2016 PORTLAND STATE UNIVERSITY Department of Chemistry Dr. Alexander H. Sandtorv (sandtorv@pdx.edu) 1 Contents Lab schedule... 3 Course Grading... 4 Lab reports...

More information

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS Section A: Intro to the spectrophotometer A commonly used instrument in the analysis of cellular extracts is the Spectrophotometer. Today you

More information

CHEMISTRY FACULTY LABORATORY SAFETY CONTRACT CENTRAL CAMPUS

CHEMISTRY FACULTY LABORATORY SAFETY CONTRACT CENTRAL CAMPUS CHEMISTRY FACULTY LABORATORY SAFETY CONTRACT CENTRAL CAMPUS Potential hazards exist in all chemical laboratories and some can cause serious accidents. Fortunately, most accidents can be prevented if each

More information

Katy Independent School District Science Safety Rules

Katy Independent School District Science Safety Rules Katy Independent School District Science Safety Rules PURPOSE Science is a hands-on laboratory class. You will be doing many laboratory activities which may require the use of hazardous chemicals or potentially

More information

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement CH2250: Techniques in Laboratory Chemistry Outline Measuring Mass Measuring Volume Significant figures Mass Measurement Mass Measurement Measure mass not weight Mass is measured with a balance (a scale

More information

François Auguste Victor Grignard, was a French chemist who discovered one of the world s first synthetic organometallic reactions.

François Auguste Victor Grignard, was a French chemist who discovered one of the world s first synthetic organometallic reactions. CHEM254 #6 The Synthesis of a Tertiary Alcohol Using a Pre-Made Grignard Reagent 1 Introduction/Background Image: François Auguste Victor Grignard (1871-1935) 1 François Auguste Victor Grignard, was a

More information

Determination of Zn using Atomic Absorption with Multiple Standard Additions

Determination of Zn using Atomic Absorption with Multiple Standard Additions 1. Purpose Determination of Zn using Atomic Absorption with Multiple Standard Additions This procedure will determine the concentration of zinc at the parts-per-million level using flame atomic absorption

More information

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl Introduction For chemical reactions involving gases, gas volume measurements provide a convenient means of determining stoichiometric relationships. A gaseous product is collected in a long, thin graduated

More information

CHM111 Lab Gas Laws Grading Rubric

CHM111 Lab Gas Laws Grading Rubric Name Team Name CHM111 Lab Gas Laws Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal procedures

More information

Student Information & Laboratory Safety Contract

Student Information & Laboratory Safety Contract Student Information & Laboratory Safety Contract Mrs. Mawhiney Student Information Last Name First Name Preferred Name Home Address (including ZIP) Home Phone student e-mail Parent/Guardian Name Relationship

More information

Experiment #12. Gas Laws.

Experiment #12. Gas Laws. Goal To observe gas laws in the laboratory. Experiment #12. Gas Laws. Introduction All ideal gases, regardless of molar mass or chemical properties, follow the same gas laws under most conditions. Gas

More information

of Carbon Dioxide (CO 2

of Carbon Dioxide (CO 2 CHAPTER 10 Phase Changes of Carbon Dioxide (CO 2 ) Objectives This experiment is an introduction to phase changes of pure substances and an introduction to some simple microtechniques for doing experiments

More information

LABORATORY TECHNIQUES. Pouring Liquids

LABORATORY TECHNIQUES. Pouring Liquids LABORATORY TECHNIQUES Working in the chemistry laboratory you will be handling potentially dangerous substances and performing unfamiliar tasks. This section provides you with a guide to the safe laboratory

More information

Parallel Reactor Standard Operating Procedure THIS SOP IS NOT MEANT TO REPLACE HANDS-ON TRAINING FROM QUALIFIED PERSONNEL!

Parallel Reactor Standard Operating Procedure THIS SOP IS NOT MEANT TO REPLACE HANDS-ON TRAINING FROM QUALIFIED PERSONNEL! Parallel Reactor Standard Operating Procedure THIS SOP IS NOT MEANT TO REPLACE HANDS-ON TRAINING FROM QUALIFIED PERSONNEL! This SOP describes the basic procedure for using the HEL Cat-24 parallel reactor,

More information

SOLUBILITY OF A SOLID IN WATER

SOLUBILITY OF A SOLID IN WATER 1516L Experiment 1 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

More information

Heat-Trapping Gases Lab

Heat-Trapping Gases Lab Heat-Trapping Gases Lab Before performing the lab, show this video to the students. http://spark.ucar.edu/greenhouse-effect-movie-scott-denning Objective: The main goal of this activity is instrumentally

More information

Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08

Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08 Gas Laws: Boyle s and Amonton s Laws Minneapolis Community and Technical College v.9.08 I. Introduction The purpose of this experiment is to test the extent real gases (to the limits of our measurements)

More information

How Environment-friendly Is Your Home?

How Environment-friendly Is Your Home? How Environment-friendly Is Your Home? Topic Producing an environmental profile of the home Introduction More new houses are being built with the environment in mind. They can have energy-saving features

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information

Safety In the Science Lab

Safety In the Science Lab Lab Safety: Everyone Is Responsible! Safety In the Science Lab Rules and Symbols 7.4B use preventative safety equipment, including chemical splash goggles, aprons, and gloves, and be prepared to use emergency

More information

19. The Grignard Reaction

19. The Grignard Reaction 19. The Grignard eaction A. Introduction The Grignard reaction is an extremely valuable reaction in organic chemistry because it allows for the formation of carbon-carbon bonds. The reaction was discovered

More information

Safety Rules for the Science Lab

Safety Rules for the Science Lab Science 10 Safety in the Science Lab Name: Date: Block: Safety Rules for the Science Lab DRESS CODE 1. To protect your eyes from possible injury, wear safety goggles whenever you are working with chemicals,

More information

EXPERIMENT 2. Laboratory Procedures INTRODUCTION

EXPERIMENT 2. Laboratory Procedures INTRODUCTION EXPERIMENT 2 Laboratory Procedures INTRODUCTION Begin each experiment by taking the necessary safety precautions. All materials that will not be used in the lab should be placed out of the laboratory working

More information

Density and Stress in Plastics Mary V. McCrary

Density and Stress in Plastics Mary V. McCrary SCIENCE EXPERIMENTS ON FILE Revised Edition 5.25-1 Density and Stress in Plastics Mary V. McCrary Topic Density and birefringence of plastics Time Part A: 30 to 45 minutes; Part B: 30 to 45 minutes! Safety

More information

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases DEMONSTRATION 2.1 Chapter 2: Gases PROPERTIES OF CO 2 This demonstration has two aims: firstly, to show that carbon dioxide gas is denser than air; secondly, to show that carbon dioxide will not support

More information

THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4

THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4 THERMODYNAMICS OF A GAS PHASE REACTION: DISSOCIATION OF N 2 O 4 OBJECTIVES 1. To measure the equilibrium constant, enthalpy, entropy, and Gibbs free energy change of the reaction N2O4(g) = 2 NO2(g). 2.

More information

VOLUMETRIC TECHNIQUES

VOLUMETRIC TECHNIQUES REVISED 10/14 CHEMISTRY 1101L VOLUMETRIC TECHNIQUES Volume measurements are important in many experimental procedures. Sometimes volume measurements must be exact; other times they can be approximate.

More information

Blood Spatter Inquiry

Blood Spatter Inquiry Blood Spatter Inquiry Topic The shapes of bloodstains are affected by the textures of surfaces on which they fall. Introduction When a droplet of blood comes in contact with a surface, it may or may not

More information

acrolein, acetaldehyde and acetone( cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ).

acrolein, acetaldehyde and acetone( cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ). acrolein, acetaldehyde and acetone(1550 1800 cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ). 5 Figure 4a 6 Figure 4b Figure 4c 7 Figure 5 Questions in Student Handout

More information

VACUUM & AIRLESS. Select from Kimble vacuum traps, manifolds, Schlenk tubes, adapters, and bubblers for your vacuum and airless glassware needs.

VACUUM & AIRLESS. Select from Kimble vacuum traps, manifolds, Schlenk tubes, adapters, and bubblers for your vacuum and airless glassware needs. VACUUM & AIRLESS Select from Kimble vacuum traps, manifolds, Schlenk tubes, adapters, and bubblers for your vacuum and airless glassware needs. tions precision glassware solutions precision glassware solutions

More information

CHM250 Calibration and Measurement Lab. Balance Calibration

CHM250 Calibration and Measurement Lab. Balance Calibration CHM250 Calibration and Measurement Lab Green Profile Balance Calibration Introduction: Balances that are properly operated, calibrated and maintained are crucial for laboratory operations. The accuracy

More information

Salt Lowers the Freezing Point of Water

Salt Lowers the Freezing Point of Water Salt Lowers the Freezing Point of Water Topic Sodium chloride (NaCl), salt, lowers the freezing point of water. Introduction Salt is added to ice in ice cream freezers because salt lowers the freezing

More information

Experiment 8 GAS LAWS

Experiment 8 GAS LAWS Experiment 8 GAS LAWS FV 6/25/2017 MATERIALS: Amontons Law apparatus, Boyle s Law apparatus, Avogadro s Corollary apparatus, four beakers (2 L), warm-water bath, ice, barometer, digital thermometer, air

More information

EXPERIMENT XI. Careful!! Improper handling of the vacuum line may result in the release of SO 2 which is an irritating and suffocating gas.

EXPERIMENT XI. Careful!! Improper handling of the vacuum line may result in the release of SO 2 which is an irritating and suffocating gas. Chem 366-3 Page XI - 1 EXPERIMENT XI INFRARED SPECTRUM OF SO2 (S&G, 5th ed. Expt 36, 6th ed. Expt. 35) 1. Pre-Lab preparation. The description of this experiment has disappeared from the more recent editions

More information

Armfield Distillation Column Operation Guidelines

Armfield Distillation Column Operation Guidelines Armfield Distillation Column Operation Guidelines 11-2016 R.Cox Safety SAFETY GLASSES ARE REQUIRED WHEN OPERATING THE DISTILLATION COLUMN Wear gloves when mixing alcohol feedstock The column will become

More information

Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17

Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17 Gas Laws: Boyle s and Amonton s Laws MCTC Chemistry v.9.17 Objective: The purpose of this experiment is confirm Boyle's and Amontons' Laws in the laboratory. Prelab Questions: Read through this lab handout

More information

How Fast Is Your Toy Car?

How Fast Is Your Toy Car? SCIENCE EXPERIMENTS ON FILE Revised Edition 6.15-1 How Fast Is Your Toy Car? Daniela Taylor Topic Motion, calculating speed Time 1 hour! Safety Please click on the safety icon to view the safety precautions.

More information

ASTM D86 - Procedural Outline

ASTM D86 - Procedural Outline ASTM D86 - Procedural Outline Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure The following summarizes the procedural steps required for performing

More information

Tex-227-F, Theoretical Maximum Specific Gravity of Bituminous Mixtures

Tex-227-F, Theoretical Maximum Specific Gravity of Bituminous Mixtures Gravity of Bituminous Mixtures Overview Effective date: August 1999 to October 2004. Use this method to measure the theoretical maximum specific gravity (commonly referred to as 'Rice' gravity) of a bituminous

More information

Making a Barometer and Using It

Making a Barometer and Using It SCIENCE EXPERIMENTS ON FILE Revised Edition 2.5-1 Making a Barometer and Using It Topic Air pressure Time Varies! Safety Please click on the safety icon to view safety precautions. Materials large (1-gal)

More information

Safety & Class Contract

Safety & Class Contract Safety & Class Contract Required of ALL High School Science Students I will:! Follow all instructions given by the teacher and/or in the lab handout.! Protect my eyes, face, hands, and body when involved

More information

PRESSURE-TEMPERATURE RELATIONSHIP IN GASES

PRESSURE-TEMPERATURE RELATIONSHIP IN GASES PRESSURE-TEMPERATURE RELATIONSHIP IN GASES LAB PS2.PALM INTRODUCTION Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The

More information

NMR Service. How to Prepare Samples for NMR

NMR Service. How to Prepare Samples for NMR NMR Service How to Prepare Samples for NMR In NMR, unlike other types of spectroscopy, the quality of the sample has a profound effect on the quality of the resulting spectrum. If you follow a few simple

More information

Tips for Proper Pipette handling and Maintenance. D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014

Tips for Proper Pipette handling and Maintenance. D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014 Tips for Proper Pipette handling and Maintenance D. Muruganand, Ph.D ILQA - Bangalore, Feb 2014 Liquid handling tools Manual pipettes Electronic pipette and dispenser Automated systems Principles of Pipetting

More information

Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization

Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization Check-In, Lab Safety, Balance and Volumetric Glassware Use, Introduction to Statistics, and MSDS Familiarization Before coming to lab: Read Chapter 2 of your textbook before coming to lab. This chapter

More information

1. Determining Solution Concentration

1. Determining Solution Concentration In this exercise you will determine the concentration of salt solutions by measuring samples with known concentration and making a calibration curve. You will review units of concentration, and how to

More information

Electron Microscopy Centre

Electron Microscopy Centre Electron Microscopy Centre Title: STANDARD PROCEDURES TO USE THE CRITICAL POINT DRYER Equipment: BIO-RAD E3000 Critical Point Dryer Revision: 1.0 Effective Date: 01/10/2006 Author: X. Yang 1 Warning! Before

More information

Transferpette -8/-12

Transferpette -8/-12 Transferpette -8/-12 Testing Instructions (SOP) May 2009 1. Introduction The standard DIN EN ISO 8655 describes both the design and the testing of the piston operated pipette Transferpette 8/ 12. The following

More information

Transferpette. Testing Instructions (SOP) 1. Introduction. October 1998

Transferpette. Testing Instructions (SOP) 1. Introduction. October 1998 Transferpette Testing Instructions (SOP) October 1998 1. Introduction The standards ISO DIS 8655 and DIN 12650 describe both the design and the testing of the piston operated pipette Transferpette. The

More information

BOYLE S / CHARLES LAW APPARATUS - 1m long

BOYLE S / CHARLES LAW APPARATUS - 1m long BOYLE S / CHARLES LAW APPARATUS - 1m long Cat: MF0340-101 (combination Boyle s and Charles without mercury) DESCRIPTION: The IEC Boyle's & Charles Law apparatus is a high quality instrument designed to

More information

Tex-414-A, Air Content of Freshly Mixed Concrete by the Volumetric Method

Tex-414-A, Air Content of Freshly Mixed Concrete by the Volumetric Method by the Volumetric Method Contents: Section 1 Overview...2 Section 2 Apparatus...3 Section 3 Sampling Requirements...5 Section 4 Procedures...6 Section 5 Calculation...9 Section 6 Archived Versions...10

More information

OHD L-44 METHOD OF TEST FOR MEASUREMENT OF WATER PERMEABILITY OF COMPACTED PAVING MIXTURES

OHD L-44 METHOD OF TEST FOR MEASUREMENT OF WATER PERMEABILITY OF COMPACTED PAVING MIXTURES Page 1 of 7 METHOD OF TEST FOR MEASUREMENT OF WATER PERMEABILITY OF COMPACTED PAVING MIXTURES 1. SCOPE A. This test method covers the laboratory determination of the water conductivity of a compacted asphalt

More information

METHOD 204F--VOLATILE ORGANIC COMPOUNDS CONTENT IN LIQUID INPUT STREAM (DISTILLATION APPROACH) 1.1 Applicability. This procedure is applicable for

METHOD 204F--VOLATILE ORGANIC COMPOUNDS CONTENT IN LIQUID INPUT STREAM (DISTILLATION APPROACH) 1.1 Applicability. This procedure is applicable for METHOD 204F--VOLATILE ORGANIC COMPOUNDS CONTENT IN LIQUID INPUT STREAM (DISTILLATION APPROACH) 1. INTRODUCTION 1.1 Applicability. This procedure is applicable for determining the input of volatile organic

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

CORESTA RECOMMENDED METHOD Nº 67

CORESTA RECOMMENDED METHOD Nº 67 CORESTA RECOMMENDED METHOD Nº 67 DETERMINATION OF WATER IN THE MAINSTREAM SMOKE OF CIGARS BY GAS CHROMATOGRAPHIC ANALYSIS (November 2005) 1. FIELD OF APPLICATION The method is applicable to the particulate

More information

99% Isopropyl Alcohol

99% Isopropyl Alcohol Olathe, KS Tel: 913-390-6184 Safety Data Sheet (2-Propanol, Isopropyl Alcohol 99%, Isopropanol) Emergency phone: 800 424 9300 (Chemtrec) NFPA Rating: Health 1, Flammability 3, Reactivity 0 Special 0 HMIS

More information

LABORATORY SAFETY EQUIPMENT Final Grade: /45

LABORATORY SAFETY EQUIPMENT Final Grade: /45 LABORATORY SAFETY EQUIPMENT Final Grade: /45 CH.lbSg - Identify, locate, and know how to use laboratory safety equipment including laboratory aprons, lab safety goggles, lab gloves, fire extinguishers,

More information

Solvent System Walkthrough

Solvent System Walkthrough v2.0 1 Solvent System Walkthrough The Contour Glass solvent system is designed to give you air-free anhydrous solvent with minimal effort. However, the system is only as good as its users so please read

More information

Eric Sheagley, Lab Supervisor Fall, 2015

Eric Sheagley, Lab Supervisor Fall, 2015 CH 107, Intro to Chemistry Lab Portland State University Eric Sheagley, Lab Supervisor Fall, 2015 Description: CH 107 is the laboratory associated with the CH 104 Intro to Chemistry lecture. Concurrent

More information

Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

More information

The Decomposition of Potassium Chlorate

The Decomposition of Potassium Chlorate The Decomposition of Potassium Chlorate Small quantities of molecular oxygen (O 2 ) can be obtained from the thermal decomposition of certain oxides, peroxides, and salts of oxoacids. Some examples of

More information