PROPERTIES OF R-134A (1,1,1,2-TETRAFLUOROETHANE)

Size: px
Start display at page:

Download "PROPERTIES OF R-134A (1,1,1,2-TETRAFLUOROETHANE)"

Transcription

1 PROPERTIES OF R-134A (1,1,1,2-TETRAFLUOROETHANE) Industrial Refrigeration Consortium University of Wisconsin Madison, WI USA

2 Who we Are The IRC is a collaborative effort between the University of Wisconsin-Madison and industry. Together we share a common goal of improving safety, efficiency, and productivity of industrial refrigeration systems and technologies. We realize this goal by conducting applied research, delivering knowledge transfer, and providing technical assistance. Although our efforts are focused on industrial refrigeration systems that utilize anhydrous ammonia, we also work with systems that use other refrigerants. The IRC offers a unique combination of complementary resources that include academic qualifications, technical expertise, and practical experience. We provide objective information that is not biased by an affiliation with any particular organization. Our primary product is knowledge. We create knowledge through research and technical assistance, and we transfer knowledge to the industry through our training and technology transfer activities. These services provide substantial benefits to our members and to the entire refrigeration industry. The knowledge that we create and distribute helps to improve the capabilities of individuals at all levels. Increased knowledge can help improve safety, reduce operating costs, increase productivity, and make your organization more competitive. The IRC is wholly funded by external funds. Industrial Refrigeration Consortium 1415 Engineering Dr Suite 2342 Madison, WI Toll-free: (866) Local: (608) Fax: (608)

3 PROPERTIES OF R-134A (1,1,1,2-TETRAFLUOROETHANE) Foreword R-134a is a blend component used in many refrigeration systems. It is also a propellant for aerosol and a blowing agent for extruded polystyrene foams. R-134a replaces the CFC R-12 and in few years will replace the HCFC R-22. The tables attached were developed based on a refrigerant property database (REFPROP 7.0) developed by the National Institute of Standards and Technology (NIST) for 1,1,1,2- tetrafluoroethane. The thermophysical and transport properties given in the attached tables are based on the latest research and equations of state developed for this particular refrigerant. Fore more information on the equations used, see the References section below. The property data includes both saturation properties (as a function of temperature and as a function of pressure), subcooled, and superheat properties. Note, the pressure emphasized in all tables is absolute pressure. This means that the local barometric pressure needs to be added to any gage pressure readings prior to using the values in the attached tables. References Tillner-Roth, R. and Baehr, H.D., "An international standard formulation of the thermodynamic properties of 1,1,1,2-tetrafluoroethane (HFC-134a) covering temperatures from 170 K to 455 K at pressures up to 70 MPa," J. Phys. Chem. Ref. Data, 23: , Perkins, R.A., Laesecke, A., Howley, J., Ramires, M.L.V., Gurova, A.N., and Cusco, L.,"Experimental thermal conductivity values for the IUPAC round-robin sample of 1,1,1,2-tetrafluoroethane (R134a)," NISTIR,

4 Definitions P (pressure) Pressure is the force per unit area exerted by the working fluid. Pressure data is expressed in three units: psia, psig, and in Hg (vacuum). The primary unit expresses pressure as absolute pounds per square inch (psia). Converting between gage and absolute pressure can be accomplished by the following, P absolute [psia] = P gage [psig] + P local [psi] where P absolute is the absolute pressure, P gage is the gage pressure, and P local is the local barometric pressure all expressed in units of lb/in 2. ρ (density) Density is the mass of refrigerant per unit volume [lb m /ft 3 ]. The saturation tables express liquid in units of density. The density is inversely proportional to the specific volume, ρ = 1/v where ρ is the density and v is the fluid s specific volume. v (specific volume) Cp (specific heat) Specific volume represents the volume occupied per unit mass of refrigerant. The saturation tables express all vapor states in terms of the specific volume [ft 3 /lb m ]. The specific volume is inversely proportional to the fluid density (see definition above). Specific heat is a measure of the energy storing capability of the working fluid [Btu/lb m -R]. Fluids with large specific heats require significant amounts of energy input (or extraction) to sensibly increase (or decrease) their temperature. Cp/Cv (spec heat ratio) Specific heat ratio refers to the relationship between the isobaric (Cp) and isochoric (Cv) specific heat capacities. h (enthalpy) s (entropy) μ (viscosity) k (thermal cond) Enthalpy is a fluid property that is representative of the relative energy content of a flow stream [Btu/lb m ]. Reported values of enthalpy are dependent on the reference state. The values reported here have a reference state defining the enthalpy as 0 Btu/lb m at -40 F (this is consistent with the ASHRAE reference state). Entropy is a property that is held constant during an ideal process (reversible and adiabatic, i.e. without heat loss). The entropy properties are sometimes used to characterize the behavior of compression processes. The entropy values are reported in units of [Btu/lb m -R]. The dynamic viscosity is a measure of the working fluid s resistance to flow [centipoise]. The thermal conductivity is a measure of the heat conducting capability of the working fluid. Fluids with high thermal conductivity are effective at transferring energy with small temperature differences. 3

5 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

6 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

7 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

8 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

9 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

10 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

11 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

12 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

13 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation T [F] P [psia] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

14 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation P [psia] T [F] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

15 R-134a (1,1,1,2-tetrafluoroethane) Properties at Saturation P [psia] T [F] ρ [lb/ft^3] v [ft^3/lb] h [Btu/lb] s [Btu/R-lb] Cp [Btu/R-lb] Cp/Cv [unitless] μ [centipose] k [Btu/hr-ft-R] Bulk Bulk Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS REPORT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW. NEITHRE THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF THEM: (A) MAKES

More information

IRC 2011 All Rights Reserved

IRC 2011 All Rights Reserved 1 2 3 The enthalpy of saturated vapor and the enthalpy of saturated liquid is evaluated at the fully accumulated relief device set pressure (P=P set * 1.1 + 14.7). Set Pressure (psig) h fg (Btu/lbm) 150

More information

The Application of Temperature and/or Pressure Correction Factors in Gas Measurement

The Application of Temperature and/or Pressure Correction Factors in Gas Measurement The Application of Temperature and/or Pressure Correction Factors in Gas Measurement COMBINED BOYLE S CHARLES GAS LAWS To convert measured volume at metered pressure and temperature to selling volume at

More information

Tproperties of refrigerants, arranged for the occasional user. The

Tproperties of refrigerants, arranged for the occasional user. The Related Commercial Resources CHAPTER 20 THERMOPHYSICAL PROPERTIES OF REFRIGERANTS HIS chapter presents data for the thermodynamic and transport Tproperties of refrigerants, arranged for the occasional

More information

Seminar 65 Compression Challenges for Low GWP Refrigerants

Seminar 65 Compression Challenges for Low GWP Refrigerants Margaret Mathison, Ph.D. mm1@iastate.edu Seminar 65 Compression Challenges for Low GWP Refrigerants Design Improvements of the Spool Compressor for Various Working Fluids using Comprehensive Modeling Techniques

More information

KNOWN: Mass, pressure, temperature, and specific volume of water vapor.

KNOWN: Mass, pressure, temperature, and specific volume of water vapor. .0 The specific volume of 5 kg of water vapor at.5 MPa, 440 o C is 0.60 m /kg. Determine (a) the volume, in m, occupied by the water vapor, (b) the amount of water vapor present, in gram moles, and (c)

More information

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed.

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed. GLOSSARY OF TERMS Absolute pressure Total pressure measured from absolute zero i.e. a perfect vacuum. As a practical matter, gauge pressure plus atmospheric pressure. Absolute temperature Temperature measured

More information

SAMPLE RH = P 1. where. P 1 = the partial pressure of the water vapor at the dew point temperature of the mixture of dry air and water vapor

SAMPLE RH = P 1. where. P 1 = the partial pressure of the water vapor at the dew point temperature of the mixture of dry air and water vapor moisture starts to condense out of the air. The temperature at which this happens is called the dew point temperature, or the saturation temperature. What is commonly called saturation pressure or condensing

More information

Device Description. Operating Information. CP Q (eq. 1) GT. Technical Bulletin TB-0607-CFP Hawkeye Industries Critical Flow Prover

Device Description. Operating Information. CP Q (eq. 1) GT. Technical Bulletin TB-0607-CFP Hawkeye Industries Critical Flow Prover A compressible fluid traveling at subsonic velocity through a duct of constant cross section will increase velocity when passing through a region of reduced cross-sectional area (in this case, an orifice)

More information

Natural Gas Gathering

Natural Gas Gathering Natural Gas Gathering Course No: R04-002 Credit: 4 PDH Jim Piter, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info@cedengineering.com

More information

Application Worksheet

Application Worksheet Application Worksheet All dimensions are nominal. Dimensions in [ ] are in millimeters. Service Conditions Medium Through Valve: Required C v : Temperature Maximum: Minimum: Normal: Flow Maximum: Minimum:

More information

Technical Committee on LP-Gas at Utility Gas Plants

Technical Committee on LP-Gas at Utility Gas Plants Technical Committee on LP-Gas at Utility Gas Plants Addendum to the Agenda Sheraton Denver Downtown 1550 Court Place Denver, CO 80202 August 7-8, 2013 The following items relate to item 5.B of the Agenda:

More information

ASSIGNMENT 2 CHE 3473

ASSIGNMENT 2 CHE 3473 DUE: May 23 ASSIGNMENT 2 CHE 3473 #Problem 1: 3.3 #Problem 2: 3.4 #Problem 3: 3.5 #Problem 4: 3.6 #Problem 5: 3.7 #Problem 6: 3.8 #Problem 7: 3.11 #Problem 8: 3.15 #Problem 9: 3.22 #Problem 10: 3.32 #Problem

More information

Quiz #1 Thermodynamics Spring, 2018 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS

Quiz #1 Thermodynamics Spring, 2018 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS Quiz #1 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS An astronaut has a mass of 161 lbm on the surface of the earth. Calculate his weight (in lbf) on planet Rigel 4 where g = 20.0 ft/s

More information

Gas viscosity ( ) Carr-Kobayashi-Burrows Correlation Method Lee-Gonzalez-Eakin Method. Carr-Kobayashi-Burrows Correlation Method

Gas viscosity ( ) Carr-Kobayashi-Burrows Correlation Method Lee-Gonzalez-Eakin Method. Carr-Kobayashi-Burrows Correlation Method Gas viscosity The viscosity of a fluid is a measure of the internal fluid friction (resistance) to flow. If the friction between layers of the fluid is small, i.e., low viscosity, an applied shearing force

More information

Calculation of Gas Density and Viscosity

Calculation of Gas Density and Viscosity Calculation of Gas Density and Viscosity Course No: H02-008 Credit: 2 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877)

More information

Analytic and Experimental Techniques for Evaluating Compressor Performance Losses

Analytic and Experimental Techniques for Evaluating Compressor Performance Losses Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1976 Analytic and Experimental Techniques for Evaluating Compressor Performance Losses J.

More information

Case 12 Multistage Centrifugal Refrigeration System Halocarbon Refrigerant

Case 12 Multistage Centrifugal Refrigeration System Halocarbon Refrigerant Case 12 Multistage Centrifugal Refrigeration System Halocarbon Refrigerant Copy Right By: Thomas T.S. Wan 温 ) April 15, 2011 All Rights Reserved Case Background: This case is to show how to achieve the

More information

ASSIGNMENT 2 CHE 3473

ASSIGNMENT 2 CHE 3473 DUE: May 21 ASSIGNMENT 2 CHE 3473 #Problem 1 Read Chapter 3. ALL OF IT. Time yourself and report the time. #Problem 2: 3.2 #Problem 3: 3.3 #Problem 4: 3.5 #Problem 5: 3.6 #Problem 6: 3.7 #Problem 7: 3.8

More information

Pressure Control. where: p is the pressure F is the normal component of the force A is the area

Pressure Control. where: p is the pressure F is the normal component of the force A is the area Pressure Control First of all, what is pressure, the property we want to control? From Wikipedia, the free encyclopedia. Pressure is the application of force to a surface, and the concentration of that

More information

Advanced Management of Compressed Air Systems Pre-Workshop Assignment

Advanced Management of Compressed Air Systems Pre-Workshop Assignment Advanced Management of Compressed Air Systems Page 1 In order to ensure that the Compressed Air Challenge Level II Training is most useful to you, it will be important for you to bring information about

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Absolute and Gage Pressure P abs = P gage + P atm where P abs = Absolute pressure P abs = Gage pressure P abs = atmospheric pressure A perfect vacuum is the lowest possible pressure.

More information

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Squire-Cogswell

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Squire-Cogswell ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Squire-Cogswell Squire Cogswell / Aeros Instruments, Inc. 1111 Lakeside Drive Gurnee, IL 60031 Phone: (800) 448-0770 Fax: (847) 855-6304 info@squire-cogswell.com

More information

Unit C-2: List of Subjects

Unit C-2: List of Subjects ES12 Energy Transfer Fundamentals Unit C: Thermodynamic ROAD MAP... C-1: p-v-t Relations C-2: Thermodynamic Property Tables Unit C-2: List of Subjects Thermodynamic Property Tables Saturated Liquid and

More information

Chapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams

Chapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams Chapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams In this chapter we consider the property values and relationships of a pure substance (such as water) which can exist in three phases

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Permeability. Darcy's Law

Permeability. Darcy's Law Permeability Permeability is a property of the porous medium that measures the capacity and ability of the formation to transmit fluids. The rock permeability, k, is a very important rock property because

More information

CRYOGENICS LIQUID NITROGEN AS A NON- POLLUTING FUEL

CRYOGENICS LIQUID NITROGEN AS A NON- POLLUTING FUEL CRYOGENICS LIQUID NITROGEN AS A NON- POLLUTING FUEL 1 INTRODUCTION: In 1997, the University of North Texas (UNT) and University of Washington (UW) independently developed liquid nitrogen powered vehicles

More information

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2 Chapter 6: Gases 6.1 Measurements on Gases MH5, Chapter 5.1 Let s look at a certain amount of gas, i.e. trapped inside a balloon. To completely describe the state of this gas one has to specify the following

More information

Single- or Two-Stage Compression

Single- or Two-Stage Compression The following article was published in ASHRAE Journal, August 2008. Copyright 2008 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented for educational purposes

More information

Figure 1 Schematic of opposing air bearing concept

Figure 1 Schematic of opposing air bearing concept Theoretical Analysis of Opposing Air Bearing Concept This concept utilizes air bearings to constrain five degrees of freedom of the optic as shown in the figure below. Three pairs of inherently compensated

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

Increase in Evaporation Caused by Running Spa Jets swhim.com

Increase in Evaporation Caused by Running Spa Jets swhim.com Increase in Evaporation Caused by Running Spa Jets swhim.com Nomenclature A pipe cross-section area, m D water inlet diameter of the venturi tube nozzle, mm diameter of small end of the throat of the venturi

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

More information

Fundamentals of Compressed Air Systems. Pre-Workshop Assignment

Fundamentals of Compressed Air Systems. Pre-Workshop Assignment Page 1 In order to ensure that the Compressed Air Challenge Fundamentals of Compressed Air Systems Training is most useful to you, it will be important for you to bring information about your plant s compressed

More information

Chapter 14-Gases. Dr. Walker

Chapter 14-Gases. Dr. Walker Chapter 14-Gases Dr. Walker State of Matter Gases are one of the four states of matter along with solids, liquids, and plasma Conversion to Gases From liquids Evaporation Example: Boiling water From solids

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

Capacity and pressure similar to R-507. Flooded systems. Low temperature (-46.7 C). R22 replacement as long as the condenser has the right size.

Capacity and pressure similar to R-507. Flooded systems. Low temperature (-46.7 C). R22 replacement as long as the condenser has the right size. TECHNICAL DATA SHEET R-428A () Features and uses of R-428A () R-428A (RS-45) is a non flammable azeotropic blend, with zero ODP, compatible with traditional mineral lubricants, alkyl benzene and also with

More information

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Sophie

More information

Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI

Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI Outline: Pure Substance Phases of pure substance Phase change process of pure substance Saturation temperature and saturation pressure

More information

Reservoir Fluid Fundamentals COPYRIGHT. Dry Gas Fluid Basic Workflow Exercise Review

Reservoir Fluid Fundamentals COPYRIGHT. Dry Gas Fluid Basic Workflow Exercise Review Pseudo-Critical Properties Reservoir Fluid Fundamentals Dry Gas Fluid Basic Workflow Exercise Review B C D E F 3 Separator Gas Specific Gravity 0.6300 [1/air] 0.6300 [1/air] 4 Separator Pressure 100.0

More information

ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Pure Substances Phase-Change Process of Pure Substances Specific Volume Saturation Temperature

More information

CORRECTING FOR HUMIDITY EFFECTS ON TSI GENERAL PURPOSE FLOWMETERS

CORRECTING FOR HUMIDITY EFFECTS ON TSI GENERAL PURPOSE FLOWMETERS CORRECTING FOR HUMIDITY EFFECTS ON TSI GENERAL PURPOSE FLOWMETERS APPLICATION NOTE FLOW-001 This application note applies to all TSI flowmeters equipped with a mini-din connector Like all thermal mass

More information

Part 6: Critical flow orifices

Part 6: Critical flow orifices Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 6145-6 Third edition 2017-07 Gas analysis Preparation of calibration gas mixtures using dynamic methods Part 6: Critical flow orifices Analyse

More information

UNUSUAL ASPECTS OF PUMP SYSTEMS. Jacques Chaurette p. eng. ww.lightmypump.com July 2003

UNUSUAL ASPECTS OF PUMP SYSTEMS. Jacques Chaurette p. eng. ww.lightmypump.com July 2003 UNUSUAL ASPECTS OF PUMP SYSTEMS Jacques Chaurette p. eng. ww.lightmypump.com July 2003 There are many unusual aspects to pump systems. It is some of these aspects that make pump systems fascinating for

More information

Comments on Homework. Quiz. Class 3 - Pressure. Atmospheric Pressure. 2. Gauge vs. Absolute Pressure. 1. Definitions. Temperature conversion

Comments on Homework. Quiz. Class 3 - Pressure. Atmospheric Pressure. 2. Gauge vs. Absolute Pressure. 1. Definitions. Temperature conversion Comments on Homework Quiz Temperature conversion T ( R) = T (K) 1.8 T ( C) = T(K) - 273.15 T ( F) = T( R) - 460 However, difference in temperature is: T ( C) = T (K) T ( F) = T ( R) T ( R) = 1.8 T ( C)

More information

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion Five assumptions: 1. Most of the volume occupied dby a gas is empty space 2. Collisions between gas particles

More information

Control Valve Sizing. Sizing & Selection 3 P 1. P 2 (Outlet Pressure) P V P VC. CONTENTS Introduction Nomenclature Calculating C v

Control Valve Sizing. Sizing & Selection 3 P 1. P 2 (Outlet Pressure) P V P VC. CONTENTS Introduction Nomenclature Calculating C v Sizing & Selection 3 Control Valve Sizing CONTENTS Introduction 3-1 Nomenclature 3-1 Calculating for Liquids 3-3 Liquid Sizing Examples 3-7 Calculating for Gases 3-10 Gas Sizing Examples 3-13 Calculating

More information

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

S.A. Klein and G.F. Nellis Cambridge University Press, 2011 16-1 A flow nozzle is to be used to determine the mass flow rate of air through a 1.5 inch internal diameter pipe. The air in the line upstream of the meters is at 70 F and 95 psig. The barometric pressure

More information

Another convenient term is gauge pressure, which is a pressure measured above barometric pressure.

Another convenient term is gauge pressure, which is a pressure measured above barometric pressure. VACUUM Theory and Applications Vacuum may be defined as the complete emptiness of a given volume. It is impossible to obtain a perfect vacuum, but it is possible to obtain a level of vacuum, defined as

More information

Updated Performance and Operating Characteristics of a Novel Rotating Spool Compressor

Updated Performance and Operating Characteristics of a Novel Rotating Spool Compressor Updated Performance and Operating Characteristics of a Novel Rotating Spool Compressor Joe Orosz Torad Engineering Cumming, Georgia Craig R. Bradshaw, PhD Torad Engineering LLC Cumming, Georgia Greg Kemp

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3.

Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3. Gas density Because the density of a substance is defined as mass per unit volume, the density of gas (ρ g ), at given temperature and pressure can be derived as follows: If P in psia, T in ⁰R and R =

More information

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure. Chapter 12 Section 1 Pressure A gas exerts pressure on its surroundings. Blow up a balloon. The gas we are most familiar with is the atmosphere, a mixture of mostly elemental nitrogen and oxygen. Pressure

More information

EXAM # 2. First Name Last Name CIRCLE YOUR LECTURE BELOW: INSTRUCTIONS

EXAM # 2. First Name Last Name CIRCLE YOUR LECTURE BELOW: INSTRUCTIONS CIRCLE YOUR LECTURE BELOW: First Name Last Name Div. 1 08:30 am Prof. Chen Div. 2 11:30 am Prof. Braun EXAM # 2 INSTRUCTIONS 1. This is a closed book examination. You are allowed to have two single sheets

More information

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

More information

Unit A-2: List of Subjects

Unit A-2: List of Subjects ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A-1: Introduction to Thermodynamics A-2: Engineering Properties Unit A-2: List of Subjects Basic Properties and Temperature Pressure

More information

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015 FDE 211 Material & Energy Balances Instructor: Dr. Ilgin Paker Yikici Fall 2015 Material& Energy Balances first step in understanding a process leads to a better understanding of a process forces the engineer

More information

ES&H Manual Pressure and Vacuum Systems Safety Supplement

ES&H Manual Pressure and Vacuum Systems Safety Supplement Part 6: Pressure and Leak Testing QA/CI Dept. PS Committee/Chair 11/06/15 11/06/20 1.0 6:1 of 6 1 Pressure and Leak Testing The primary reason for pressure testing is to confirm the integrity of a pressure

More information

Detailed Thermal Inbreathing Analysis for API 12-F Tanks

Detailed Thermal Inbreathing Analysis for API 12-F Tanks Detailed Thermal Inbreathing Analysis for API 12-F Tanks July 11, 2016 Background Venting of atmospheric and low pressure storage tanks is an important aspect of the tanks overall design in order to prevent

More information

CHAPTER 3 : AIR COMPRESSOR

CHAPTER 3 : AIR COMPRESSOR CHAPTER 3 : AIR COMPRESSOR Robotic & Automation Department FACULTY OF MANUFACTURING ENGINEERING, UTeM Learning Objectives Identify types of compressors available Calculate air capacity rating of compressor

More information

FIREX200 CLEAN AGENT FIRE SUPPRESSION SYSTEM

FIREX200 CLEAN AGENT FIRE SUPPRESSION SYSTEM CYLINDERS Agent Tank The agent storage tank consists of a high pressure steel tank fitted with a valve and internal siphon tube, factory filled with FIREX200 gas (HFC-227 ea), and super-pressurized with

More information

Pneumatic Power Topics:

Pneumatic Power Topics: Pneumatic Power Pneumatic Power Topics: Pneumatic power Pneumatics vs. hydraulics Early pneumatic uses Properties of gases Pascal s Law Perfect gas laws Boyle s Law Charles Law Gay-Lussac s Law Common

More information

Troubleshooting Guide. Pg. 1

Troubleshooting Guide. Pg. 1 Troubleshooting Guide Pg. 1 Introduction to Automotive HVAC: Introduction to an AC System Review of AC System and components. Pg. 2 Troubleshooting: AC system Components AC System and its Components Receiver/

More information

Comments on Homework. Class 4 - Pressure. Atmospheric Pressure. Gauge vs. Absolute Pressure. 2. Gauge vs. Absolute Pressure. 1.

Comments on Homework. Class 4 - Pressure. Atmospheric Pressure. Gauge vs. Absolute Pressure. 2. Gauge vs. Absolute Pressure. 1. Class 4 - Pressure 1. Definitions 2. Gauge Pressure 3. Pressure and Height of Liquid Column (Head) 4. Pressure Measurement and Manometers Please don t forget the special problem for the next HW assignment

More information

Testing of Low GWP Replacements for R-410A in Stationary Air Conditioning

Testing of Low GWP Replacements for R-410A in Stationary Air Conditioning Testing of Low GWP Replacements for R-410A in Stationary Air Conditioning Joshua Hughes Sonali Shah July 11-14, 2016 Outline Introduction Thermodynamic Properties System Testing Thermal Stability Lubricant

More information

CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438

CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438 CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO. 10 Jerry Paul Smith Joel Clancy JPS Measurement Consultants, Inc Colorado Engineering Experiment Station, Inc (CEESI) 13002 Walnut Lake

More information

AIAA Brush Seal Performance Evaluation. P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND

AIAA Brush Seal Performance Evaluation. P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND AIAA 98-3172 Brush Seal Performance Evaluation P. F. Crudgington Cross Manufacturing Co. Ltd. Devizes, ENGLAND BRUSH SEAL PERFORMANCE EVALUATION AIAA-98-3172 P. F. Crudgington Cross Manufacturing Co. Ltd

More information

A Numerical Study of the Performance of a Heat Exchanger for a Miniature Joule-Thomson Refrigerator

A Numerical Study of the Performance of a Heat Exchanger for a Miniature Joule-Thomson Refrigerator A Numerical Study of the Performance of a Heat Exchanger for a Miniature Joule-Thomson Refrigerator Yong-Ju Hong 1, Seong-Je Park 1, and Young-Don Choi 2 1 Korea Institute of Machinery & Materials, Daejeon,

More information

Instructions for SMV 3000 Multivariable Configuration (MC) Data Sheets

Instructions for SMV 3000 Multivariable Configuration (MC) Data Sheets Instructions for SMV 3000 Multivariable Configuration (MC) Data Sheets Similar to the TC option for ST 3000 transmitters, the MC option for the SMV 3000 provides a service to our customers which results

More information

ASHRAE made significant changes in 2001 to the calculations. Fundamentals of Safety Relief Systems

ASHRAE made significant changes in 2001 to the calculations. Fundamentals of Safety Relief Systems 2008, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Journal, Vol. 50, February 2008. This posting is by permission of ASHRAE. Additional

More information

Hydrostatic pressure Consider a tank of fluid which contains a very thin plate of (neutrally buoyant) material with area A. This situation is shown in Figure below. If the plate is in equilibrium (it does

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

Hand-operated regulating valves in stainless steel Types REG-SA SS and REG-SB SS

Hand-operated regulating valves in stainless steel Types REG-SA SS and REG-SB SS Data sheet Hand-operated regulating valves in stainless steel Types REG-SA SS and REG-SB SS In certain specific areas such as outdoor applications and corrosive atmospheres, such as coastal installations,

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid

More information

The Hoffman Specialty Series 2000 consists of main

The Hoffman Specialty Series 2000 consists of main Pressure and/or Temperature Pilot Operated Steam Series 2000 The Hoffman Specialty Series 2000 consists of main valves, pilot valves, wells and hardware kits. They are designed to meet a wide range of

More information

Name: Chapter 13: Gases

Name: Chapter 13: Gases Name: Chapter 13: Gases Gases and gas behavior is one of the most important and most fun things to learn during your year in chemistry. Here are all of the gas notes and worksheets in two packets. We will

More information

Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device Brian J. Leege A thesis submitted in partial fulfillment of the requirements for the degree of

More information

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very Properties of Gases Gases have Gases Gases exert Gases fill their containers Behavior of Gases Gases are mostly The molecules in a gas are separate, very small and very Kinetic Theory of Matter: Gas molecules

More information

OVERVIEW. Flow Coefficient C v. Operating Conditions. Specific Gravity

OVERVIEW. Flow Coefficient C v. Operating Conditions. Specific Gravity VERVIEW This valve sizing software program is based on the use of nomenclature and sizing equations from ISA Standard S75.01 and IEC Standard 534-2. The sizing equations are based on equations for predicting

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

EDUCTOR. principle of operation

EDUCTOR. principle of operation EDUCTOR principle of operation condensate and mixing eductor s are designed to mix two liquids intimately in various proportions in operations where the pressure liquid is the greater proportion of the

More information

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam.

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam. Name: Period: Unit 2 Packet Energy and States of Matter Unit 2 Packet Contents Sheet (This Paper!) Unit 2 Objectives Notes: Kinetic Molecular Theory of Gases- 3 pgs (with Behavior of Gases Reading, and

More information

Scott Denning CSU CMMAP 1

Scott Denning CSU CMMAP 1 Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic Lapse Rates Dry and Moist Convective Motions Present Atmospheric Composition What

More information

Effect of Coiled Capillary Tube Pitch on Vapour Compression Refrigeration System Performance

Effect of Coiled Capillary Tube Pitch on Vapour Compression Refrigeration System Performance Effect of Coiled Capillary Tube Pitch on Vapour Compression Refrigeration System Performance Mutalubi Aremu Akintunde Federal University of Technology, Department of Mechanical Engineering Akure, Ondo

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Basic and Applied Thermodynamics First Law of Thermodynamics Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India)

More information

Enter your parameter set number (1-27)

Enter your parameter set number (1-27) 1- Helium balloons fly and balloons with air sink. Assume that we want to get a balloon that is just floating in the air, neither rising nor falling, when a small weight is placed hanging in the balloon.

More information

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant.

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant. PTT 04/ Applied Fluid Mechanics Sem, Session015/016 ASSIGNMENT 1 CHAPTER AND CHAPTER 1. The air in an automobile tire with a volume of 0.0740 m is at 0 C and 140 kpa. Determine the amount of air that must

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 95 CHIEF

More information

Feasibility of Developing a Refrigerant-Based Propulsion System for Small Spacecraft

Feasibility of Developing a Refrigerant-Based Propulsion System for Small Spacecraft Feasibility of Developing a Refrigerant-Based Propulsion System for Small Spacecraft Carl Seubert, et al. Small Satellite Conference August 14 th 2007 Outline Background Propulsion system requirements

More information

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7.

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7. Phys101 Lectures 21-22 Fluids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 10-1,2,3,4,5,6,7. Page 1 10-1 Phases of Matter The three common phases of matter are solid,

More information

Honors Chemistry Unit 7 Gas Laws Notes

Honors Chemistry Unit 7 Gas Laws Notes Honors Chemistry Unit 7 Gas Laws Notes Kinetic Molecular Theory 1. List the five assumptions: Assumption Description Extra Info 1 Basically means: the particles themselves have compared to the space between

More information

Evaporating Pressure Regulating Valve Type KVQ REFRIGERATION AND AIR CONDITIONING. Technical leaflet

Evaporating Pressure Regulating Valve Type KVQ REFRIGERATION AND AIR CONDITIONING. Technical leaflet Evaporating Pressure Regulating Valve Type KVQ REFRIGERATION AND AIR CONDITIONING Technical leaflet Contents Page Introduction...3 Features...3 Technical data...4 Ordering...4 Sizing...5 Valve selection...5

More information

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg. Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

Pressure Measurements

Pressure Measurements ME 22.302 Mechanical Lab I Pressure Measurements Dr. Peter Avitabile University of Massachusetts Lowell Pressure - 122601-1 Copyright 2001 A transducer is a device that converts some mechanical quantity

More information

TUTORIAL. NPSHA for those who hate that stuffy word. by Jacques Chaurette p. eng. copyright 2006

TUTORIAL. NPSHA for those who hate that stuffy word. by Jacques Chaurette p. eng.  copyright 2006 TUTORIAL NPSHA for those who hate that stuffy word by Jacques Chaurette p. eng. www.lightmypump.com copyright 2006 page.2 NPSHA for those who hate that stuffy word This article follows the same approach

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

CHEMISTRY - CLUTCH CH.5 - GASES.

CHEMISTRY - CLUTCH CH.5 - GASES. !! www.clutchprep.com CONCEPT: UNITS OF PRESSURE Pressure is defined as the force exerted per unit of surface area. Pressure = Force Area The SI unit for Pressure is the, which has the units of. The SI

More information