Inquiry Investigation: Factors Affecting Photosynthesis

Size: px
Start display at page:

Download "Inquiry Investigation: Factors Affecting Photosynthesis"

Transcription

1 Inquiry Investigation: Factors Affecting Photosynthesis Background Photosynthesis fuels ecosystems and replenishes the Earth's atmosphere with oxygen. Like all enzyme-driven reactions, the rate of photosynthesis can be measured by either the disappearance of substrate, or the accumulation of products. The equation for photosynthesis is: 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 What could you measure to determine the rate of photosynthesis? 1) the production of oxygen 2) The consumption of carbon dioxide The difficulty related to measuring the production of oxygen is compounded by the complementary process of aerobic respiration consuming oxygen as it is produced. Therefore, measuring oxygen production is equivalent to measuring net photosynthesis. A measurement of respiration in the same system allows one also to estimate the gross production. Figure 1 The cells of a leaf are arranged in layers. Learning Objectives To design and conduct an experiment to explore the effect of a factor that affects photosynthesis. To connect and apply concepts, including the relationship between cell structure and function, strategies for capture and stores of energy, and the diffusion of gases across membranes. Floating Leaf Disk Assay In this investigation, you will use a system that measures the accumulation of oxygen in the leaf. The leaf is composed of layers of cells. The spongy mesophyll layer is normally infused with gases, oxygen and carbon dioxide. Leaves (or disks cut from leaves) will normally float in water because of these gases. If you draw the gases out from the spaces, then the leaves will sink because they become more dense than water. If this leaf disk is placed in a solution with an alternate source of carbon dioxide (in the form of bicarbonate ions) then photosynthesis can occur in a sunken leaf disk. As photosynthesis proceeds, oxygen accumulates in the air spaces of the spongy mesophyll and the leaf becomes buoyant and floats. Oxygen and carbon dioxide are exchanged through openings in the leaf called stoma. Figure 2

2 Basic Procedure for Measuring the Rate of Photosynthesis Materials: baking soda, liquid soap, plastic syringes, leaves (spinach or ivy; something smooth and not too thick; avoid plants with hairy leaves), hole punch, cups or beakers, timer, light source 1. The bicarbonate serves as an alternate dissolved source of carbon dioxide for photosynthesis. Prepare 3 ml of a.2% solution. (This is not very much - it is only about 1/8 of a teaspoon of baking soda in 3 ml of water.) 2. Add 1 drop of dilute liquid soap to this solution. The soap wets the hydrophobic surface of the leaf, allowing the solution to be drawn into the leaf. It s difficult to quantify this since liquid soaps vary in concentration. Avoid suds. If your solution generates suds then dilute it with more bicarbonate solution. 3. Use a hole puncher to cut uniform leaf disks 1 for each trial. Take care to avoid major veins. 4. Place 1 leaf disks into the syringe and pull in a small volume of the bicarbonate and soap solution. Replace the plunger and push out most of the air, but do not crush your leaves. 5. Create a vacuum by covering the tip of the syringe with your finger. Draw back on the plunger. 6. Release the vacuum so that the solution will enter the disks. You will probably have to repeat this procedure 2-3 times in order to get the disks to sink. You may need to gently tap the syringe to dislodge discs from the sides. If you have difficulty getting your disks to sink after about 3 evacuations, it is usually because there is not enough soap in the solution. Add a few more drops of soap to the bicarbonate solution, and try again with new leaf disks. 7. Pour the disks and solution into a clear plastic cup. Add bicarbonate solution to a depth of about 3 centimeters. Use the same depth for each trial. Shallower depths work just as well. 8. Place under the light source and start the timer. At the end of each minute, record the number of floating disks. Then swirl the disks to dislodge any that are stuck against the sides of the cups. Continue until all of the disks are floating. Figure 3 Figure 4

3 Analyzing Data In this experiment, the disks floating are counted at the end of each time interval. The time required for 5% of the leaf disks to float is represented as Effective Time = ET 5. Repeated testing of this procedure has shown that the ET 5, or median is a reliable and repeatable point of reference, to make comparisons between experiments. The median will generally provide the best estimate of the central tendency of the data because, on occasion, a disk fails to rise or takes a very long time to do so. These data are from a demonstration investigation using grape ivy leaf disks. Table 1. Sample results Minutes Disks floating Leaf Disks Floating Time (min) Figure 5 By interpolating from the graph, the 5% floating point is about 11.5 minutes. Using the 5% point provides a greater degree of reliability and repeatability for this procedure. As Steucek, et. al. (1985) described this term is referred to as the ET 5. Therefore, the ET 5 for this experiment is 11.5 minutes. The problem with ET5 is that it goes down as the rate of photosynthesis goes up--it is an inverse relationship and creates the following type of graph (data from Steucek, et al ): 25 2 ET 5 (min) Light Intensity (FT C) Figure 6. Plot of ET5 over a range of light intensities. As light intensity increases, ET5 decreases, indicating an increase in photosynthetic rate.

4 To correct for this representation of the data and present a graph that shows increasing rates of photosynthesis with a positive slope the ET 5 term can be modified by taking the inverse or 1/ET 5. This creates a graph like this (data from Steucek, et al ):.15 1/ET 5 (min 1 ) Light Intensity (FT C) Figure 7 Designing an Experiment Choose one factor to test. Consider the following: Environmental Variables light intensity light colour temperature bicarbonate concentration direction of incoming light ph of solution Plant or Leaf Variables leaf colour (amount of chlorophyll) leaf size stomata density stomata distribution light-starved leaves vs. leaves kept in bright light type of plant leaf age leaf variegation Assignment It is your task to design and carry out a controlled experiment that tests the effect of one factor, on net oxygen production. Factors to consider: What are my variables independent, dependent? How many different conditions (values) for my independent variable will I be testing? What factors need to be controlled? How exactly will I carry out my experiment? What should my data table look like? You will only be provided with the following:.2% sodium bicarbonate solution (if you want a higher concentration, you will have to prepare this yourself), hole punch, spinach leaves, dish soap, beakers or cups. You must supply everything else.

5 Evaluation You must submit a formal lab report with the following components: Abstract - Concisely summarize the entire experiment. Include the purpose, a brief overview of the methods used, and the conclusions obtained. It should be no more than a few sentences long. Introduction - Include the goal of your experiment, and all background information and scientific concepts on which your experiment is based. This includes the general technique you will be using to accomplish your goal. You must cite all information internally. Concepts should be clearly tied together. You should address the following in some order: o photosynthesis, and the factors that can affect its rate o the factor you have chosen to investigate, and its hypothesized effects o background information on the leaf disk assay o the purpose of your experiment Procedure - In a paragraph or two, briefly summarize the procedure you followed in the lab. Include only the steps that are relevant to the experiment (i.e., don't mention putting on goggles, cleaning up glassware, etc.). Do not include steps you used to analyze your data or observations. Remember that you want to provide enough information that your reader has a clear idea of how you carried out the experiment, but you also do not want to provide so much detail that it is overwhelming. Materials List the substances and equipment used during this lab experiment. These may not be exactly the same as the ones on the lab handout. For chemicals, include relevant chemical formulas and quantities. Results Re-copy your observation table(s). One sample plot of Floating Disks vs. Time. This is the plot you use to determine ET 5. You will have to construct one for each of your experimental conditions, but you need only include one in your report. A table showing the value of ET 5 and 1/ET 5 for each experimental condition. A figure that clearly compares 1/ET 5 for each of your conditions. Scatter plot For continuous (quantitative) variables, like temperature Bar graph For categorical (qualitative) variables, like leaf colour Be sure to include table headings (number and title) and figure captions (number and description) where necessary. Discussion - Write your Discussion in paragraph form. You will need to cite any information obtained by research. Address the following topics, in some order. In 2-3 sentences, summarize the steps you took to analyze your raw data/observations (i.e., describe any calculations you did, or interpretation of data), and any trends you observed. Explain the relationship you observed (if any). Did you see what you expected to? If yes, briefly remind the reader why. If no, account for this. Relate your results to a real-world application How can this knowledge be applied in a useful way? (Do some research here.) Make reference to what you observed in your experiment. Comment on the accuracy of the experiment: Are the results are accurate? Explain why or why not, by commenting on three possible sources of error. Suggest two possible changes to the procedure of this lab that would produce more accurate results. Suggest a possible extension for this lab experiment. Conclusion - Refer back to the goals of your experiment, and summarize the outcome. Did you achieve your goal? If you did not achieve your purpose, or your hypothesis was not correct, state why. If there were any major sources of error, be sure to include them. Citations - Properly cite all sources both internally, and in a works cited list at the end of your report. Use APA citation style. You should have at least three reliable sources.

LAB 06 Organismal Respiration

LAB 06 Organismal Respiration LAB 06 Organismal Respiration Objectives: To learn how a respirometer can be used to determine a respiration rate. Identify and explain the effect of seed germination on cell respiration. To design and

More information

AP Biology. Investigation 6: Cellular Respiration. Investigation 6: Cellular Respiration. Investigation 6: Cellular Respiration

AP Biology. Investigation 6: Cellular Respiration. Investigation 6: Cellular Respiration. Investigation 6: Cellular Respiration AP Biology Learning Objectives Investigation 6: Cellular Respiration To learn how a respirometer system can be used to measure respiration rates in plant seeds or small invertebrates, such as insects or

More information

STAGE 2 BIOLOGY PHOTOSYNTHESIS TASK SHEET BASIC METHOD

STAGE 2 BIOLOGY PHOTOSYNTHESIS TASK SHEET BASIC METHOD STAGE 2 BIOLOGY PHOTOSYNTHESIS TASK SHEET BASIC METHOD Materials: Fresh green leaves (e.g. Ivy) 50mL plastic syringe 50mL measuring cylinder 2x100mL glass beaker distilled water 6% sodium bicarbonate solution

More information

Enzyme Activity Lab. Wear safety goggles when handling hydrogen peroxide.

Enzyme Activity Lab. Wear safety goggles when handling hydrogen peroxide. Enzyme Activity Lab This laboratory involves the use of an enzyme that will react with hydrogen peroxide. The enzyme is catalase and hydrogen peroxide (H2O2) is the substrate. The reaction is as follows:

More information

Homeostasis and Negative Feedback Concepts and Breathing Experiments 1

Homeostasis and Negative Feedback Concepts and Breathing Experiments 1 Homeostasis and Negative Feedback Concepts and Breathing Experiments 1 I. Homeostasis and Negative Feedback Homeostasis refers to the maintenance of relatively constant internal conditions. For example,

More information

What factors affect the rate of cellular respiration in multicellular organisms?

What factors affect the rate of cellular respiration in multicellular organisms? INV~t:;TIGATION 6 CELLULAR RESPIRATION* What factors affect the rate of cellular respiration in multicellular organisms? BACKGROUND Living systems require free energy and matter to maintain order, to grow,

More information

See if you can determine what the following magnified photos are. Number your paper to 5.

See if you can determine what the following magnified photos are. Number your paper to 5. Challenge 7 See if you can determine what the following magnified photos are. Number your paper to 5. The Answers: EXPERIMENTAL DESIGN Science answers questions with experiments DEFINE THE PROBLEM Begin

More information

STAT 115 : INTRO TO EXPERIMENTAL DESIGN. Science answers questions with experiments

STAT 115 : INTRO TO EXPERIMENTAL DESIGN. Science answers questions with experiments STAT 115 : INTRO TO EXPERIMENTAL DESIGN Science answers questions with experiments 1 DEFINE THE PROBLEM Begin by asking a question about your topic What is a good question for an experiment? One that is

More information

CLASS COPY-DO NOT WRITE ON

CLASS COPY-DO NOT WRITE ON Save Our Shells - Central Question: How does carbon dioxide affect salt water? CLASS COPY-DO NOT WRITE ON Overview of experiment: Exhaling carbon dioxide into a beaker of salt water mimics the gas exchange

More information

MiSP Photosynthesis Lab L3

MiSP Photosynthesis Lab L3 MiSP Photosynthesis Lab L3 Name Date Objective: To compare the number of bubbles of oxygen produced over a period of time by an aquarium plant (elodea) when light intensity is changed. Introduction: Materials:

More information

Preliminary Biology Assessment Task #1. Part 1 is to be completed and handed in before the start of period 1 on Friday 13/05/2016.

Preliminary Biology Assessment Task #1. Part 1 is to be completed and handed in before the start of period 1 on Friday 13/05/2016. Preliminary Biology Assessment Task #1 Assessment Overview: There are THREE (3) parts to this assessment. Part 1: Research and planning; To be done in own time. Part 1 is to be completed and handed in

More information

LABORATORY INVESTIGATION

LABORATORY INVESTIGATION LABORATORY INVESTIGATION MEASURING THE RATE OF PHOTOSYNTHESIS Light and Photosynthesis About 2.5-3 billion years ago a new chemical process, photosynthesis, was evolved by a unicellular life form. This

More information

UNIT 2 Chapter 3. Elodea and Photosynthesis. The Origins of Life. Learning Outcomes: Chapter 3 Lab/Activity #2. Introduction: Safety Issues:

UNIT 2 Chapter 3. Elodea and Photosynthesis. The Origins of Life. Learning Outcomes: Chapter 3 Lab/Activity #2. Introduction: Safety Issues: The Origins of Life UNIT 2 Chapter 3 Name: Section: Date: Chapter 3 Lab/Activity #2 Elodea and Photosynthesis Introduction: Photosynthetic organisms (cyanobacteria) first evolved about 3.5 billion years

More information

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8. Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

More information

Aerobic Respiration. Evaluation copy

Aerobic Respiration. Evaluation copy Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

More information

AP Biology Lab - Cell Respiration

AP Biology Lab - Cell Respiration AP Biology Lab - Cell Respiration This investigation uses respirometry techniques to calculate the rate of oxygen consumption (cellular respiration) in germinating pea seeds. The effect of temperature

More information

C 6 H 12 O 6 + 6O 2 6H CO kilocalories of energy/mole of glucose

C 6 H 12 O 6 + 6O 2 6H CO kilocalories of energy/mole of glucose Objectives Before doing this lab you should understand respiration, dormancy, and germination. After doing this lab you should be able to relate gas production to respiration rate. Introduction Aerobic

More information

Evaluation copy. Interdependence of Plants and Animals. computer OBJECTIVES MATERIALS

Evaluation copy. Interdependence of Plants and Animals. computer OBJECTIVES MATERIALS Interdependence of Plants and Animals Computer 14 Plants and animals share many of the same chemicals throughout their lives. In most ecosystems, O 2, CO 2, water, food and nutrients are exchanged between

More information

APBiology Unit 2, Chapter 8

APBiology Unit 2, Chapter 8 APBiology Unit 2, Chapter 8 Research Question What factors affect the rate of cellular respiration in multicellular organisms? Background Living systems require free energy and matter to maintain order,

More information

AP Biology 12 Cellular Respiration Lab

AP Biology 12 Cellular Respiration Lab AP Biology 12 Cellular Respiration Lab Background: Each individual cell is responsible for the energy exchanges necessary to sustain its ordered structure. Cells accomplish this task by breaking down nutrient

More information

Students measure the change in pressure by varying the volume of trapped air in a syringe while:

Students measure the change in pressure by varying the volume of trapped air in a syringe while: How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students

More information

Experiment 18 Properties of Gases

Experiment 18 Properties of Gases Experiment 18 Properties of Gases E18-1 E18-2 The Task In this experiment you will investigate some of the properties of gases, i.e. how gases flow, their phase changes and chemical reactivity. Skills

More information

STRUCTURED INQUIRY: Investigating Surface Area to Volume Ratio in Cells

STRUCTURED INQUIRY: Investigating Surface Area to Volume Ratio in Cells STRUCTURED INQUIRY: Investigating Surface Area to Volume Ratio in Cells Introduction: All organisms are composed of cells. The size and shape of a cell determines how well it can deliver nutrients to its

More information

FISH 415 LIMNOLOGY UI Moscow

FISH 415 LIMNOLOGY UI Moscow Sampling Equipment Lab FISH 415 LIMNOLOGY UI Moscow Purpose: - to familiarize you with limnological sampling equipment - to use some of the equipment to obtain profiles of temperature, dissolved oxygen,

More information

Gas Exchange ACTIVITY OVERVIEW SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY. Teacher s Guide B-75 L A B O R ATO R Y

Gas Exchange ACTIVITY OVERVIEW SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY. Teacher s Guide B-75 L A B O R ATO R Y Gas Exchange 17 40- to 2 50-minute sessions ACTIVITY OVERVIEW L A B O R ATO R Y SUMMARY This activity explores the role of the respiratory system in the regulation of gases in the blood. Students investigate

More information

Investigating Sinking and Floating

Investigating Sinking and Floating Chapter 13 Forces in Fluids Investigation 13A Investigating Sinking and Floating Background Information When an object is placed in a fluid, the force of gravity causes part or all of the object to sink

More information

Lab: The Effect of Exercise on Cellular Respiration

Lab: The Effect of Exercise on Cellular Respiration Lab: The Effect of Exercise on Cellular Respiration Purpose: To analyze the effect the exercise has on breathing rate, heart rate, and carbon dioxide production Background Information: Cellular respiration

More information

Lab Partners. Yeasty Beasties Lab and Experimental Design Write-Up

Lab Partners. Yeasty Beasties Lab and Experimental Design Write-Up Name Date Lab Partners Yeasty Beasties Lab and Experimental Design Write-Up *this lab was adapted from the Yeasty-Beasties Lab at the following web address: http://www.sciencebuddies.org/science-fair-projects/project_ideas/microbio_p011.shtml#help

More information

Kenyana Wesley, Luke Grater, Katie Dionne

Kenyana Wesley, Luke Grater, Katie Dionne Scientific Method Lab Name: Samantha Addington, Kenyana Wesley, Luke Grater, Katie Dionne A method by which a scientist solves a problem is called a scientific method. This method usually includes observation,

More information

Title: Solubility of Gas A Daily Experience. Subject: Chemistry. Grade Level: 10 th 12 th

Title: Solubility of Gas A Daily Experience. Subject: Chemistry. Grade Level: 10 th 12 th Title: Solubility of Gas A Daily Experience Subject: Chemistry Grade Level: 10 th 12 th Rational or Purpose: This lesson brings an everyday life experience to students knowledge on solubility of gas in

More information

BASIS Lesson Plan. *Note to teachers: Detailed standards connections can be found at the end of this lesson plan.

BASIS Lesson Plan. *Note to teachers: Detailed standards connections can be found at the end of this lesson plan. Lesson Name: States of Matter Grade Level: 5 Presenter(s): The Long Group Standards Connection(s): BASIS Lesson Plan California Science Standards: Grade 5 Physical Sciences Next Generation Science Standards:

More information

Before you start sampling, be sure to read

Before you start sampling, be sure to read 6. DISSOLVED OXYGEN MONITORING: MONITORING: Using the Titration Method Before you start sampling, be sure to read the following pages to familiarize yourself with the equipment and the procedures that

More information

MARK SCHEME for the October/November 2012 series 0610 BIOLOGY. 0610/51 Paper 5 (Practical Test), maximum raw mark 40

MARK SCHEME for the October/November 2012 series 0610 BIOLOGY. 0610/51 Paper 5 (Practical Test), maximum raw mark 40 CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the October/November 2012 series 0610 BIOLOGY 0610/51 Paper 5 (Practical Test), maximum raw

More information

1. Determining Solution Concentration

1. Determining Solution Concentration In this exercise you will determine the concentration of salt solutions by measuring samples with known concentration and making a calibration curve. You will review units of concentration, and how to

More information

Exercise & Cellular Respiration

Exercise & Cellular Respiration Exercise & Cellular Respiration Name: Block: Background Information. Cellular respiration (see chemical reaction below) is a chemical reaction that occurs in your cells to create energy; when you are exercising

More information

TeachEngineering.org - Free resources for K-12 1/7

TeachEngineering.org - Free resources for K-12 1/7 Activity: Yeast Cells Respire, Too (But Not Like Me and You) Summary Bubbles floating Students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses

More information

Heat-Trapping Gases Lab

Heat-Trapping Gases Lab Heat-Trapping Gases Lab Before performing the lab, show this video to the students. http://spark.ucar.edu/greenhouse-effect-movie-scott-denning Objective: The main goal of this activity is instrumentally

More information

Name: Period: Date: PHOTOSYNTHESIS, CELLULAR RESPIRATION AND EXERCISE LAB / 38

Name: Period: Date: PHOTOSYNTHESIS, CELLULAR RESPIRATION AND EXERCISE LAB / 38 PHOTOSYNTHESIS, CELLULAR RESPIRATION AND EXERCISE LAB / 38 PURPOSE: The purpose of this lab activity is to analyze the affect of exercise on cellular respiration. LAB BACKGROUND: I. Purpose To observe

More information

Part II. Under Construction Station Instructions. Lab Station A - Blue Print: There is O 2 Here!

Part II. Under Construction Station Instructions. Lab Station A - Blue Print: There is O 2 Here! Lab Station A - Blue Print: There is O 2 Here! Description: In this lab, you will consider the problem: What happened to the oxygen in the air we breathed in? Air that enters the body upon inhalation contains

More information

The use of the analytical balance, and the buret.

The use of the analytical balance, and the buret. 1211L Experiment 1. Density 2015 by H. Patterson Instructor Notes: Students make measurements individually then share data to make the graph. There are four volumetric measurements to be studied; 3.00

More information

Lab 5- Cellular Respiration

Lab 5- Cellular Respiration Lab 5- Cellular Respiration Background: Many cellular processes require energy. Aerobic cellular respiration supplies energy by the oxidation of glucose. This is a complex process involving a number of

More information

Biology Unit 2, Structure of Life, Lab Activity 2-3

Biology Unit 2, Structure of Life, Lab Activity 2-3 Biology Unit 2, Structure of Life, Lab Activity 2-3 Cellular respiration is the release of energy from organic compounds by metabolic chemical oxidation in the mitochondria within each cell. Cellular respiration

More information

GRADE 6: Materials 1. UNIT 6M.1 7 hours. Solubility. Resources. About this unit. Previous learning. Expectations. Key vocabulary and technical terms

GRADE 6: Materials 1. UNIT 6M.1 7 hours. Solubility. Resources. About this unit. Previous learning. Expectations. Key vocabulary and technical terms GRADE 6: Materials 1 Solubility UNIT 6M.1 7 hours About this unit This is the first of four units on materials in Grade 6. This unit builds on the study of the properties of water in Unit 5M.1. Unit 7M.1

More information

Biology Project. Investigate and compare the quantitative effects of changing,

Biology Project. Investigate and compare the quantitative effects of changing, Biology Project Investigate and compare the quantitative effects of changing, (i) the duration of light physical and (ii) the time elapsed since the stopped on the pulse rate of a person. www.mrcjcs.com

More information

Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Investigating Factors That Affect Tsunami Inundation A Science Inquiry Investigating Factors That Affect Tsunami Inundation A Science Inquiry Students build tsunami wave tanks to learn about the affect that both near-coast bathymetry (submarine topography) and coastal landforms

More information

R: The Ideal Gas Constant Pre-Lab Assignment

R: The Ideal Gas Constant Pre-Lab Assignment R: The Ideal Gas Constant Pre-Lab Assignment Read the entire laboratory investigation and the relevant pages in your textbook, then answers the questions that follow in the space provided below. 1 Describe

More information

Best Bubbles Teacher Notes

Best Bubbles Teacher Notes Best Bubbles Teacher Notes By: Louise Lopes Introduction: It is hard to think of anything more mesmerising than bubbles! These free-floating translucent orbs which display rainbow colours are not only

More information

Chapter 1, Lesson 5: Air, It s Really There

Chapter 1, Lesson 5: Air, It s Really There Chapter 1, Lesson 5: Air, It s Really There Key Concepts In a gas, the particles (atoms and molecules) have weak attractions for one another. They are able to move freely past each other with little interaction

More information

acrolein, acetaldehyde and acetone( cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ).

acrolein, acetaldehyde and acetone( cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ). acrolein, acetaldehyde and acetone(1550 1800 cm -1 ); methanol (1306 cm -1 ); ethylene (949 cm -1 ); and isoprene (893 cm -1 ). 5 Figure 4a 6 Figure 4b Figure 4c 7 Figure 5 Questions in Student Handout

More information

Before doing this lab you should understand:

Before doing this lab you should understand: RVE CELL RESPIRATION OVERVIEW In this experiment you will work with seeds that are living but dormant. A seed contains an embryo plant and a food supply surrounded by a seed coat. When the necessary conditions

More information

The grade 6 English science unit, Gases, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 6 English science unit, Gases, meets the academic content standards set in the Korean curriculum, which state students should: This area deals with the properties of gases as small collections of particles. Different kinds of intangible and invisible gases attract students curiosity and promote their use of reasoning skills. Students

More information

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water.

(a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water. 1. Answers should be written in continuous prose. Credit will be given for biological accuracy, the organisation and presentation of information and the way in which an answer is expressed. Fick s law

More information

Alien Gases: Investigating Photosynthesis and Respiration through Inquiry

Alien Gases: Investigating Photosynthesis and Respiration through Inquiry Alien Gases: Investigating Photosynthesis and Respiration through Inquiry Overview: Students perform an inquiry based lab investigation using bromothymol blue solution and an aquatic plant. The goal is

More information

Gas Laws. Essential Learning Outcomes: 1. Change can be measured. 2. Changes can occur within a substance that alters its identity.

Gas Laws. Essential Learning Outcomes: 1. Change can be measured. 2. Changes can occur within a substance that alters its identity. Gas Laws Gas Laws: Gases and pressures affect our lives every day. From the weather we experience to the air we breathe, it all has to do with gases and pressures. Why do we have wind? Why do we have the

More information

1. Read the overview. What is the difference between germinating and nongerminating

1. Read the overview. What is the difference between germinating and nongerminating Pre-lab Cell Respiration (# 5) 1. Read the overview. What is the difference between germinating and nongerminating seeds? 2. Why do seeds need oxygen? And, what would measuring the oxygen consumption of

More information

Buoyancy and Density. Buoyant Force and Fluid Pressure. Key Concept Buoyant force and density affect whether an object will float or sink in a fluid.

Buoyancy and Density. Buoyant Force and Fluid Pressure. Key Concept Buoyant force and density affect whether an object will float or sink in a fluid. 2 Buoyancy and Density Key Concept Buoyant force and density affect whether an object will float or sink in a fluid. What You Will Learn All fluids exert an upward buoyant force on objects in the fluid.

More information

Vocabulary: Objectives: Materials: For Each Station: (Have 2 stations for each liquid; 8 stations total, in student groups of 3-4) Students will:

Vocabulary: Objectives: Materials: For Each Station: (Have 2 stations for each liquid; 8 stations total, in student groups of 3-4) Students will: Author: Ms. Adrienne Maribel López Date Created: August 2007 Subject: Properties of Matter Level: 6 th 8 th grade Standards: NYS Learning Standards for Mathematics, Science, and Technology-- Intermediate

More information

Bubble Technology, Part 2: How Are Bubble Blowers Different?

Bubble Technology, Part 2: How Are Bubble Blowers Different? Bubble Technology, Part 2: How Are Bubble Blowers Different? In this investigation, you will show what you have been learning about bubbles. You have already made observations and predictions - trying

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION LAB / 67

PHOTOSYNTHESIS AND CELLULAR RESPIRATION LAB / 67 PHOTOSYNTHESIS AND CELLULAR RESPIRATION LAB / 67 OBJECTIVE: (Copy or Summarize - 1pt) Students will directly observe the role of indicators in identifying the presence or lack of molecules or ions Students

More information

Procedure 1: Volume vs. Pressure 1.) Using the lap tops, go to the Physics Education Technology from the University of Colorado at:

Procedure 1: Volume vs. Pressure 1.) Using the lap tops, go to the Physics Education Technology from the University of Colorado at: Deriving the Gas Laws Background The gaseous state of matter consists of particles (gas molecules like oxygen, nitrogen, and carbon dioxide) which, according to the kinetic theory of gases, are in constant

More information

ExamLearn.ie. The Air & Oxygen

ExamLearn.ie. The Air & Oxygen ExamLearn.ie The Air & Oxygen The Air & Oxygen The air is a mixture of gases, which forms a blanket around the earth. Another name for the air is the atmosphere. *To investigate the percentage of oxygen

More information

Boyle s law Verifying the relation between air pressure and volume measuring air pressure in a closed container.

Boyle s law Verifying the relation between air pressure and volume measuring air pressure in a closed container. Objective The purpose of this activity is to analyze the relationship between the pressure and volume of a confined gas at constant temperature, create a hypothesis and proceed to test it using the Labdisc

More information

Lab 4: Transpiration

Lab 4: Transpiration Lab 4: Transpiration Water is transported in plants, from the roots to the leaves, following a decreasing water potential gradient. Transpiration, or loss of water from the leaves, helps to create a lower

More information

Core practical 10: Investigate the effects of different wavelengths of light on the rate of photosynthesis

Core practical 10: Investigate the effects of different wavelengths of light on the rate of photosynthesis Core practical 10 Teacher sheet Core practical 10: Investigate the effects of different wavelengths of light on Objectives To understand how to measure by measuring oxygen production To investigate the

More information

BEFORE YOU OPEN ANY FILES:

BEFORE YOU OPEN ANY FILES: Dive Analysis Lab * Make sure to download all the data files for the lab onto your computer. * Bring your computer to lab. * Bring a blank disk or memory stick to class to save your work and files. The

More information

Investigating Factors That Affect Tsunami Inundation A Science Inquiry

Investigating Factors That Affect Tsunami Inundation A Science Inquiry Investigating Factors That Affect Tsunami Inundation A Science Inquiry Students build tsunami wave tanks to learn about the affect that both near-coast bathymetry (submarine topography) and coastal landforms

More information

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl Introduction For chemical reactions involving gases, gas volume measurements provide a convenient means of determining stoichiometric relationships. A gaseous product is collected in a long, thin graduated

More information

Exploring the Properties of Gases

Exploring the Properties of Gases Exploring the Properties of Gases LabQuest 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

Properties of Gases Observing Atom Pressure of a Gas Measuring Gas Products of Chemical Inferring Molecule Reactions

Properties of Gases Observing Atom Pressure of a Gas Measuring Gas Products of Chemical Inferring Molecule Reactions It s a Gas! In a gas, molecules or atoms move constantly and spread far apart. If a gas cannot escape its container, it applies pressure on the container. For example, gas pressure inflates a balloon.

More information

Modeling Diffusion Rates of a Gas in an Enclosed Space

Modeling Diffusion Rates of a Gas in an Enclosed Space Modeling Diffusion Rates of a Gas in an Enclosed Space By: Chirag Kulkarni, Haoran Fei, Henry Friedlander Abstract: This research attempts to identify the relationship between pressure of a certain gas

More information

EXPERIMENT 7 THE IDEAL GAS LAW AND DENSITY

EXPERIMENT 7 THE IDEAL GAS LAW AND DENSITY EXPERIMENT 7 THE IDEAL GAS LAW AND DENSITY In this experiment you will determine the average molecular mass of air using two different methods, first by measuring the density of air with the density of

More information

FISH 415 LIMNOLOGY UI Moscow

FISH 415 LIMNOLOGY UI Moscow FISH 415 LIMNOLOGY UI Moscow Sampling Equipment Purpose: - to familiarize you with limnological sampling equipment - to use some of the equipment to obtain profiles of temperature, dissolved oxygen, conductivity

More information

GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014

GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014 GASEOUS EXCHANGE IN PLANTS & ANIMALS 30 JULY 2014 In this lesson, we: Lesson Description Define gaseous exchange o o Look at the requirements for efficient gaseous exchange Study gaseous exchange in various

More information

Solubility And Temperature Answers

Solubility And Temperature Answers Temperature Answers Free PDF ebook Download: Temperature Answers Download or Read Online ebook solubility and temperature answers in PDF Format From The Best User Guide Database Using this graph, the solubility

More information

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

More information

BASIC LABORATORY TECHNIQUES (Revised )

BASIC LABORATORY TECHNIQUES (Revised ) BASIC LABORATORY TECHNIQUES (Revised 1-6-13) A. WEIGHING The determination of the quantity of matter in a sample is most directly determined by measuring its mass. The process by which we determine the

More information

TOPIC 2: GASES AND THE ATMOSPHERE APPENDICES

TOPIC 2: GASES AND THE ATMOSPHERE APPENDICES TOPIC 2: GASES AND THE ATMOSPHERE APPENDICES Appendix 2.1: Can You Vacuum Pack a Person? 3 Appendix 2.2: A Historical Timeline of the Measurement of Pressure 4 Appendix 2.3: The Drinking Bird 7 Appendix

More information

Respiratory System Lab

Respiratory System Lab Respiratory System Lab Note: Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before you begin. Take time to organize the materials you will need and set

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

Experimental Design Unit. Grade 10 Science Ms. Hayduk

Experimental Design Unit. Grade 10 Science Ms. Hayduk Experimental Design Unit Grade 10 Science Ms. Hayduk Safety Why is Safety Important? Why is safety important? Read the article. Discuss the following questions with the person next to you: What did the

More information

Worksheet: Solubility

Worksheet: Solubility 1. According to your Reference Tables, which substance forms an unsaturated solution when 80 grams of the substance is dissolved in 100 grams of H 2 O at 10 C? (A) KI (B) KNO 3 (C) NaNO 3 (D) NaCl 2. The

More information

11.1 Dumas Method - Pre-Lab Questions

11.1 Dumas Method - Pre-Lab Questions 11.1 Dumas Method - Pre-Lab Questions Name: Instructor: Date: Section/Group: Show all work for full credit. 1. If a 275-mL gas container has pressure of 732.6 mm Hg at -28 C, how many moles of gas are

More information

understanding of cell size and shape absorption of food substances in villi rate of diffusion gas exchange in air sacs

understanding of cell size and shape absorption of food substances in villi rate of diffusion gas exchange in air sacs Cell Designer Relation to topics / curriculum link: Prior knowledge and skills needed: diffusion understanding of cell size and shape absorption of food substances in villi rate of diffusion gas exchange

More information

Lab 11. How to Apply Gas (Laws) Can water boil at room temperature? How can you use baking soda and vinegar to pop a stopper?

Lab 11. How to Apply Gas (Laws) Can water boil at room temperature? How can you use baking soda and vinegar to pop a stopper? Lab 11. How to Apply Gas (Laws) Can water boil at room temperature? How can you use baking soda and vinegar to pop a stopper? Temperature or pressure or both determine the state of matter (solid, liquid,

More information

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8

Gas Laws. Figure 1: Experimental Set-up with Leveling Bulb. GCC CHM 151LL: Gas Laws GCC, 2019 page 1 of 8 Gas Laws Introduction Although we cannot see gases, we can observe their behavior and study their properties. This lab will apply several concepts from Ideal Gas Laws. You will use your knowledge of chemical

More information

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq) Gas Laws Introduction: Although we cannot see gases, we can observe their behavior and study their properties. For example, we can watch a balloon filled with helium gas floating in air and conclude that

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

Density of Brass: Accuracy and Precision

Density of Brass: Accuracy and Precision Density of Brass: Accuracy and Precision Introduction Density is a measure of a substance s mass-to-volume ratio. For liquids and solids, density is usually expressed in units of g/ml or g/cm 3 ; these

More information

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high)

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high) Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

NAME: A graph contains five major parts: a. Title b. The independent variable c. The dependent variable d. The scales for each variable e.

NAME: A graph contains five major parts: a. Title b. The independent variable c. The dependent variable d. The scales for each variable e. NAME: Graphing is an important procedure used by scientists to display the data that is collected during a controlled experiment. Line graphs demonstrate change over time and must be constructed correctly

More information

Deep Water Currents Lab

Deep Water Currents Lab Deep Water Currents Lab Background: Anyone visiting the seashore is struck by the constant motion of water traveling on the surface of the ocean in the form of waves. But beneath the ocean's surface, water

More information

REASONS FOR NATURAL VARIATIONS IN DISSOLVED OXYGEN LEVELS

REASONS FOR NATURAL VARIATIONS IN DISSOLVED OXYGEN LEVELS Period Date LAB. THE PHYSICAL PROPERTIES OF WATER: DISSOLVED OXYGEN In an aquatic environment, oxygen must be in a solution in a free state (O 2 ) before it is available for use by organisms (bioavailable).

More information

Hydrostatics Physics Lab XI

Hydrostatics Physics Lab XI Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

MODELING RADIOACTIVE DECAY WITH FLUID DYNAMICS

MODELING RADIOACTIVE DECAY WITH FLUID DYNAMICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS MODELING RADIOACTIVE DECAY WITH FLUID DYNAMICS Note: Due to material and space constraints, you will work in teams of three to collect data Each individual will be

More information

2. investigate the effect of solute concentration on water potential as it relates to living plant tissues.

2. investigate the effect of solute concentration on water potential as it relates to living plant tissues. In this lab you will: 1. investigate the processes of diffusion and osmosis in a model membrane system, and 2. investigate the effect of solute concentration on water potential as it relates to living

More information

COMBINED SCIENCE 0653/6 CO-ORDINATED SCIENCES 0654/6

COMBINED SCIENCE 0653/6 CO-ORDINATED SCIENCES 0654/6 Centre Number Candidate Number Candidate Name International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE COMBINED SCIENCE 0653/6 CO-ORDINATED SCIENCES

More information

Seawater. Earth is an Ocean Planet

Seawater. Earth is an Ocean Planet Seawater Earth is an Ocean Planet Topics Origin of the Ocean and Atmosphere Hydrologic Cycle Biogeochemical Cycle Seawater Salinity Variations in Seawater Chemistry Carbonic Acid System Topics Origin of

More information

VOLUMETRIC TECHNIQUES

VOLUMETRIC TECHNIQUES REVISED 10/14 CHEMISTRY 1101L VOLUMETRIC TECHNIQUES Volume measurements are important in many experimental procedures. Sometimes volume measurements must be exact; other times they can be approximate.

More information

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS

Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

More information