Interference of Waves

Size: px
Start display at page:

Download "Interference of Waves"

Transcription

1 Interference of Waves Particles in a medium do not move with the wave. Instead, these particles are. When two waves, traveling in the same medium at the same time, meet, the particles are displaced by both waves. The net result is different than either incident wave during the interaction. (time plays an important role) This combination is referred to the Principle of Superposition. Before animations and real time demos could be used, students examined wave interference through still pictures of the two waves. The amplitude of each wave would be added, keeping its orientation in mind, to determine the new, combined amplitude. Sometimes the new amplitude was greater than the original waves. This type of interference was said to be. If the amplitude was reduced, the interference was said to be. Destructive Interference occurs in a transverse wave when a meets a. Constructive Interference occurs in a transverse wave when a meets a or when a meets a. If the of the waves are then the corresponding destructive interference is said to be Total Destructive Interference. Students are given interference diagrams to check their understanding of this principle. The interference pattern created represents only one moment in time and is usually drawn when the waves are exactly on top of each other. 1

2 2

3 To challenge students, geometric shapes are used instead of real waves. 3

4 There are two very important interference patterns that have been found in nature and they have been found to exist in several situations. 1. Two point source interference pattern 4 The lines represent regions where there is always 2. A standing wave gr7kmtorx0&feature=related A standing wave is not actually a still wave but when viewed at high frequencies, the wave looks like it is not moving. It occurs when two waves meet which have an identical and ( We do not have to mention its wavelength because for a given medium the speed is constant. Therefore, since v=f λ, then if f is the same then so to is ) 4

5 Interference and Sound Waves It is possible to create a pure sound wave. A tuning fork is an example of a device which produces a "pure" sound. Most sounds made are combinations of several sound waves which interfere. Because the wave originates from the same place, the pattern created during the production of sound stays in tack as it travels away from the source. This wave pattern (created from interference) is study as "the quality of sound". Sound which is pleasing to our ear has some type of interference pattern which has a mathematical relationship allowing for a discernable pattern with the wave. Sound which is not pleasing to our ear interference in such a way that. The main frequency produced is referred to as the fundamental frequency. The additional waves which add richness to a good sound must be mathematically related to the fundamental to facilitate the development of a pattern in the combined wave. These additional waves are referred to as overtones. Noise in physics are sound waves which lack quality. This can exist for two reasons there is no sustained fundamental note OR the overtones are not mathematically related to the fundamental such that the interference pattern created has no regular flow. Audacity is a computer program which allows you to see the sound waves mapped as a transverse wave. Back to Speakers and Electromagnetism A microphone takes a sound wave and moves a coil in a magnetic field producing an electric current. The electric current varies according to the way it was produce which maintains the "wave" characteristics (frequency and amplitute) control the current produced. This changing current is then sent to a speaker (often it is electrically amplified) where it the changing current is sent into a coil in the presence of a permanent magnet. The changing force created moves the cone reproducing the sound sciences.com/en/v9 loudspeaker principles underlying its functionin a loudspeaker works 5

6 v=fλ v= T f = 1/T v=λ/t v=d/t Formula 1. A metronome beats 60 times over a 40 s time interval. Determine the frequency and period of its motion. 2. A longitudinal wave in a 12.0 m long spring has a frequency of 40.0 Hz and a wavelength of m. Calculate the speed of th wave and the time that it would take to travel the length of the spring. 3. Determine the speed of a plane traveling at Mach 2.5 if the temperature of the air is 22 o C. 6

Chs. 16 and 17 Mechanical Waves

Chs. 16 and 17 Mechanical Waves Chs. 16 and 17 Mechanical Waves The nature of waves A wave is a traveling disturbance that carries energy from one place to another, and even though matter may be disturbed as a wave travels through a

More information

WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train).

WAVES. Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train). 1 WAVES Types of Waves Pulses Pulses are disturbances or a single wave motion. A continuous production of pulses will give rise to a progressive wave (wave train). Progressive Waves A progressive wave

More information

Waves and Sound. Honors Physics

Waves and Sound. Honors Physics Waves and Sound Honors Physics Simple Harmonic Motion Refers to repetitive, cyclical motion (like a pendulum or waves) Can be described with sine curve For a pendulum only T 2 L g Example problem The world

More information

Introduction to Waves

Introduction to Waves Introduction to Waves 1 What s a wave? A wave is a disturbance that transfers energy from one place to another. The direction of energy transfer is the direction of propagation of the wave. 2 Transverse

More information

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse Waves Physics 20.1 Waves What is a wave and what does it carry? Types of Waves 1. Transverse A transverse wave has its oscillations/vibrations to the direction the wave moves. 2. Longitudinal A longitudinal

More information

INTRODUCTION TO WAVES. Dr. Watchara Liewrian

INTRODUCTION TO WAVES. Dr. Watchara Liewrian INTRODUCTION TO WAVES Dr. Watchara Liewrian What are Waves? Rhythmic disturbances that carry energy without carrying matter Types of Waves Mechanical Waves need matter (or medium) to transfer energy A

More information

Not all waves require a medium to travel. Light from the sun travels through empty space.

Not all waves require a medium to travel. Light from the sun travels through empty space. What are waves? Wave Definition: A disturbance that transfers energy from place to place. What carries waves? A medium, a medium is the material through which a wave travels. A medium can be a gas, liquid,

More information

Mechanical waves Electromagnetic waves

Mechanical waves Electromagnetic waves Waves Energy can be transported by transfer of matter. For example by a thrown object. Energy can also be transported by wave motion without the transfer of matter. For example by sound waves and electromagnetic

More information

Wave. 1. Transverse 2. Longitudinal 3. Standing

Wave. 1. Transverse 2. Longitudinal 3. Standing Wave Wave: A disturbance traveling through a medium by which energy is transferred from one particle of the medium to another without causing any permanent displacementof the medium itself. (A Wave Transports

More information

Chapter 14: Waves. What s disturbing you?

Chapter 14: Waves. What s disturbing you? Chapter 14: Waves What s disturbing you? Wave Properties Waves carry energy through matter. The matter can move with the wave, or at right angles to it. Newton s laws and conservation laws govern the behavior

More information

What are waves? Wave

What are waves? Wave What are waves? Wave Definition: A disturbance that transfers energy from place to place. What carries waves? A medium, a medium is the material through which a wave travels. A medium can be a gas, liquid,

More information

Define transverse waves and longitudinal waves. Draw a simple diagram of each

Define transverse waves and longitudinal waves. Draw a simple diagram of each AP Physics Study Guide Chapters 11, 12, 24 Waves, Sound, Light & Interference Name Write the equation that defines each quantity, include units for all quantities. wave speed-wavelength equation natural

More information

Physics 11. Unit 7 (Part 1) Wave Motion

Physics 11. Unit 7 (Part 1) Wave Motion Physics 11 Unit 7 (Part 1) Wave Motion 1. Introduction to wave Wave motion is a popular phenomenon that we observe often in our daily lives. For example, light waves, sound waves, radio waves, water waves,

More information

CHAPTER 14 VIBRATIONS & WAVES

CHAPTER 14 VIBRATIONS & WAVES Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 14 VIBRATIONS & WAVES Day Plans for the day Assignments for the day 1 Section 14.1 Periodic Motion o Definitions

More information

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move. Waves: Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move. Three Classifications of waves: 1. Mechanical waves: These are waves that

More information

Physics Waves & Sound

Physics Waves & Sound Read Page 298 (Wave Characteristics) TQ1. How is a pulse different from a wave? Physics Waves & Sound Day 1 TQ2. What actually moves down a slinky when in the form of a wave? TQ3. What two things happen

More information

Waves, Sounds, and Light

Waves, Sounds, and Light Waves, Sounds, and Light A wave is a disturbance that transmits energy. The particles of a medium do not travel with the wave. Mechanical waves require a medium, but electromagnetic waves do not Particles

More information

Waves & Interference

Waves & Interference Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing waves The student will be able to: HW: 1 Define, apply,

More information

Types of Waves. Section Section 11.1

Types of Waves. Section Section 11.1 Types of Waves Section Section 11.1 Waves A A disturbance that transmits energy through matter or space Waves Most waves move through matter called a medium. Ex. Waves traveling through water. Types of

More information

CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS

CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS DISCLAIMER FOR MOST QUESTIONS IN THIS CHAPTER Waves are always in motion, as they transmit energy and information from one point to another.

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS WAVES & SOUND L (P.416-419) On the surface of a lake on a windy day, you will see many complicated wave motions. The water surface appears this way because when waves from various

More information

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School Pre AP Physics: Unit 7 Vibrations, Waves, and Sound Clear Creek High School Simple Harmonic Motion Simple Harmonic Motion Constant periodic motion of an object. An object oscillates back and forth along

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Energy can be transported by particles or waves: Chapter 11 Waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is

More information

15815 Super Spring - Student

15815 Super Spring - Student Accessories Needed, Not Included: PURPOSE 15815 Super Spring - Student Required Accessories: string (2 to 4 meters needed) C-clamp (or any other fixed clamp on a bench) Stopwatch masking tape or labels

More information

Section 1: Types of Waves

Section 1: Types of Waves Waves Section 1 Section 1: Types of Waves Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves Waves Section 1 Key Ideas What does a wave carry?

More information

Practice Problems For 1st Wave Exam

Practice Problems For 1st Wave Exam For 1st Wave Exam 1. Which wave diagram has both wavelength ( ) and amplitude (A) labeled correctly? A) B) C) 5. The energy of a sound wave is most closely related to the wave's A) frequency B) amplitude

More information

Questions. Background. Equipment. Activities LAB 3. WAVES

Questions. Background. Equipment. Activities LAB 3. WAVES Questions LAB 3. WAVES How can we measure the velocity of a wave? How are the wavelength, period, and speed of a wave related? What types of behavior do waves exhibit? Background Consider what happens

More information

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes I. DIFFERENT TYPES OF WAVES A. TRANSVERSE AND LONGITUDINAL WAVES B. WAVE PULSES AND TRAVELLING WAVES C. SOUND AND WATER WAVES II. DEFINING TERMS

More information

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying energy with it, we call this traveling disturbance a wave.

More information

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things:

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things: Waves A wave is a that propagates p in a certain direction with a certain speed. 1D 2D 3D Physical medium Waves in water Waves in elastic bodies Sound Empty space (a vacuum) Electromagnetic waves HITES,

More information

Doppler Effect. PHY132H1F Introduction to Physics II Class 3 Outline:

Doppler Effect. PHY132H1F Introduction to Physics II Class 3 Outline: PHY132H1F Introduction to Physics II Class 3 Outline: Doppler Effect Principle of Superposition Standing Waves on a String Standing Sound Waves Wave Interference Beats Survey: How did the reading go that

More information

Sinusoidal Waves. Sinusoidal Waves. Sinusoidal Waves

Sinusoidal Waves. Sinusoidal Waves. Sinusoidal Waves Sinusoidal Waves A wave source at x = 0 that oscillates with simple harmonic motion (SHM) generates a sinusoidal wave. 2017 Pearson Education, Inc. Slide 16-1 Sinusoidal Waves Above is a history graph

More information

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection Waves Vocabulary mechanical wave pulse continuous periodic wave amplitude wavelength period frequency wave velocity phase transverse wave longitudinal wave intensity displacement wave number phase velocity

More information

Wave Review. Wave Characteristics: Label each of the following wave characteristics in the space below B A TROUGH PEAK

Wave Review. Wave Characteristics: Label each of the following wave characteristics in the space below B A TROUGH PEAK Name: KEY Section: Date: Wave Review Wave Characteristics: Label each of the following wave characteristics in the space below B A C E D F G A Resting Location D WAVELEGTH G TROUGH B PEAK E AMPLITUDE WAVELENGTH

More information

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves. Section 1 Types of Waves Objectives Recognize that waves transfer energy. Distinguish between mechanical waves and electromagnetic waves. Explain the relationship between particle vibration and wave motion.

More information

Traveling Waves vs. Standing Waves

Traveling Waves vs. Standing Waves The Physics Classroom» Physics Tutorial» Waves» Traveling Waves vs. Standing Waves Waves - Lesson 4 - Standing Waves Traveling Waves vs. Standing Waves Traveling Waves vs. Standing Waves Formation of Standing

More information

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011 PowerPoint Lectures Physical Science, 8e Chapter 5 Wave Motions and Sound New Symbols for this Chapter T-Period f-frequency v-wave speed λ-wavelength A-Amplitude Sound is transmitted as increased and decreased

More information

Waves Multiple Choice

Waves Multiple Choice Waves Multiple Choice PSI Physics Name: 1. The distance traveled by a wave in one period is called? A. Frequency B. Period C. Speed of wave D. Wavelength E. Amplitude 2. Which of the following is the speed

More information

Similarly to elastic waves, sound and other propagated waves are graphically shown by the graph:

Similarly to elastic waves, sound and other propagated waves are graphically shown by the graph: Phys 300/301 Physics: Algebra/Trig Eugene Hecht, 3e. Prepared 01/24/06 11.0 Waves & Sounds There are two fundamental waves of transporting energy and momentum: particles and waves. While they seem opposites,

More information

Waves. Kevin Small or

Waves. Kevin Small   or Waves Opening note: X-rays can penetrate your body. Sound waves can make thinks vibrate; water waves can knock you over in the sea. Infrared waves can warm you up and slinky waves are fun to play with.

More information

Physics Mechanics

Physics Mechanics 1 Physics 170 - Mechanics Lecture 33 Waves Wave notion 2 A wave pulse is a disturbance that propagates through a medium. It transfers energy without transferring matter; the energy is a combination of

More information

Section 1 Types of Waves

Section 1 Types of Waves CHAPTER OUTLINE Section 1 Types of Waves Key Idea questions > What does a wave carry? > How are waves generated? > What is the difference between a transverse wave and a longitudinal wave? > How do the

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Today After today s class, you should be able to: Identify different types of waves Calculate wave velocity, period and frequency. Calculate tension or velocity for a wave on a string.

More information

What is a wave? A wave is a disturbance that transfers energy from place to place.

What is a wave? A wave is a disturbance that transfers energy from place to place. Waves Objectives Determine how matter and energy interact when waves are generated. Identify and understand the three main types of mechanical waves Identify the properties of waves. What is a wave? A

More information

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc. Chapter 15 Wave Motion 15-1 Characteristics of Wave Motion All types of traveling waves transport energy. Study of a single wave pulse shows that it is begun with a vibration and is transmitted through

More information

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude Slide 1 / 20 1 The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength mplitude Slide 2 / 20 2 Which of the following is the speed of a wave traveling with a

More information

Lecture 8. Sound Waves Superposition and Standing Waves

Lecture 8. Sound Waves Superposition and Standing Waves Lecture 8 Sound Waves Superposition and Standing Waves Sound Waves Speed of Sound Waves Intensity of Periodic Sound Waves The Doppler Effect Sound Waves are the most common example of longitudinal waves.

More information

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another. Section 20.1 - Waves Chapter 20 - Waves A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another. Waves can change motion, we know that

More information

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies Wave Motion Vocabulary mechanical waves pulse continuous periodic wave amplitude period wavelength period wave velocity phase transverse wave longitudinal wave intensity displacement amplitude phase velocity

More information

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String

PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String PHY 221: Wavefunction, Wave Superposition, Standing Waves on a String Objective Write a mathematical function to describe the wave. Describe a transverse wave and a longitudinal wave. Describe frequency,

More information

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed 13.1 : Wave Basics / Wave Properties Waves Medium A medium is the material, which a wave travels through (Solid, liquid,

More information

Question. A. Incorrect! Check the definition for period. B. Incorrect! Check the definition for speed.

Question. A. Incorrect! Check the definition for period. B. Incorrect! Check the definition for speed. AP Physics - Problem Drill 11: Vibrations and Waves. Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1. The following definitions are used to

More information

Chapter 19: Vibrations and Waves

Chapter 19: Vibrations and Waves Chapter 19: Vibrations and Waves SIMPLE HARMONIC MOTION ic or Oscillatory motion is called SHM. Start off with the story of Galileo being in the church. PENDULUM Make the following points with a pendulum

More information

SPH3U Sec.9.2.notebook. November 30, Free End Reflections. Section 9.2 Waves at Media Boundaries

SPH3U Sec.9.2.notebook. November 30, Free End Reflections. Section 9.2 Waves at Media Boundaries Section 9.2 Waves at Media Boundaries Wave speed depends on some of the properties of the medium through which the wave is travelling. For example, the speed of sound in air depends on air temperature,

More information

Mechanical Waves. Chapter 15. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Mechanical Waves. Chapter 15. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 15 Mechanical Waves PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 15 To study the properties and

More information

waves? Properties Interactions

waves? Properties Interactions Chapter Introduction Lesson 1 Lesson 2 Lesson 3 What are waves? Wave Properties Chapter Wrap-Up Wave Interactions How do waves travel through matter? What do you think? Before you begin, decide if you

More information

i-clicker Discussion Question

i-clicker Discussion Question PHY132 Introduction to Physics II Class Class 3 Outline: Outline: Ch. 21, sections 21.1-21.4 The Principle of Superposition Standing Waves Nodes and Antinodes Musical Instruments QuickCheck 1.1 i-clicker

More information

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p Physics 1-2 Mr. Chumbley Physics: Chapter 11 p. 362-401 Section 1 p. 364 371 Section 2 p. 372-377 Simple Harmonic Motion There exist many different situations in which objects oscillate in regular, repeating

More information

Properties of waves. Definition:

Properties of waves. Definition: Properties of waves A wave motion is the ability of transferring energy from one point (the source) to another point without there being any transfer of matter between the two points. Waves are either

More information

Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down.

Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down. Slide 1 / 28 Waves Slide 2 / 28 Wave Motion A wave travels along its medium, but the individual particles just move up and down. Slide 3 / 28 Wave Motion All types of traveling waves transport energy.

More information

The physicist's greatest tool is his wastebasket Albert Einstein

The physicist's greatest tool is his wastebasket Albert Einstein Chapter 20: Waves The physicist's greatest tool is his wastebasket Albert Einstein 2 20.1 Waves Describe transverse and longitudinal waves. Learn the properties of waves. Calculate the speed of a wave.

More information

Chapter 14 Waves. Apr 30 7:11 AM

Chapter 14 Waves.   Apr 30 7:11 AM Chapter 14 Waves http://faraday.physics.utoronto.ca/iyearlab/intros/standingwaves/flash/long_wave.html Apr 30 7:11 AM 1 May 5 7:16 AM 2 May 5 7:17 AM 3 May 5 7:17 AM 4 May 5 7:19 AM 5 May 5 7:29 AM 6 May

More information

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy.

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy. Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy. 2. Mechanical waves need a matter medium to travel through. (sound, water, seismic) 3. Two basic

More information

17.1: Mechanical Waves

17.1: Mechanical Waves New Standard SPS9: Students will investigate the properties of waves. a. Recognize that all waves transfer energy. b. Relate frequency and wavelength to the energy of different types of electromagnetic

More information

Physics 122 Class #7 Outline. Announcements Traveling waves Math of Sinewaves Doppler Effect Superposition Standing Waves Math of Standing Waves

Physics 122 Class #7 Outline. Announcements Traveling waves Math of Sinewaves Doppler Effect Superposition Standing Waves Math of Standing Waves Physics 122 Class #7 Outline Announcements Traveling waves Math of Sinewaves Doppler Effect Superposition Standing Waves Math of Standing Waves Announcements Updated syllabus is posted Exam #1 is in two

More information

Chapter 14 Waves http://faraday.physics.utoronto.ca/iyearlab/intros/standingwaves/flash/long_wave.html Apr 30 7:11 AM May 5 7:16 AM 1 May 5 7:17 AM May 5 7:17 AM 2 May 5 7:19 AM May 5 7:29 AM 3 May 5 7:30

More information

Name: Section: Date: Wave Review

Name: Section: Date: Wave Review Name: Section: Date: Types of waves: 1. Transverse waves: Wave Review To do: take a slinky and shake the end up and down Examples: stretched strings of musical instruments and light waves Choose one of

More information

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves CH 17 - MECHANICAL WAVES & SOUND Sec. 17.2 - Mechanical Waves Mechanical Wave - disturbance in matter that carries energy from one place to another. Mechanical waves require matter called a MEDIUM to travel

More information

a wave is a rhythmic disturbance that carries/transfers energy through matter or space A repeating movement

a wave is a rhythmic disturbance that carries/transfers energy through matter or space A repeating movement a wave is a rhythmic disturbance that carries/transfers energy through matter or space A repeating movement Mechanical Waves require a medium medium: the matter through which a wave travels examples: water,

More information

Chapter 17. Mechanical Waves and sound

Chapter 17. Mechanical Waves and sound Chapter 17 Mechanical Waves and sound Section 1 Mechanical Waves A. What are Mechanical Waves 1. Mechanical wave: disturbance in matter that carries ENERGY!! 2. Medium: material wave travels in Can be

More information

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves Vibrations and Waves Section 1 Preview Section 1 Simple Harmonic Motion Section 2 Measuring Simple Harmonic Motion Section 3 Properties of Waves Section 4 Wave Interactions Vibrations and Waves Section

More information

SOUND. Pitch: Frequency High Frequency = High Pitch Low Frequency = Low Pitch Loudness: Amplitude. Read Sections 12-1 and 12-4

SOUND. Pitch: Frequency High Frequency = High Pitch Low Frequency = Low Pitch Loudness: Amplitude. Read Sections 12-1 and 12-4 Read Sections 12-1 and 12-4 SOUND Sound: The speed of sound in air at 25 o C is 343 m/s (often rounded to 340 m/s). The speed of sound changes with temperature since the density and elasticity of air change

More information

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another. 17.2 - Waves Waves Mechanical Waves A disturbance in matter that carries energy from one place to another. Medium The material through which a wave travels. Medium can be any three states of matter: solid,

More information

Broughton High School

Broughton High School 1 Vocabulary for Chapter 10 - Waves Vocabulary Word 1. Amplitude Broughton High School Definition 2 2. Compressional Wave 3. Crest 4. Diffraction 5. Frequency 6. Interference 7. Medium 8. Period 9. Rarefaction

More information

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. Waves-Wave Basics 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. x ray 2. A single vibratory disturbance moving through a medium is called

More information

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect Units of Chapter 14 Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect Units of Chapter 14 Optional Superposition and Interference Beats

More information

ENERGY OF WAVES ch.1 PRACTICE TEST

ENERGY OF WAVES ch.1 PRACTICE TEST ENERGY OF WAVES ch.1 PRACTICE TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If a wave is traveling at a certain speed and its frequency is doubled,

More information

i-clicker Discussion Question

i-clicker Discussion Question PHY132 Introduction to Physics II Class Class 3 Outline: Outline: Ch. 21, sections 21.1-21.4 The Principle of Superposition Standing Waves Nodes and Antinodes Musical Instruments QuickCheck 1.1 i-clicker

More information

Physics 101 Lecture 20 Waves & Sound

Physics 101 Lecture 20 Waves & Sound Physics 101 Lecture 20 Waves & Sound Recall we ve talked about transverse & longitudinal waves: - transverse waves: medium motion is to wave motion - longitudinal (pressure) waves: medium motion is to

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 11-7: WAVE MOTION LSN 11-8: TYPES OF WAVES; LONGITUDINAL AND TRANSVERSE LSN 11-9: ENERGY TRANSPORTED BY WAVES Physics of Waves Questions From Reading

More information

Wave a repeating disturbance or movement that transfers energy through matter or space

Wave a repeating disturbance or movement that transfers energy through matter or space Waves The Nature of Waves Wave a repeating disturbance or movement that transfers energy through matter or space 1. Molecules pass energy on to neighboring molecules. 2. Waves carry energy without transporting

More information

MECHANICAL WAVES AND SOUND

MECHANICAL WAVES AND SOUND MECHANICAL WAVES AND SOUND Waves Substances have a stable equilibrium state Uniform pressure everywhere throughout the substance Atomic springs are at their equilibrium length Can make a wave by disturbing

More information

Topic 4.4 Wave Characteristics (2 hours)

Topic 4.4 Wave Characteristics (2 hours) Topic 4.4 Wave Characteristics (2 hours) You must live in the present, launch yourself on every wave, find your eternity in each moment. Henry David Thoreau 1 What s a wave? A wave is a disturbance that

More information

Periodic waves in space and time

Periodic waves in space and time Waves We talked about the motion of bodies, such as planets and baseballs. At the most fundamental level, one has elementary particles (electrons, quarks). They are characterized by their position, a single

More information

Sound waves... light waves... water waves...

Sound waves... light waves... water waves... Sound waves... light waves... water waves... 1S-13 Slinky on Stand Creating longitudinal compression waves in a slinky What happens when you pull back and release one end of the slinky? 4/11/2011 Physics

More information

Harmonics and Sound Exam Review

Harmonics and Sound Exam Review Name: Class: _ Date: _ Harmonics and Sound Exam Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following is not an example

More information

Section 4.2. Travelling Waves

Section 4.2. Travelling Waves Section 4.2 Travelling Waves Wave Motion A wave is the motion of a disturbance Mechanical waves require Some source of disturbance A medium that can be disturbed Some physical connection between or mechanism

More information

Review packet Physical Science Unit Waves - 1

Review packet Physical Science Unit Waves - 1 Review packet Physical Science Unit Waves - 1 1. A stretched spring attached to two fixed points is compressed on one end and released, as shown below. 4. When the density of a substance is measured, which

More information

Phys1111K: Superposition of waves on a string Name:

Phys1111K: Superposition of waves on a string Name: Phys1111K: Superposition of waves on a string Name: Group Members: Date: TA s Name: Apparatus: PASCO mechanical vibrator, PASCO interface, string, mass hanger (50 g) and set of masses, meter stick, electronic

More information

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 14 Physics, 4 th Edition James S. Walker Chapter 14 Waves and Sound Units of Chapter 14 Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Sound Intensity The

More information

Introduction. Strand E Unit 2: The Nature of Waves. Learning Objectives. Introduction.

Introduction. Strand E Unit 2: The Nature of Waves. Learning Objectives. Introduction. Learning Objectives At the end of this unit you should be able to Describe the main features of diffraction, refraction and reflection, and use the law of reflection. Describe how two progressive waves

More information

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves CH 17 - MECHANICAL WAVES & SOUND Sec. 17.2 - Mechanical Waves Mechanical Wave - disturbance in matter that carries energy from one place to another. Mechanical waves require matter called a MEDIUM to travel

More information

Waves. Unit 9 - Light & Sound

Waves. Unit 9 - Light & Sound Waves Unit 9 - Light & Sound Lesson 1: Questions What are the similarities and differences between transverse and longitudinal waves? How is a wave s amplitude related to its energy? How are frequency

More information

Unit 3 Lesson 2 Properties of Waves. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 2 Properties of Waves. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials. MA.6.A.3.6 Construct and analyze tables, graphs, and equations to

More information

Properties of Waves Unit Practice Problems

Properties of Waves Unit Practice Problems Name: Date: Properties of Waves Unit Practice Problems Wave Terminology 1. For the two waves below, write the correct term (or terms) to describe part of the wave at each letter. 2. For each wave, use

More information

6. An oscillator makes four vibrations in one second. What is its period and frequency?

6. An oscillator makes four vibrations in one second. What is its period and frequency? Period and Frequency 19.1 The period of a pendulum is the time it takes to move through one cycle. As the ball on the string is pulled to one side and then let go, the ball moves to the side opposite the

More information

CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND

CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND Name Period CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND 1 ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT NOTES PACKET (notes and study questions ) _ /50 NT NOTES PACKET (vocab definitions &

More information

PHYSICS - CLUTCH CH 16: WAVES & SOUND.

PHYSICS - CLUTCH CH 16: WAVES & SOUND. !! www.clutchprep.com CONCEPT: WHAT IS A WAVE? A WAVE is a moving disturbance (oscillation) that carries energy. - A common example is a wave on a string, where the moving string carries energy We re only

More information

WAVES. Unit 3. Sources: Ck12.org

WAVES. Unit 3. Sources: Ck12.org WAVES Unit 3 Sources: Ck12.org BELLRINGER DAY 01 1. How do you think energy travels? 2. Are all waves the same? Explain. LONGITUDINAL WAVES Amplitude, Rarefaction, and Compression WHAT ARE WAVES? Waves

More information