Reliable Real-Time Recognition of Motion Related Human Activities using MEMS Inertial Sensors

Size: px
Start display at page:

Download "Reliable Real-Time Recognition of Motion Related Human Activities using MEMS Inertial Sensors"

Transcription

1 Reliable Real-Time Recognition of Motion Related Human Activities using MEMS Inertial Sensors K. Frank,, y; M.J. Vera-Nadales, University of Malaga, Spain; P. Robertson, M. Angermann,

2 v36 Motivation 2

3 Folie 2 v36 Sensor module: you get information from the subject and its interaction with the external world. Feature computation: you extract features of what you observe vera_ma;

4 Activity Recognition for Human Motion Behaviour Activity Recognition is helpful in many fields: Indoor positioning Rescue teams Ambient Assisted Living We target seven motion related activities: Lying, Sitting, Standing, Walking, Running Jumping, Falling (+ Getting Up / Down) 3

5 State of the art - Examples Different activities Different sensors Different locations on the body Different data sets No standard 4

6 v40 v4 Our Approach for Activity Recognition Sensor device: Inertial Measurement Unit Measurements: 3D acceleration 3D turn rate 3D magnetic field Frame: Sensor Frame Earth Centric Frame (NED) 5

7 Folie 5 v40 v4 Global Frame ~ Navigation frame vera_ma; Flat terrain. Constant gravity field. Coriolis and transport rate effect negligible. No need of gravity correction for activity recognition. -> MTx Sensor gives the measurements and provides attitude information. vera_ma;

8 Where do we place the Sensor? FOOT or ANKLE: Lack of information of the upper part of the body. HAND or WATCH: It could be independent of human motion. BELT or POCKET: It has information of the upper and lower part of the body. GOOD FOR RECOGNITION OF HUMAN MOTION 6

9 Approach Placement of sensor Collect labeled data Investigate a large set of signals and features Identify a subset of them (~20) Machine learning: construct a Bayesian Network Extend to a dynamic Bayesian NW 7

10 Examples of Features Temporal domain: Mean, standard deviation Median, mean absolute deviation Amplitude Interquartile range Maximum, minimum Integrated value Mean crossings Correlation coefficients between the axis Frequency domain: Main frequency component Spectral entropy Energy in some frequency bands Window length: 32 samp. (0.32 s.) 64 samp. (0.64 s.) 28 samp. (.28 s.) 256 samp. (2.56 s.) 52 samp. (5.2 s.) Feature vector updates each 0.25 seconds 8

11 v32 Looking at Possible Feautues Examples: walking, running, jumping y-axis: Jumping Window size: 28 Running To distinguish running from jumping, the main frequency component is relevant. x-axis: Walking Window size: 28 9

12 Folie 9 v32 In running, you go at such velocity that once you hit the floor with your foot, the fast change in velocity means a peak in the acceleration. That peak, much bigger in running than in walking, is the reason that the signal is not that symmetric anymore and why you observe an offset, a mean value. In walking, there is also an offset, but not that big, and that will depend also in the shoes you are wearing. vera_ma;

13 v3 Final features Examples: walking, running, jumping y-axis: Jumping Running Jumping Window size: 52 The same feature at a different window length could be used for different activities. x-axis: Walking Window size: 32 0

14 Folie 0 v3 In running, you go at such velocity that once you hit the floor with your foot, the fast change in velocity means a peak in the acceleration. That peak, much bigger in running than in walking, is the reason that the signal is not that symmetric anymore and why you observe an offset, a mean value. In walking, there is also an offset, but not that big, and that will depend also in the shoes you are wearing. vera_ma;

15 v42 Final features Examples: standing, sitting, lying y-axis: Window size: 28 Standing Sitting Standing and sitting is one of the most difficult distinctions. Lying x-axis: Window size: 28

16 Folie v42 In running, you go at such velocity that once you hit the floor with your foot, the fast change in velocity means a peak in the acceleration. That peak, much bigger in running than in walking, is the reason that the signal is not that symmetric anymore and why you observe an offset, a mean value. In walking, there is also an offset, but not that big, and that will depend also in the shoes you are wearing. vera_ma;

17 v33 Final features Examples: jumping, falling y-axis: Window size: 28 Jumping Falling Jumping Falling can be also distinguished from the rest. x-axis: Window size: 32 2

18 Folie 2 v33 In running, you go at such velocity that once you hit the floor with your foot, the fast change in velocity means a peak in the acceleration. That peak, much bigger in running than in walking, is the reason that the signal is not that symmetric anymore and why you observe an offset, a mean value. In walking, there is also an offset, but not that big, and that will depend also in the shoes you are wearing. vera_ma;

19 Labelled Data Set 6 people: 6 females and 0 males Different shoes and body build/constitution Fixed schedule but some individual freedom allowed during every activity. Activities: Standing ~ 07 minutes Sitting ~ 55 minutes Lying ~ 25 minutes Walking ~ 70 minutes Total: Running ~ 5 minutes Jumping ~ 7 minutes over 4h 30 min Falling ~ 2 minutes Transitions: Up ~ 3 minutes Down ~ minute Accelerating ~ minute Decelerating ~ 0.4 minutes 3

20 v35 Final features 9 features were selected: 8 features from the norm of the acceleration 3 features from horizontal acceleration BF 5 features from vertical acceleration BF feature from horizontal angular velocity BF feature from attitude Computed for different window lengths feature from vertical acceleration GF 4

21 Folie 4 v35 Which gives us robust information? Which gives new information to the system? Which is a good discriminator? Does it make sense? Which window length is the best? Remember real time! vera_ma;

22 Towards a Bayesian Estimation Solution activity Feet Complex Body Motion Patterns Body Motion Hip Acceleration Turn rate Trunk Attitude Arms Hidden nodes Signals and Features 5

23 Recognition algorithm Naïve Bayes (NB) Approach activity Features It considers features to be independent: p( f M i = i, f2,... fm act ) p( f j act ) j= 6

24 Learning the Full Bayesian Network Structure and parameter learning: Greedy Hill Climber with Random Restarts based on the Cooper and Herskovits Log score for fully observed data sets and Dirichlet distributions of the conditional probability tables (conjugate prior). Typically 0 8 ~ 0 9 network structures searched (~-5 days). Added restrictions and modifications: Impose causality: activity always a parent of features. Limiting the number of parents of every node. 7

25 Recognition algorithm Unrestricted Bayesian Network (BN) Approach activity e e e e e e e Features Observations are given for all nodes in the Markov blanket of activity : Very simple inference! We just compute the joint probability distribution without propagating evidences! We can throw out unnecessary/redundant features! e 8

26 a v a Short term vertical and overall acceleration Activity Medium term attitude, a ρ a x 28 LPF a < 2.2Hz 28 LPF a < 2.2Hz att x,z Main freq 28 a 256 σ a a a v,max 28 IQR a v δα X S, Z G 28 att x 64, y, z Changes in acceleration Long term Vertical acceleration, roll and main acc. frequency Medium term 9

27 Evaluation Four recognition algorithms: Static Naïve Bayes (NB) Dynamic Naïve Bayes (DNB) Static unrestricted Bayesian network (BN) Dynamic unrestricted Bayesian network (DBN) Each of them defined for several discretizations 20

28 Two-Tiered Estimation: ) Bayesian NW and 2) Discrete First Order Markov Process t = k- activity Dynamic state transition model: Use a grid based estimator t = k activity Bayesian NW Signals and Features 2

29 Static vs. Dynamic Example Static BN Dynamic BN 22

30 Recognition delay Able to recognize the activities nearly 00% but misclassification of the activities often occurs at their onset: Labeling manually possible human errors Sliding window processing Delay Impose a recognition delay of 0.5s Activity must be stable for 0.5s until flagged 23

31 Evaluation: Recall and precision Ground truth Classification Standing Others Standing TP FN Others FP TN TP = true positive TN = true negative FN = false negative FP = false positive We compute precision and recall for every activity. Which % of the positive cases did we catch? You recognize it when it happens! Which % of the positive predictions was correct? You do not classify something else as it. TP Recall = TP+FN TP Precision = TP+FP 24

32 Evaluation: Recall and precision Dynamic unrestricted Bayesian network approach achieves the best results improving highly the recognition of activities such as jumping and falling. 25

33 Distinguishing Activities ACTIVITIES Walking from running HOW TO? Easy to distinguish Standing from Sitting Running from Jumping Falling from jumping Mainly the attitude Dynamic model is needed Main frequency component Could be joined as doing sports Mainly the attitude Both are difficult to characterize set of features that reflects all the physical phenomena related to these activities 26

34 Outlook Evaluation of the system under naturalistic conditions. Add more activities such as going into a vehicle, cycling, going in an elevator Try the system in the pocket Increasing delay to distinguish falling from jumping or sitting down rapidly Infer high-level activities such as being in a meeting, being busy, cooking, 27

35 Thanks for your attention! You can try it yourself: Demo during coffee break Maria Vera-Nadales Master s Thesis and videos, slides, papers, and the data set are available at: 28

36 Evaluation Real time evaluation Intel Core 2 Duo microprocessor, E8400 at 3.00 GHz 2 GB of RAM Operation Feature,5 computation NB inference 0,34 DNB inference 0,36 BN 7,2 DBN 7,7 Mean value (ms) Feature computation is not time consuming Use the dynamic approach does not have a high cost in terms of real time computation What is more expensive in terms of execution time is increasing the complexity of the BNs! 29

37 v39 Our approach for Activity Recognition Assumptions Initial activity: standing Sensor position: attached to the belt 30

38 Folie 30 v39 Standing still at the beginning for almost 0 seconds Requirement for the sensor attitude computation and for some features related to standing still. Sensor attached to the belt The wearer doesn t take it with the hand or changes its location. If it does, the recognition is not reliable. Well put sensor To quit in the future with inertial navigation mechanization vera_ma;

39 v38 Final features Examples: static, walking y-axis: Walking Window size: 256 Static from walking is not difficult to distinguish except for the effect of the sliding window. x-axis: Static Window size: 32 3

40 Folie 3 v38 In running, you go at such velocity that once you hit the floor with your foot, the fast change in velocity means a peak in the acceleration. That peak, much bigger in running than in walking, is the reason that the signal is not that symmetric anymore and why you observe an offset, a mean value. In walking, there is also an offset, but not that big, and that will depend also in the shoes you are wearing. vera_ma;

41 Recognition algorithm Feature discretization 2D Identifying the activities the features are meaningful or good for. Looking for meaningful areas in the plots to define the states of a pair of features. 32

42 Dynamic Bayesian Filter: Grid Based p 2 act t ( : act t O t ) act t 2 p ( act t + actt HIDDEN STATES p ( act t + actt 2 p ( act t + actt ) p( act A 2 2 p ( act t + actt 2 j j t+ O: t ) = p( actt O: t ) p( actt+ actt ) j= ) ) ) 2 act t + act t + p ( : 2 act t O t ) p( act 2 2 j 2 j t+ O: t ) = p( actt O: t ) p( actt+ actt ) j= OBSERVATIONS Time t 33

43 HIDDEN STATES 2 act t + act t + p( act p( act O ) t+ : t+ = 2 O ) 2 t+ : t+ = 2 j= p( act j= p( act t+ p( act 2 t+ p( act j t+ O j t+ O : t O : t O : t ) p( O : t ) p( O t+ ) p( O t+ ) p( O t+ act t+ act t+ act 2 t+ act ) j t+ ) j t+ ) ) p( O t act 2 + t+ ) p( O t act B + t+ ) O t+ OBSERVATIONS Time t 34

44 Short term vertical and overall acceleration a v 32 Particularly interesting for jumping: Is around 0 in falling phase, particularly high when hitting the floor Activity Correlation coefficient between the x-axis of the sensor frame and acceleration High values for running and walking, as they relate to the vertical axis of the human body, X S Medium term attitude, a ρ a x 28 Short time activities (falling or jumping) a 32 Changes in acceleration Long term Low pass filter of the norm of the jerk for repetitive activities Together with LPF 28 good identification of running and walking Attitude of the sensor with x and z-axis. Variations indicate a change regarding sitting and standing LPF a < 2.2Hz 28 LPF a < 2.2Hz att x,z Low pass filter of the norm of the jerk for static activities Some information about short term activities 28 samples as tradeoff for repetitive and short term activities Differentiation falling / jumping vs. running Main freq 28 a Vertical acceleration, roll and main acc. frequency Medium term 256 σ a a a v,max 28 IQR a v δα X S, Z G 28 att x 64, y, z 256 samples to cope with dynamic, repetitve patterns Distinguishes static (low values) and dynamic (high) activites. walking vs. running Repetitive activities: (running, walking) Maximal vertical acceleration: Together with IQR good to separate walking from running/jumping Inter Quartile Range represents the deviation range from the median Differentiates static from non-static, as well as falling from running/jumping Difference between biggest and smallest angle between global and local vertical axis. High values during falling Attitude in 3D Useful together with att x,z Distinction between lying / falling and upright activities. 35

45 Evaluation Maximal reduction of a machine-learnt Bayesian network if all input values are observed Machine-learnt Bayesian network. It has 9 nodes and 49 edges. 36

A computer program that improves its performance at some task through experience.

A computer program that improves its performance at some task through experience. 1 A computer program that improves its performance at some task through experience. 2 Example: Learn to Diagnose Patients T: Diagnose tumors from images P: Percent of patients correctly diagnosed E: Pre

More information

WalkCompass: Finding Walking Direction Leveraging Smartphone s Inertial Sensors. Nirupam Roy

WalkCompass: Finding Walking Direction Leveraging Smartphone s Inertial Sensors. Nirupam Roy WalkCompass: Finding Walking Direction Leveraging Smartphone s Inertial Sensors by Nirupam Roy Bachelor of Engineering Bengal Engineering and Science University, Shibpur 2007 Submitted in Partial Fulfillment

More information

Gait Recognition. Yu Liu and Abhishek Verma CONTENTS 16.1 DATASETS Datasets Conclusion 342 References 343

Gait Recognition. Yu Liu and Abhishek Verma CONTENTS 16.1 DATASETS Datasets Conclusion 342 References 343 Chapter 16 Gait Recognition Yu Liu and Abhishek Verma CONTENTS 16.1 Datasets 337 16.2 Conclusion 342 References 343 16.1 DATASETS Gait analysis databases are used in a myriad of fields that include human

More information

An Engineering Approach to Precision Ammunition Development. Justin Pierce Design Engineer Government and International Contracts ATK Sporting Group

An Engineering Approach to Precision Ammunition Development. Justin Pierce Design Engineer Government and International Contracts ATK Sporting Group An Engineering Approach to Precision Ammunition Development Justin Pierce Design Engineer Government and International Contracts ATK Sporting Group 1 Background Federal Premium extensive experience with

More information

Gait Analyser. Description of Walking Performance

Gait Analyser. Description of Walking Performance Gait Analyser Description of Walking Performance This brochure will help you to understand clearly the parameters described in the report of the Gait Analyser, provide you with tips to implement the walking

More information

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS SMART SOLUTIONS FOR VIBRATION MONITORING GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS ANALYSIS OF CIVIL STRUCTURES - EXPO MERLATA PEDESTRIAN BRIDGE ABSTRACT Civil structures and in particular bridges and

More information

Modelling and Simulation of Environmental Disturbances

Modelling and Simulation of Environmental Disturbances Modelling and Simulation of Environmental Disturbances (Module 5) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007

More information

Human Performance Evaluation

Human Performance Evaluation Human Performance Evaluation Minh Nguyen, Liyue Fan, Luciano Nocera, Cyrus Shahabi minhnngu@usc.edu --O-- Integrated Media Systems Center University of Southern California 1 2 Motivating Application 8.2

More information

PERCEPTIVE ROBOT MOVING IN 3D WORLD. D.E- Okhotsimsky, A.K. Platonov USSR

PERCEPTIVE ROBOT MOVING IN 3D WORLD. D.E- Okhotsimsky, A.K. Platonov USSR PERCEPTIVE ROBOT MOVING IN 3D WORLD D.E- Okhotsimsky, A.K. Platonov USSR Abstract. This paper reflects the state of development of multilevel control algorithms for a six-legged mobile robot. The robot

More information

Intelligent Decision Making Framework for Ship Collision Avoidance based on COLREGs

Intelligent Decision Making Framework for Ship Collision Avoidance based on COLREGs Intelligent Decision Making Framework for Ship Collision Avoidance based on COLREGs Seminar Trondheim June 15th 2017 Nordic Institute of Navigation Norwegian Forum for Autonomous Ships SINTEF Ocean, Trondheim

More information

Bayesian Optimized Random Forest for Movement Classification with Smartphones

Bayesian Optimized Random Forest for Movement Classification with Smartphones Bayesian Optimized Random Forest for Movement Classification with Smartphones 1 2 3 4 Anonymous Author(s) Affiliation Address email 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

More information

Windcube FCR measurements

Windcube FCR measurements Windcube FCR measurements Principles, performance and recommendations for use of the Flow Complexity Recognition (FCR) algorithm for the Windcube ground-based Lidar Summary: As with any remote sensor,

More information

Biomechanics and Models of Locomotion

Biomechanics and Models of Locomotion Physics-Based Models for People Tracking: Biomechanics and Models of Locomotion Marcus Brubaker 1 Leonid Sigal 1,2 David J Fleet 1 1 University of Toronto 2 Disney Research, Pittsburgh Biomechanics Biomechanics

More information

Using an Adaptive Thresholding Algorithm to Detect CA1 Hippocampal Sharp Wave Ripples. Jay Patel. Michigan State University

Using an Adaptive Thresholding Algorithm to Detect CA1 Hippocampal Sharp Wave Ripples. Jay Patel. Michigan State University Using an Adaptive Thresholding Algorithm to Detect CA1 Hippocampal Sharp Wave Ripples Jay Patel Michigan State University Department of Physics and Astronomy, University of California, Los Angeles 2013

More information

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system

An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system An investigation of kinematic and kinetic variables for the description of prosthetic gait using the ENOCH system K. OBERG and H. LANSHAMMAR* Amputee Training and Research Unit, University Hospital, Fack,

More information

Queue analysis for the toll station of the Öresund fixed link. Pontus Matstoms *

Queue analysis for the toll station of the Öresund fixed link. Pontus Matstoms * Queue analysis for the toll station of the Öresund fixed link Pontus Matstoms * Abstract A new simulation model for queue and capacity analysis of a toll station is presented. The model and its software

More information

In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007.

In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007. Acknowledgement In memory of Dr. Kevin P. Granata, my graduate advisor, who was killed protecting others on the morning of April 16, 2007. There are many others without whom I could not have completed

More information

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion

EXSC 408L Fall '03 Problem Set #2 Linear Motion. Linear Motion Problems: 1. Once you have recorded the calibration frame for a data collection, why is it important to make sure the camera does not shut off? hat happens if the camera automatically shuts off after being

More information

+ t1 t2 moment-time curves

+ t1 t2 moment-time curves Part 6 - Angular Kinematics / Angular Impulse 1. While jumping over a hurdle, an athlete s hip angle was measured to be 2.41 radians. Within 0.15 seconds, the hurdler s hip angle changed to be 3.29 radians.

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Mini-project 3 Tennis ball launcher Mini-project 3 Tennis ball launcher Mini-Project 3 requires you to use MATLAB to model the trajectory of a tennis ball being shot from a tennis ball launcher to a player. The tennis ball trajectory model

More information

Tilt Detection Using Accelerometer and Barometric Measurements

Tilt Detection Using Accelerometer and Barometric Measurements Tilt Detection Using Accelerometer and Barometric Measurements Can this be used for reliable off-axis detection? John Derimiggio Marsa Systems, Inc 11/15/2018 Topics Accelerometer altimeter altitude calculation

More information

Forest Winds in Complex Terrain

Forest Winds in Complex Terrain Forest Winds in Complex Terrain Ilda Albuquerque 1 Contents Project Description Motivation Forest Complex Terrain Forested Complex Terrain 2 Project Description WAUDIT (Wind Resource Assessment Audit and

More information

LX Compass module 3 Electronic compass device User manual

LX Compass module 3 Electronic compass device User manual LX Compass module 3 Electronic compass device User manual LX navigation d.o.o., Tkalska 10 SLO 3000 Celje, tel: + 386 3 490 46 70, fax: + 386 3 490 46 71 info@lxnavigation.si, http://www.lxnavigation.com

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: Naïve Bayes Nicholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

PUV Wave Directional Spectra How PUV Wave Analysis Works

PUV Wave Directional Spectra How PUV Wave Analysis Works PUV Wave Directional Spectra How PUV Wave Analysis Works Introduction The PUV method works by comparing velocity and pressure time series. Figure 1 shows that pressure and velocity (in the direction of

More information

Artificial Intelligence for the EChO Mission Scheduler

Artificial Intelligence for the EChO Mission Scheduler Artificial Intelligence for the EChO Mission Scheduler Álvaro García Piquer Ignasi Ribas Josep Colomé Institute of Space Sciences (CSIC/IEEC), Barcelona, Spain SCIOPS 2013 September 10 13, 2013 Introduction

More information

CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND

CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND Name Period CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND 1 ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT NOTES PACKET (notes and study questions ) _ /50 NT NOTES PACKET (vocab definitions &

More information

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING

INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING Joseph P. Hunter 1, Robert N. Marshall 1,, and Peter J. McNair 3 1 Department of Sport and Exercise Science, The University of Auckland, Auckland,

More information

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. Flight Corridor The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. The subsonic Boeing 747 and supersonic Concorde have flight corridors

More information

by Michael Young Human Performance Consulting

by Michael Young Human Performance Consulting by Michael Young Human Performance Consulting The high performance division of USATF commissioned research to determine what variables were most critical to success in the shot put The objective of the

More information

Effect of floating bridge vertical motion on vehicle ride comfort and road grip. Dragan Sekulic, Postdoctoral Researcher

Effect of floating bridge vertical motion on vehicle ride comfort and road grip. Dragan Sekulic, Postdoctoral Researcher Effect of floating bridge vertical motion on vehicle ride comfort and road grip Dragan Sekulic, Postdoctoral Researcher GOALS OF INVESTIGATION LOADS: WIND+WAVES BRIDGE (VERTICAL) MOTION DRIVER, VEHICLE

More information

A Biomechanical Approach to Javelin. Blake Vajgrt. Concordia University. December 5 th, 2012

A Biomechanical Approach to Javelin. Blake Vajgrt. Concordia University. December 5 th, 2012 A Biomechanical Approach to Javelin Blake Vajgrt Concordia University December 5 th, 2012 The Biomechanical Approach to Javelin 2 The Biomechanical Approach to Javelin Javelin is one of the four throwing

More information

Smart-Walk: An Intelligent Physiological Monitoring System for Smart Families

Smart-Walk: An Intelligent Physiological Monitoring System for Smart Families Smart-Walk: An Intelligent Physiological Monitoring System for Smart Families P. Sundaravadivel 1, S. P. Mohanty 2, E. Kougianos 3, V. P. Yanambaka 4, and M. K. Ganapathiraju 5 University of North Texas,

More information

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN Bridget M. Wadzuk 1 (Member, ASCE) and Ben R. Hodges 2 (Member, ASCE) ABSTRACT Modeling of dynamic pressure appears necessary to achieve a more robust

More information

A study of advection of short wind waves by long waves from surface slope images

A study of advection of short wind waves by long waves from surface slope images A study of advection of short wind waves by long waves from surface slope images X. Zhang, J. Klinke, and B. Jähne SIO, UCSD, CA 993-02, USA Abstract Spatial and temporal measurements of short wind waves

More information

Look Up! Positioning-based Pedestrian Risk Awareness. Shubham Jain

Look Up! Positioning-based Pedestrian Risk Awareness. Shubham Jain Look Up! Positioning-based Pedestrian Risk Awareness Shubham Jain Does this look familiar? Pedestrians account for 14% of all traffic fatalities in the US *. In the last decade, 688,000 pedestrians injured

More information

Currents measurements in the coast of Montevideo, Uruguay

Currents measurements in the coast of Montevideo, Uruguay Currents measurements in the coast of Montevideo, Uruguay M. Fossati, D. Bellón, E. Lorenzo & I. Piedra-Cueva Fluid Mechanics and Environmental Engineering Institute (IMFIA), School of Engineering, Research

More information

Phys 201A. Lab 6 - Motion with Constant acceleration Kinematic Equations

Phys 201A. Lab 6 - Motion with Constant acceleration Kinematic Equations Phys 201A Lab 6 - Motion with Constant acceleration Kinematic Equations Problems: It would be good to list your four kinematic equations below for ready reference. Kinematic equations 1) An amateur bowler

More information

Results and Discussion for Steady Measurements

Results and Discussion for Steady Measurements Chapter 5 Results and Discussion for Steady Measurements 5.1 Steady Skin-Friction Measurements 5.1.1 Data Acquisition and Reduction A Labview software program was developed for the acquisition of the steady

More information

Adaptive context-agnostic floor transition detection on smart mobile devices

Adaptive context-agnostic floor transition detection on smart mobile devices Adaptive context-agnostic floor transition detection on smart mobile devices Salvatore Vanini University of Applied Sciences of Southern Switzerland (SUPSI) salvatore.vanini@supsi.ch CoMoRea Workshop -

More information

Kungl Tekniska Högskolan

Kungl Tekniska Högskolan Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se March 22, 2006 Outline Wheel The overall system layout : those found in nature found in nature Difficult to imitate technically Technical

More information

Centre for Autonomous Systems

Centre for Autonomous Systems Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se March 22, 2006 Outline Wheel The overall system layout : those found in nature found in nature Difficult to imitate technically Technical

More information

Using Machine Learning for Real-time Activity Recognition and Estimation of Energy Expenditure

Using Machine Learning for Real-time Activity Recognition and Estimation of Energy Expenditure Using Machine Learning for Real-time Activity Recognition and Estimation of Energy Expenditure Emmanuel Munguia Tapia PhD Thesis Defense House_n Massachusetts Institute of Technology Do you know How many

More information

Using sensory feedback to improve locomotion performance of the salamander robot in different environments

Using sensory feedback to improve locomotion performance of the salamander robot in different environments Using sensory feedback to improve locomotion performance of the salamander robot in different environments João Lourenço Silvério Assistant: Jérémie Knüsel Structure of the presentation: I. Overview II.

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

Improving pedestrian dynamics modelling using fuzzy logic

Improving pedestrian dynamics modelling using fuzzy logic Improving pedestrian dynamics modelling using fuzzy logic Phillip Tomé 1, François Bonzon 1, Bertrand Merminod 1, and Kamiar Aminian 2 1 EPFL Geodetic Engineering Lab (TOPO) Station 18 1015 Lausanne Switzerland

More information

POKEMON HACKS. Jodie Ashford Josh Baggott Chloe Barnes Jordan bird

POKEMON HACKS. Jodie Ashford Josh Baggott Chloe Barnes Jordan bird POKEMON HACKS Jodie Ashford Josh Baggott Chloe Barnes Jordan bird Why pokemon? 1997 The Pokemon Problem an episode of the anime caused 685 children to have seizures Professor Graham Harding from Aston

More information

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer: Anemometry Anemometry Function of an anemometer: Measure some or all of the components of the wind vector In homogeneous terrain, vertical component is small express wind as -D horizontal vector For some

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 9, 2010 http://acousticalsociety.org/ 159th Meeting Acoustical Society of America/NOISE-CON 2010 Baltimore, Maryland 19-23 April 2010 Session 1pBB: Biomedical

More information

Where am I: Recognizing On-Body Positions of Wearable Sensors

Where am I: Recognizing On-Body Positions of Wearable Sensors Where am I: Recognizing On-Body Positions of Wearable Sensors Kai Kunze 1 Paul Lukowicz 1,2, Holger Junker 2, Gerhard Tröster 2 1 Institute for Computer Systems and Networks UMIT Hall i. Tirol, Austria

More information

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING

AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING ICAS 2002 CONGRESS AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING Yoshiaki NAKAMURA (nakamura@nuae.nagoya-u.ac.jp) Takafumi YAMADA (yamada@nuae.nagoya-u.ac.jp) Department of Aerospace Engineering,

More information

Validation of Measurements from a ZephIR Lidar

Validation of Measurements from a ZephIR Lidar Validation of Measurements from a ZephIR Lidar Peter Argyle, Simon Watson CREST, Loughborough University, Loughborough, United Kingdom p.argyle@lboro.ac.uk INTRODUCTION Wind farm construction projects

More information

Novel Technique for Gait Analysis Using Two Waist Mounted Gyroscopes

Novel Technique for Gait Analysis Using Two Waist Mounted Gyroscopes Old Dominion University ODU Digital Commons Computer Science Theses & Dissertations Computer Science Summer 2018 Novel Technique for Gait Analysis Using Two Waist Mounted Gyroscopes Ahmed Nasr Old Dominion

More information

SCHEINWORKS Measuring and Analysis Systems by

SCHEINWORKS Measuring and Analysis Systems by Pressure Measurement Systems for standing and walking analysis Germany since 1879 Pressure Measurement Systems for standing and walking analysis Documentation of Gait image Stance Symmetry of all parameters

More information

ATION TITLE. Survey QC, Decision Making, and a Modest Proposal for Error Models. Marc Willerth, MagVAR

ATION TITLE. Survey QC, Decision Making, and a Modest Proposal for Error Models. Marc Willerth, MagVAR 1 a Modest Proposal for Error Models ATION TITLE Marc Willerth, MagVAR Speaker Information Marc Willerth VP of Survey Technologies April 11, 2018 MagVAR 2 Speaker Bio Marc Willerth Magnetic Variation Services,

More information

AutoGait: A Mobile Platform that Accurately Estimates the Distance Walked

AutoGait: A Mobile Platform that Accurately Estimates the Distance Walked AutoGait: A Mobile Platform that Accurately Estimates the Distance Walked -Written By- Dae-Ki Cho, Min Mun, Uichin Lee, William J. Kaiser, Mario Gerla -Presented By- Scott Mitchell CS Department Problem

More information

SHUFFLE TURN OF HUMANOID ROBOT SIMULATION BASED ON EMG MEASUREMENT

SHUFFLE TURN OF HUMANOID ROBOT SIMULATION BASED ON EMG MEASUREMENT SHUFFLE TURN OF HUMANOID ROBOT SIMULATION BASED ON EMG MEASUREMENT MASANAO KOEDA, TAKAYUKI SERIZAWA, AND YUTA MATSUI Osaka Electro-Communication University, Faculty of Information Science and Arts, Department

More information

Analysis of the Radar Doppler Signature of a Moving Human

Analysis of the Radar Doppler Signature of a Moving Human Analysis of the Radar Doppler Signature of a Moving Human Traian Dogaru Calvin Le Getachew Kirose U.S. Army Research Laboratory RF Signal Processing and Modeling Branch Outline Use Doppler radar to detect

More information

Kinematic Differences between Set- and Jump-Shot Motions in Basketball

Kinematic Differences between Set- and Jump-Shot Motions in Basketball Proceedings Kinematic Differences between Set- and Jump-Shot Motions in Basketball Hiroki Okubo 1, * and Mont Hubbard 2 1 Department of Advanced Robotics, Chiba Institute of Technology, 2-17-1 Tsudanuma,

More information

Decentralized Autonomous Control of a Myriapod Locomotion Robot

Decentralized Autonomous Control of a Myriapod Locomotion Robot Decentralized utonomous Control of a Myriapod Locomotion Robot hmet Onat Sabanci University, Turkey onat@sabanciuniv.edu Kazuo Tsuchiya Kyoto University, Japan tsuchiya@kuaero.kyoto-u.ac.jp Katsuyoshi

More information

Ergonomics: Assessments and Evaluations for Job Improvements. Travis Ellis, CSP, CHMM

Ergonomics: Assessments and Evaluations for Job Improvements. Travis Ellis, CSP, CHMM AND/OR AND/OR AND = Force Awkward Posture Repetition Long Duration Increased Ergo Risk Ergonomics: Assessments and Evaluations for Job Improvements Travis Ellis, CSP, CHMM Course Objectives: 1. Identify

More information

Performance of Fully Automated 3D Cracking Survey with Pixel Accuracy based on Deep Learning

Performance of Fully Automated 3D Cracking Survey with Pixel Accuracy based on Deep Learning Performance of Fully Automated 3D Cracking Survey with Pixel Accuracy based on Deep Learning Kelvin C.P. Wang Oklahoma State University and WayLink Systems Corp. 2017-10-19, Copenhagen, Denmark European

More information

Hurdle races recognized in the current competition regulation of the Spanish Athletics Federation are the followings:

Hurdle races recognized in the current competition regulation of the Spanish Athletics Federation are the followings: HURDLE RACES 1- INTRODUCTION Hurdle races recognized in the current competition regulation of the Spanish Athletics Federation are the followings: Distancie Hurdles Height Category Hurdle- Hurdle- Start-Hurdle

More information

Relative Motion. New content!

Relative Motion. New content! Relative Motion New content! Task: Draw the speed vs time graphs for the six toy cars 2-D Kinematics Relative Motion Projectile Motion Angled Projectiles Announcements Meet in the lab tomorrow (bring

More information

Projectiles Shot up at an Angle

Projectiles Shot up at an Angle Projectile Motion Notes: continued Projectiles Shot up at an Angle Think about a cannonball shot up at an angle, or a football punt kicked into the air, or a pop-fly thrown into the air. When a projectile

More information

Summary. cross-country sit-sky. tests. subjects & materials. biomechanical model. results. discusison. conclusions

Summary. cross-country sit-sky. tests. subjects & materials. biomechanical model. results. discusison. conclusions Summary cross-country sit-sky tests subjects & materials biomechanical model results discusison conclusions Double Poling in cross-country sit ski Progression achieved by pushing symmetrically on two hand-held

More information

AN EXPERIMENTAL INVESTIGATION OF SPILLING BREAKERS

AN EXPERIMENTAL INVESTIGATION OF SPILLING BREAKERS AN EXPERIMENTAL INVESTIGATION OF SPILLING BREAKERS Prof. James H. Duncan Department of Mechanical Engineering University of Maryland College Park, Maryland 20742-3035 phone: (301) 405-5260, fax: (301)

More information

ScienceDirect. Rebounding strategies in basketball

ScienceDirect. Rebounding strategies in basketball Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 823 828 The 2014 conference of the International Sports Engineering Association Rebounding strategies in basketball

More information

Development of Wearable Sensor Combinations for Human Lower Extremity Motion Analysis

Development of Wearable Sensor Combinations for Human Lower Extremity Motion Analysis Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida - May 2006 Development of Wearable Sensor Combinations for Human Lower Extremity Motion Analysis Tao Liu,

More information

Using Spatio-Temporal Data To Create A Shot Probability Model

Using Spatio-Temporal Data To Create A Shot Probability Model Using Spatio-Temporal Data To Create A Shot Probability Model Eli Shayer, Ankit Goyal, Younes Bensouda Mourri June 2, 2016 1 Introduction Basketball is an invasion sport, which means that players move

More information

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL Weijie Liu 1 and Yoshimitsu Tajima 1 This study aims to study the breaking and broken wave characteristics in front

More information

University of Kassel Swim Start Research

University of Kassel Swim Start Research University of Kassel Swim Start Research Sebastian Fischer & Armin Kibele Institute for Sports and Sport Science, University of Kassel, Germany Research Fields: Swim Start research I. Materials and Equipment

More information

Step Detection Algorithm For Accurate Distance Estimation Using Dynamic Step Length

Step Detection Algorithm For Accurate Distance Estimation Using Dynamic Step Length Step Detection Algorithm For Accurate Distance Estimation Using Dynamic Step Length Ahmad Abadleh ahmad_a@mutah.edu.jo Eshraq Al-Hawari eshraqh@mutah.edu.jo Esra'a Alkafaween Esra_ok@mutah.edu.jo Hamad

More information

1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time.

1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time. 1. The graph below shows how the velocity of a toy train moving in a straight line varies over a period of time. v/m s 1 B C 0 A D E H t/s F G (a) Describe the motion of the train in the following regions

More information

AN31E Application Note

AN31E Application Note Balancing Theory Aim of balancing How an unbalance evolves An unbalance exists when the principle mass axis of a rotating body, the so-called axis of inertia, does not coincide with the rotational axis.

More information

On the use of rotor equivalent wind speed to improve CFD wind resource mapping. Yavor V. Hristov, PhD Plant Performance and Modeling Vestas TSS

On the use of rotor equivalent wind speed to improve CFD wind resource mapping. Yavor V. Hristov, PhD Plant Performance and Modeling Vestas TSS On the use of rotor equivalent wind speed to improve CFD wind resource mapping Yavor V. Hristov, PhD Plant Performance and Modeling Vestas TSS Firestorm- Number 53 on Top500 list from June 2011 14664 processors

More information

Treadmill and daily life

Treadmill and daily life 4 Treadmill and daily life Fall-related gait characteristics on the treadmill and in daily life, SM Rispens, JH van Dieën, KS van Schooten, LE Cofre Lizama, A Daffertshofer, PJ Beek, M Pijnappels, Journal

More information

Analysis of Traditional Yaw Measurements

Analysis of Traditional Yaw Measurements Analysis of Traditional Yaw Measurements Curiosity is the very basis of education and if you tell me that curiosity killed the cat, I say only the cat died nobly. Arnold Edinborough Limitations of Post-

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 20090030350A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0030350 A1 Yang et al. (43) Pub. Date: Jan. 29, 2009 (54) GAIT ANALYSIS (30) Foreign Application Priority

More information

Measurement of dynamic comfort in cycling using wireless acceleration sensors

Measurement of dynamic comfort in cycling using wireless acceleration sensors Available online at www.sciencedirect.com Procedia Engineering ( ) 58 57 9 th Conference of the International Sports Engineering Association (ISEA) Measurement of dynamic comfort in cycling using wireless

More information

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided.

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided. NAME:.... SCHOOL: DATE:... LINEAR MOTION INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1. Two forces that act on a moving cyclist are the driving force and the resistive

More information

Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF

Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF Current issues regarding induced acceleration analysis of walking using the integration method to decompose the GRF George Chen May 17, 2002 Stanford Neuromuscular Biomechanics Lab Group Muscle contribution

More information

Two dimensional kinematics. Projectile Motion

Two dimensional kinematics. Projectile Motion Two dimensional kinematics Projectile Motion 1. You throw a ball straight upwards with a velocity of 40m/s. How long before it returns to your hand? A. 2s B. 4s C. 6s D. 8s E. 10s 1.You throw a ball straight

More information

How is SkyTrak different from other launch monitors?

How is SkyTrak different from other launch monitors? SkyTrak : The Drilldown If you re looking for a concise and brief overview of SkyTrak, what it is, how it works and what all the data elements indicate, then please watch our educational video series,

More information

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing.

Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Distance vs. Time Describing a journey made by an object is very boring if you just use words. As with much of science, graphs are more revealing. Plotting distance against time can tell you a lot about

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Short-period gravity waves over a high-latitude observation site: Rothera, Antarctica

Short-period gravity waves over a high-latitude observation site: Rothera, Antarctica Short-period gravity waves over a high-latitude observation site: Rothera, Antarctica K. Nielsen, D. Broutman, M. Taylor, D. Siskind, S. Eckermann, K. Hoppel, R. Hibbins, M. Jarvis, N. Mitchell, J. Russell

More information

GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF

GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF GROUND REACTION FORCE DOMINANT VERSUS NON-DOMINANT SINGLE LEG STEP OFF Sara Gharabaghli, Rebecca Krogstad, Sara Lynch, Sofia Saavedra, and Tamara Wright California State University, San Marcos, San Marcos,

More information

wesport: Utilising Wrist-Band Sensing to Detect Player Activities in Basketball Games

wesport: Utilising Wrist-Band Sensing to Detect Player Activities in Basketball Games The Second IEEE International Workshop on Sensing Systems and Applications Using Wrist Worn Smart Devices, 2016 wesport: Utilising Wrist-Band Sensing to Detect Player Activities in Basketball Games Lu

More information

3D Turbulence at the Offshore Wind Farm Egmond aan Zee J.W. Wagenaar P.J. Eecen

3D Turbulence at the Offshore Wind Farm Egmond aan Zee J.W. Wagenaar P.J. Eecen 3D Turbulence at the Offshore Wind Farm Egmond aan Zee J.W. Wagenaar P.J. Eecen OWEZ_R_121_3Dturbulence_20101008 ECN-E--10-075 OCTOBER 2010 Abstract NoordzeeWind carries out an extensive measurement and

More information

Simulation of the Hybtor Robot

Simulation of the Hybtor Robot Simulation of the Hybtor Robot Pekka Aarnio, Kari Koskinen and Sami Salmi Information and Computer Systems in Automation Helsinki University of Technology ABSTRACT A dynamic rigid body simulation model

More information

Supplementary materials

Supplementary materials Supplementary materials I. Pressure sensor calibration Our analysis is based on identification of the onset and offset of the inhalation relatively to the electrophysiological recordings. Onset and offset

More information

Physics P201 D. Baxter/R. Heinz

Physics P201 D. Baxter/R. Heinz Seat # Physics P201 D. Baxter/R. Heinz EXAM #1 September 20, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

More information

Serve the only stroke in which the player has full control over its outcome. Bahamonde (2000) The higher the velocity, the smaller the margin of

Serve the only stroke in which the player has full control over its outcome. Bahamonde (2000) The higher the velocity, the smaller the margin of Lower Extremity Performance of Tennis Serve Reporter: Chin-Fu Hsu Adviser: Lin-Hwa Wang OUTLINE Introduction Kinetic Chain Serve Types Lower Extremity Movement Summary Future Work INTRODUCTION Serve the

More information

Humanoid Robots and biped locomotion. Contact: Egidio Falotico

Humanoid Robots and biped locomotion. Contact: Egidio Falotico Humanoid Robots and biped locomotion Contact: Egidio Falotico e.falotico@sssup.it Outline What is a Humanoid? Why Develop Humanoids? Challenges in Humanoid robotics Active vs Passive Locomotion Active

More information

Introduction to Waves. If you do not have access to equipment, the following experiments can be observed here:

Introduction to Waves. If you do not have access to equipment, the following experiments can be observed here: Introduction to Waves If you do not have access to equipment, the following experiments can be observed here: http://tinyurl.com/lupz3dh 1.1 There is a tray with water in it. This can model throwing a

More information

Body Stabilization of PDW toward Humanoid Walking

Body Stabilization of PDW toward Humanoid Walking Body Stabilization of PDW toward Humanoid Walking Masaki Haruna, Masaki Ogino, Koh Hosoda, Minoru Asada Dept. of Adaptive Machine Systems, Osaka University, Suita, Osaka, 565-0871, Japan ABSTRACT Passive

More information

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The Delayed Oscillator Zebiak and Cane (1987) Model Other Theories Theory of ENSO teleconnections Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts The delayed oscillator

More information

Wearable Trick Classification in Freestyle Snowboarding

Wearable Trick Classification in Freestyle Snowboarding Wearable Trick Classification in Freestyle Snowboarding Benjamin H. Groh, Martin Fleckenstein, Bjoern M. Eskofier Abstract Digital motion analysis in freestyle snowboarding requires a stable trick detection

More information

Effective Use of Box Charts

Effective Use of Box Charts Effective Use of Box Charts Purpose This tool provides guidelines and tips on how to effectively use box charts to communicate research findings. Format This tool provides guidance on box charts and their

More information