Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors

Similar documents
Indian Ocean dynamics and interannual variability associated with the tropospheric biennial oscillation (TBO)

Mechanistic links between the tropical Atlantic and the Indian monsoon in the absence of El Nino Southern Oscillation events

Tropical Pacific Ocean remains on track for El Niño in 2014

ENSO Wrap-Up. Current state of the Pacific and Indian Ocean

Biennial Oscillation of Tropical Ocean-Atmosphere System Associated with Indian Summer Monsoon

Hui Wang, Mike Young, and Liming Zhou School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, Georgia

Decadal changes in the relationship between Indian and Australian summer monsoons

Thesis Committee Report 6

Influence of El Nino Southern Oscillation and Indian Ocean Dipole in biennial oscillation of Indian summer monsoon

Long-term warming trend over the Indian Ocean

The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall

How rare are the positive Indian Ocean Dipole events? An IPCC AR4 climate model perspective

Indian Ocean warming its extent, and impact on the monsoon and marine productivity

Monitoring and prediction of El Niño and La Niña

Analysis of 2012 Indian Ocean Dipole Behavior

Effect of late 1970 s Climate Shift on Interannual Variability of Indian Summer Monsoon Associated with TBO

Subsurface Ocean Temperature Indices for Central-Pacific and Eastern-Pacific Types of El Niño and La Niña Events

Ocean dynamic processes responsible for the interannual. variability of the tropical Indian Ocean SST. associated with ENSO

Climate model errors over the South Indian Ocean thermocline dome and their. effect on the basin mode of interannual variability.

The Asian Monsoon, the Tropospheric Biennial Oscillation and the Indian Ocean Zonal Mode in the NCAR CSM

APPENDIX B NOAA DROUGHT ANALYSIS 29 OCTOBER 2007

Understanding El Nino-Monsoon teleconnections

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 4 September 2012

Lecture 33. Indian Ocean Dipole: part 2

Local vs. Remote SST Forcing in Shaping the Asian-Australian Monsoon Variability

5. El Niño Southern Oscillation

The effect of doubled CO 2 and model basic state biases on the monsoon-enso system. Part A: Mean response and interannual variability

Variability in the tropical oceans - Monitoring and prediction of El Niño and La Niña -

The influence of Tropical Indian Ocean SST on the Indian summer monsoon

How fast will be the phase-transition of 15/16 El Nino?

Trade winds How do they affect the tropical oceans? 10/9/13. Take away concepts and ideas. El Niño - Southern Oscillation (ENSO)

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts

Additive effect of two solar forcing mechanisms and influences on. tropical Pacific climate. National Center for Atmospheric Research

The Tropospheric Biennial Oscillation and Asian Australian Monsoon Rainfall

NOTES AND CORRESPONDENCE. Contributions of Indian Ocean and Monsoon Biases to the Excessive Biennial ENSO in CCSM3

Subsurface Ocean Indices for Central-Pacific and Eastern-Pacific Types of ENSO

ENSO Update Eastern Region. Michelle L Heureux Climate Prediction Center / NCEP/ NOAA 29 November 2016

Reconciling disparate 20th Century Indo-Pacific ocean temperature trends in the instrumental record and in CMIP5

Increasing intensity of El Niño in the central equatorial Pacific

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

The Role of the Wind-Evaporation-Sea Surface Temperature (WES) Feedback in Tropical Climate Variability

Lecture 18: El Niño. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 8 March 2010

Investigation of Common Mode of Variability in Boreal Summer Intraseasonal Oscillation and Tropospheric Biennial Oscillation

Exploring relationships between regional climate and Atlantic Hurricanes Mark R. Jury

Interannual variation of northeast monsoon rainfall over southern peninsular India

The Great Paradox of Indian Monsoon Failure (Unraveling The Mystery of Indian Monsoon Failure During El Niño)

Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation

The Child. Mean Annual SST Cycle 11/19/12

El Nino-Southern Oscillation (ENSO)

Tianjun ZHOU.

Climate Scale Interactions in the Indo-Pacfic Tropical Basins

Large-Scale Overview of YOTC Period (ENSO, MJO, CCEWs,.)

Wind-driven driven Response of the Northern Indian Ocean to Climate Extremes

Global Impacts of El Niño on Agriculture

Evaluation of ACME coupled simulation Jack Reeves Eyre, Michael Brunke, and Xubin Zeng (PI) University of Arizona 4/19/3017

The Multidecadal Atlantic SST - Sahel Rainfall Teleconnection in CMIP5 Simulations

General Introduction to Climate Drivers and BoM Climate Services Products

The slab ocean El Niño

Haibo Hu Jie He Qigang Wu Yuan Zhang

Climatic and marine environmental variations associated with fishing conditions of tuna species in the Indian Ocean

Overview. Learning Goals. Prior Knowledge. UWHS Climate Science. Grade Level Time Required Part I 30 minutes Part II 2+ hours Part III

Role of the Indian Ocean in the ENSO Indian Summer Monsoon Teleconnection in the NCEP Climate Forecast System

GEOS 513 ENSO: Past, Present and Future

NOTES AND CORRESPONDENCE. Timing of El Niño Related Warming and Indian Summer Monsoon Rainfall

Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years

Mechanisms for the Interannual Variability in the Tropical Indian Ocean. Part II: Regional Processes

Mesoscale air-sea interaction and feedback in the western Arabian Sea

The Asian Australian Monsoon and El Niño Southern Oscillation in the NCAR Climate System Model*

Interannual Variability in an Indian Ocean Basin Model

Traditional El Niño and El Niño Modoki Revisited: Is El Niño Modoki Linearly Independent of Traditional El Niño?

An ocean-atmosphere index for ENSO and its relation to Indian monsoon rainfall

Tropical Cyclone Climate in the Asia- Pacific Region and the Indian Oceans

Monsoon Systems Valsavarenche Val d Aosta, Italy

(submitted 10 August 2006, revised 21 January 2007)

Modelled ENSO-driven precipitation changes under global warming in the tropical Pacific

Lecture 13 El Niño/La Niña Ocean-Atmosphere Interaction. Idealized 3-Cell Model of Wind Patterns on a Rotating Earth. Previous Lecture!

Modification of the Stratification and Velocity Profile within the Straits and Seas of the Indonesian Archipelago

Lecture 24. El Nino Southern Oscillation (ENSO) Part 1

Appendix E Mangaone Stream at Ratanui Hydrological Gauging Station Influence of IPO on Stream Flow

SST 1. ITCZ ITCZ. (Hastenrath and Heller 1977; Folland et al. 1986; Nobre and Shukla 1996; Xie and Carton 2004). 2. MIROC. (Namias 1972).

The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon

LONG- TERM CHANGE IN PRE- MONSOON THERMAL INDEX OVER CENTRAL INDIAN REGION AND SOUTH WEST MONSOON VARIABILITY

ESCI 485 Air/sea Interaction Lesson 9 Equatorial Adjustment and El Nino Dr. DeCaria

Identifying the Types of Major El Niño Events since 1870

Effect of sea surface temperature on monsoon rainfall in a coastal region of India

Rokjin J. Park, Jaein I. Jeong, Minjoong Kim

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

The Air-Sea Interaction. Masanori Konda Kyoto University

LINKAGE BETWEEN INDIAN OCEAN DIPOLE AND TWO TYPES OF El NI 譙 O AND ITS POSSIBLE MECHANISMS

Andrew Turner Publication list. Submitted

Atypical influence of the 2007 La Niña on rainfall and temperature in southeastern Australia

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D01107, doi: /2010jd014522, 2011

Seasonal predictions of equatorial Atlantic SST in a low-resolution CGCM with surface Heat Flux Correction

Analysis of the Non-linearity in the Pattern and Time Evolution of El Niño Southern Oscillation!

The effect of doubled CO 2 and model basic state biases on the monsoon-enso system. Part B: Changing ENSO regimes

Second peak in the far eastern Pacific sea surface temperature anomaly following strong El Niño events

Origin of Inter-model uncertainty in ENSO amplitude change

Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

El Niño / Southern Oscillation (ENSO) and inter-annual climate variability

Transcription:

Indian Ocean Dipole - ENSO - monsoon connections and Overcoming coupled model systematic errors Hilary Spencer, Rowan Sutton and Julia Slingo CGAM, Reading University h.spencer@reading.ac.uk

Monsoon - ENSO - Indian Ocean dipole All Indian rainfall versus Niño 3.4 Slingo and Annamalai, MWR 2000 Annamalai and Liu, QJ, in press Ashok, Guan and Yamagata, GRL, 2001 Loschnigg et al, J. Clim, 2003 Meehl and Arblaster, J. Clim, 2003 All Indian rainfall from Indian Institute of tropical Meteorology HadISST (Rayner et al, 2003) overlapping years, 1871-1999 Correlation of AIR with SST with linear regression with Niño 3.4 removed normalised JJAS AIR anomaly 2 1 0-1 1874 56 1892 33 88 42 10 1890 1909 61 1906 1878 1902-2 1901 82 20 1905 79 65 18 2002 72 87 1899-3 1877-3 -2-1 0 1 2 3 normalised JJAS Nino 3.4 anomaly -2.2-1.4-0.6 0.2 1.4 2.2 3 3.8 colour: dipole index strength 17 83 58 76 94 91 97 4 N 4 S 9 E 18 E 9 W -0.34-0.26-0.18-0.1-0.02 0.02 0.1 0.18 0.26 0.34 El Nino weak correlation Dipole?? Weak Monsoon Strong Monsoon h.spencer@reading.ac.uk 2

Modelling Indian Ocean Variability and Teleconnections Challenges for coupled models: Realistic mean state and variabilty Realistic teleconnections Can coupled model biases be corrected? Heat flux correction? Wind stress correction? Does this lead to more realistic variability and teleconnections h.spencer@reading.ac.uk 3

Removing mean state biases from coupled models Heat flux correction - FC Two stage approach: 1. Haney forcing: Calculate heat flux required in order to create climate with the correct SST mean state 2. Add this (fixed, seasonally varying) heat flux correction to the surface heat flux Results of 100 years of HadCM3 with equatorial heat flux correction applied analysed (Turner, P. M. Inness and Slingo, 2004) How about wind stress correction? - τ C Two stage approach: 1. Impose the observed climatological wind stresses on the Ocean of the coupled model 2. Correct the wind stresses of the coupled model with the errors of the above model Results of 100 years of HadCM3 with tropical wind stress correction applied analysed (Spencer, Sutton and Slingo, in prep) h.spencer@reading.ac.uk 4

Climatological SST HadISST 1948-2002 (Rayner et al, 2003) 3 N 3 S 6 E 12 E 18 E 12 W HadCM3 1.25 ocean, 20 levels (Gordon et al, 2000) 3 N 3 S 6 E 12 E 18 E 12 W Cold tongue cold bias Warm pool warm bias Strong Indian Ocean SST gradient o C 10 18 22 26 28 29 30 31 HadCEM 1/3 ocean, 40 levels (Roberts et 3 N Slightly improvement al, 2004) 3 S 6 E 12 E 18 E 12 W h.spencer@reading.ac.uk 5

Climatological SST HadISST 1948-2002 (Rayner et al, 2003) 3 N 3 S 6 E 12 E 18 E 12 W HadCM3 1.25 ocean, 20 levels (Gordon et al, 2000) 3 N 3 S 6 E 12 E 18 E 12 W Cold tongue cold bias Warm pool warm bias Strong Indian Ocean SST gradient 10 18 22 26 28 29 30 31 o C HadCM3 FC (flux corrected) 3 N Massive improvements 3 S 6 E 12 E 18 E 12 W 3 N HadCM3 τ C (wind stress corrected) Smaller improvements 3 S 6 E 12 E 18 E 12 W h.spencer@reading.ac.uk 6

Interannual Standard Deviation of SST 3 N HadISST 3 S HadCM3 HadCM3 FC 3 N 3 S 6 E 12 E 18 E 12 W 6 E 12 E 18 E 12 W 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 3 N 3 S 6 E 12 E 18 E 12 W o C ENSO variability extends across whole Pacific SE Indian Ocean too strong High sub-tropical variability ENSO variability extend slightly less Otherwise biases worse HadCM3 τ C 3 N 3 S 6 E 12 E 18 E 12 W ENSO too vigorous but mainly west of dateline SE Indian Ocean better h.spencer@reading.ac.uk 7

Climatological 20 C depth in the Ocean SODA 1950-2002 data assimilation, (Carton et al, 2000) 3 N 3 S 6 E 12 E 18 E 12 W 3 N HadCM3 HadCM3 FC 3 S 6 E 12 E 18 E 12 W 30 50 70 90 110 130 150 180 200 220 240 260 280 300 3 N m Cold tongue cold bias SW Indian Ocean dome too deep and too far east No improvements 3 S HadCM3 τ C 3 S 6 E 12 E 18 E 12 W 3 N SW Indian Ocean dome shallower and further east 6 E 12 E 18 E 12 W Cold tongue warmer BUT Arabian Gulf deep error worse h.spencer@reading.ac.uk 8

use wind stress corrected HadCM3 τ C for study of Indo-Pacific coupled variability Composite El Niño and Indian Ocean dipole Use October Niño 3.4 index and dipole index (DI) Monthly means 121 smoothed and linearly detrended Strong El Niño, strong dipole, Niño 3.4 > σ, DI > σ, 1972, 1982, 1997 Strong El Niño weak dipole, Niño 3.4 > σ, DI < σ, 1951, 1957, 1965, 1987 Strong dipole, weak El Niño Niño 3.4 < σ, DI > σ, 1961, 1963, 1967, 1994 h.spencer@reading.ac.uk 9

3 N El Niño and Dipole Composite SST and 10m wind Anomalies HadISST and NCEP, SON HadCM3, SON - τ C El Niño and dipole 3 N 3 S 6 E 12 E 18 E 12 W 6 W 3 S El Niño, no dipole 6 E 12 E 18 E 12 W 6 W 3 N 3 N 3 S 6 E 12 E 18 E 12 W 6 W 3 S dipole, El Niño weak 6 E 12 E 18 E 12 W 6 W 3 N 3 N 3 S 6 12 E 18 E 12 W 6 3 S E W 6 E 12 E 18 E 12 W 6 W 2 m/s -3.8-2.8-1.9-1.1-0.4 0 0.4 1.1 1.9 2.8 3.8 o C h.spencer@reading.ac.uk 10

What are the pre-cursers to El Niño and the dipole in the ocean? h.spencer@reading.ac.uk 11

El Niño and Dipole Composite 20 C depth anomalies, equator and 10 S SODA HadCM3, - τ C El Niño and dipole equator equator 8 o S-12 o S 5 o S-10 o S 40E 60E 90E 120E 150E 180 150W 120W 90W 40E 60E 90E 120E 150E 180 150W 120W 90W m -84-68 -52-36 -20-4 4 20 36 52 68 84 La Niña El Niño following year La Niña dipole following year h.spencer@reading.ac.uk 12

El Niño only Composite 20 C depth anomalies, equator and 10 S SODA HadCM3, - τ C El Niño, no dipole equator equator 8 o S-12 o S 5 o S-10 o S 40E 60E 90E 120E 150E 180 150W 120W 90W 40E 60E 90E 120E 150E 180 150W 120W 90W m -84-68 -52-36 -20-4 4 20 36 52 68 84 spontaneous weak El Niño no dipole but weak negative dipole the year after h.spencer@reading.ac.uk 13

Dipole only Composite 20 C depth anomalies, equator and 10 S SODA HadCM3, - τ C dipole, El Niño weak equator equator 8 o S-12 o S 5 o S-10 o S 40E 60E 90E 120E 150E 180 150W 120W 90W 40E 60E 90E 120E 150E 180 150W 120W 90W m -84-68 -52-36 -20-4 4 20 36 52 68 84 heat build up in W. Pacific dipole the following year but no El Niño h.spencer@reading.ac.uk 14

Equatorial Kelvin waves following year La Nina El Nino Rossby waves south of equator following year atmospheric teleconnection same year Dipole h.spencer@reading.ac.uk 15

How do surface heat fluxes influence the dipole? h.spencer@reading.ac.uk 16

3 N Dipole Only Composite Surface Heat Flux Anomalies NCEP, SON HadCM3, SON - τ C dipole, El Niño weak 3 N 3 S 3 E 6 E 9 E 12 E 15 E 3 S 3 E 6 E 9 E 12 E 15 E -50-32 -18-8 -2 0 2 8 18 32 50 W/m 2 Surface fluxes provide a negative feedback on dipole SSTs Confirms the importance of the ocean dynamics in the Indian Ocean h.spencer@reading.ac.uk 17

Dipole - ENSO - monsoon connections h.spencer@reading.ac.uk 18

3 N El Niño and Dipole Composite Precipitation Anomalies CMAP, JJA HadCM3, JJA - τ C El Niño and dipole (CMAP, 1982 and 1997) 3 N 3 S 3 N 9 E 18 E 9 W 3 S El Niño, no dipole (CMAP, 1987) 3 N 6 E 12 E 18 E 12 W 6 W 3 S 3 N 9 E 18 E 9 W 3 S dipole, El Niño weak (CMAP, 1994) 3 N 6 E 12 E 18 E 12 W 6 W 3 S 9 E 18 E 9 W mm/day -7.5-6.3-5.1-3.9-2.7-1.5-0.3 0.3 1.5 2.7 3.9 5.1 6.3 7.5 3 S 6 E 12 E 18 E 12 W 6 W mm/day -13.5-11.5-9.5-7.5-5.5-3.5-1.5 1.5 3.5 5.5 7.5 9.5 11.5 13.5 El Niño weak Indian monsoon dipole strong Indian monsoon h.spencer@reading.ac.uk 19

But how do the Indian Ocean and the monsoon interact? The Pacific may still be domminant h.spencer@reading.ac.uk 20

Suppress El Niño in the Pacific Wind stress fixed to seasonally varying climatology in the tropical Pacific Wind stress corrected in the rest of the tropics Similar to Fischer et al but observed wind stress used rather than model climatology 3 N Interannual standard deviation of SST 3 S 6 E 12 E 18 E 12 W 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 o C SST variability removed from equatorial Pacific SST variability remains in SE Indian Ocean h.spencer@reading.ac.uk 21

El Niño suppressed, Indian Ocean Dipole Composite Anomalies 3 N SON SST and 10m wind anomalies 20 C depth anomalies 3 S 6 E 12 E 18 E 12 W 6 W 2 m/s -3.8-2.8-1.9-1.1-0.4 0 0.4 1.1 1.9 2.8 3.8 3 N JJA precipitation anomalies 3 S 6 E 12 E 18 E 12 W 6 W mm/day -13.5-11.5-9.5-7.5-5.5-3.5-1.5 1.5 3.5 5.5 7.5 9.5 11.5 13.5 o C 5 o S-10 o S equator 40E 60E 90E 120E 150E 180 150W 120W 90W m -84-68 -52-36 -20-4 4 20 36 52 68 84 Same pattern of ocean-atmosphere variability without interaction with the Pacific Dipole and strong monsoon - almost linked! h.spencer@reading.ac.uk 22

Conclusions Wind stress correction > heat flux correction for correcting Indian and Pacific basic state and variability Heat flux provides negative feedback on weak El Niño dipoles importance of ocean dynamics confirmed & explains weakness and rarity of non-el Niño dipoles ocean dynamics Equatorial Kelvin waves following year La Nina El Nino Rossby waves south of equator following year atmospheric teleconnection same year Dipole Indian Ocean dipole possibly associated with strong Indian summer monsoon h.spencer@reading.ac.uk 23