Searching for the ghost of the mountains (phase 2)

Similar documents
Snow leopard (Panthera uncia) Conservation WWF-India Initiative. Aishwarya Maheshwari Species Conservation Programme WWF-India

CONSERVATION & MANAGEMENT OF LARGE MAMMALS IN THE CENTRAL KARAKORAM NATIONAL PARK. Dr. Anna Bocci & Mr. Zafar Khan

7) Common name: Red fox Scientific name: Vulpes vulpes Local name: Watse. Areas of encounter: All over Ladakh.

Position of WWF Mongolia Program Office on current situation of Argali hunting and conservation in Mongolia

Monitoring Amur Leopards in Southwest Primorskii Krai, Russia

INLAND MARITIME INITIATIVE: FOREST CARNIVORES. Winter 2011 Update

Major threats, status. Major threats, status. Major threats, status. Major threats, status

FIELDTRIP REPORT. The Selati River flowing. 5 th January to 7 th March st WET SEASON. Report by:

5. Other animals, were observed during the survey. 4. Recommendations for conservation of mountain ungulates

REBOUND. on the. It was the winter of 2000/2001, and it seemed like the snow

Ma Ming Camera trapping on snow leopards in the Muzat Valley, Reserve, Xinjiang, P.R. China (October-December 2005).

Snow leopard (Panthera uncia) Conservation: Interface with human WWF-India Initiative. Aishwarya Maheshwari Species Conservation Programme WWF-India

HABITAT SELECTION BY A SNOW LEOPARD IN HEMIS NATIONAL PARK, INDIA. Wildlife Institute of India, P. O. New Forest, Dehra Dun, U. P.

Hundreds of endangered wild snow leopards are killed each year

MODULE 2. Conservation needs of cheetah and wild dogs and related threats to their survival. Notes:

YELLOWSTONE NATIONAL PARK, UNITED STATES

IMPROVING POPULATION MANAGEMENT AND HARVEST QUOTAS OF MOOSE IN RUSSIA

Competition. Competition. Competition. Competition. Competition. Competition. Competition. Long history in ecology

Wildlife Introduction

BRIEF PROJECT/ PROGRAMME TECHNICAL PROGRESS REPORT TEMPLATE Half-year (6 Month) Report due Jan. 31 st (Recommended length: 6 pages)

Population Ecology Yellowstone Elk by C. John Graves

The Rufford Foundation Final Report

Summary of discussion

Ministry of Forests, Lands and Natural Resource Operations

Gaston Phebus Field Guide. Else Hunrvogt, OP, OWGS

EXECUTIVE SUMMARY Feasibility Study on the Reintroduction of Gray Wolves to the Olympic Peninsula

Project Updates January 2015

The first of its kind in Québec!

Wolverine Tracking Project Scat Surveys

The Rufford Foundation Final Report

Study Terrestrial Furbearer Abundance and Habitat Use

Chhomrong Report

Susitna-Watana Hydroelectric Project Document ARLIS Uniform Cover Page

Veronica Yovovich, Ph.D. Wildlife Conflict Specialist and Science Program Director Mountain Lion Foundation

LITTLE SALMON AND MAGUNDY RIVERS

HOME RANGE AND HABITAT USE OF PLAINS SPOTTED SKUNKS IN THE OZARK MOUNTAINS OF ARKANSAS

FIELDTRIP REPORT. 7 th June to 8 th August 2016 DRY SEASON. Report by: Jessica Comley, Rhodes University, Grahamstown

Results of Argali Survey in Big Pamir and the Wakhjir Valley by the Marco Polo Sheep Survey Team 2008

Keywords: 7SI/Brown bear/harvest/harvest quota/hunting/malme/management/ mortality/population size/trend/ursus arctos

UNEP/CMS Convention on Migratory Species (CMS)

Stakeholder Activity

Project on the evaluation of the human dimensions of the target audiences regarding Eastern wolves conservation in La Mauricie National Park of

Cascadia Wild Wolverine Tracking Project Season Report

Job Title: Game Management, Subsection B Game Management Mountain Lion

Monitoring Asian Elephants and Mitigating Human-Elephant Conflict in the Core Landscape of the Southern/Eastern Cardamom Mountains, Cambodia

Conservation status of large carnivores in Hungary

A snow leopard conservation plan for Mongolia. Report: 1-7. (publication date unknown).

Causes of Tiger (Panthera tigris) Population Decline, and Potential Consequences if the Decline Continues

Minnetonka Coyote Management. Hazing Works If We Do It Together

The equation is as follows : Y = X where: Y = is weight of prey consumed per scat, and X = is average body weight of the prey.

Catlow Valley Redband Trout

National Snow Leopard Ecosystem Priority Protection (NSLEP) for Afghanistan

FCE READING SPECIES. Which endangered species: has had its products replaced by other products? 0: B. is sometimes killed for entertainment?

Snow Leopards. By Colin

A Discussion on Conservation Strategies for Endangered Charismatic Megafauna

Northern Yellowstone Cooperative Wildlife Working Group 2012 Annual Report (October 1, 2012-September 30, 2012) Member Agencies

Into the Al Hajar with the Arabian Tahr 2012 FIELD REPORT

Funding the base of long term large carnivore conservation in Hungary ID no.: LIFE 00/NAT/H/7162

Big Cats and Augmented Reality

Michigan Predator-Prey Project Phase 1 Preliminary Results and Management Recommendations. Study Background

The revival of wolves and other large predators and its impact on farmers and their livelihood in rural regions of Europe

Snow Leopard Population Estimation and Conflict Assessment in Eastern Ladakh, India

submitted: fall 2009

CHEETAH PROJECT Cheetah Conservation Fund. Interviewers name Date

JULY 2017 SUMMARY BULLETS

2009 WMU 328 Moose and Elk

REMIBAR REMIBAR. Evaluation of mitigation measures for otter in the Remibar project. EC LIFE+ programme LIFE10 NAT/SE/045

Status and Distribution of the Bobcat (Lynx rufus) in Illinois

Report of Raccoon Dog management in Finland for 2014

Status Report on the Yellowstone Bison Population, August 2016 Chris Geremia 1, Rick Wallen, and P.J. White August 17, 2016

Snow Leopard Conservation Grant Snow Leopard Network. Final Report for 2010 Project

Amur Leopard - Diet. Learn more online conservewildcats.org

BACKGROUND, HYPOTHESES, PREDICTIONS

Tso Kar extension. Ladakh Pika close to the summit, and sure enough one ran across the road just a few hundred meters beyond the summit pass.

2010 Wildlife Management Unit 510 moose

Managing Encounters Between Humans and Coyotes. Guidelines and Information

2010 Wildlife Management Unit 501 moose and deer

BRIEFING on IBERIAN LYNX (Lynx pardinus) MANAGEMENT PLAN AT DOÑANA NATIONAL PARK

Is the lion really the king of the jungle?

THE NEW TRAPPER S NOTEBOOK Notebook completion guide

Warning call of marmots

Lynx Protection Zone and Trap Restrictions

Nordatlantisk Fiskeriministerkonference i Shediac 29. august 2017

ISSN CAT news N 51 AUTUMN 2009 IUCN

2012 Diamond Complex Assessment BLM administered: Battle Mountain, Ely, Elko districts

Status and management of large carnivores in. Estonia. Peep Männil Nature Department Estonian Environment Agency. Photo: Toomas Tuul

This Unit is a mandatory Unit in the National Certificate in Gamekeeping but is also available for candidates wishing to study the Unit on its own.

Copyright 2018 by Jamie L. Sandberg

Phillip Island Nature Parks Integrated Pest Mammal Strategy

STATE OF MINNESOTA IN COURT OF APPEALS. Court File No. A Petitioners, Respondents.

2015 Bear and Cougar Activity in Mountain View County

Grouse in the Bavarian Alps: Status, threats and conservation Example: Black grouse in the Bavarian Alps

Women in Shooting Sports Survey Results

INTERNATIONAL JOURNAL OF CONSERVATION SCIENCE

Executive Summary A detailed long-term study on prey selection, food habits and population status of three sympatric large carnivores (tiger, leopard

Annual Report Ecology and management of feral hogs on Fort Benning, Georgia.

Progress Report

Wolverine Survey Plan for Upper Turnagain Arm and Kenai Mountains, Alaska

BRENT N. LONNER, Montana Fish, Wildlife & Parks, Fish & Wildlife Division, PO Box 488, Fairfield, MT 59436, USA

Draft Wild Horse Management Plan

Transcription:

Searching for the ghost of the mountains (phase 2) Report of a camera trapping study on snow leopard and other mammals in TAVAN BOGD NATIONAL PARK, Altai Mountains, NW Mongolia December 2017 1

Report prepared by Claudio Augugliaro (University of Lausanne, Switzerland; Green Initiative, Mongolia; Augugliaro.Claudio@unil.ch) and Francesco Rovero (MUSE Museo delle Scienze, Italy; francesco.rovero@muse.it). Acknowledgements: We thank all participants in the team of the research expedition that conducted fieldwork with F.R. and C.A.: Claudio Groff (Autonomous Province of Trento, Italy), Miha Krofel (University of Ljubljana, Slovenia) and Jukhan Mergenbai (Mongolian Altai Range Protected Areas, Mongolia). We also thank Maurizio Cesali (Green Initiative volunteer, Mongolia) for his valuable help during fieldwork. Miha Krofel and Claudio Groff provided useful comments on a draft version of the report. We thank the Ministry of Environment Green Development and Tourism of Mongolia for supporting this project, and Choikhand Janchivlamdan, Director of Green Initiative, who helped with logistics and facilitated collaboration between Mongolian and foreigner institutions. Funding was from Panthera (Sabin Snow Leopard Grant to F.R.), Fondazione Arca Consulting/Parco Natura Viva (Italy), MUSE Museo delle Scienze, Green Initiative and UNIL. Part of the camera traps were kindly provided by Fototrappolaggio (Italy) and part of the technical clothing and equipment was provided by Tecnosci, Dynafit, Salewa and Ski Trab (Italy). 2

Introduction and aims of the study The threatened snow leopard (Panthera uncia), along with other larger mammals, have been poorly studied in the remote areas of the Altai Mountains in NW Mongolia. It is known that the snow leopard range encompasses extensive portions of the Bayan Olgii Province, NW Mongolia. As part of a research programme aimed to assess the status and the conservation of the snow leopard and its sympatric carnivores and ungulates occurring in the Altay-Sayan Ecoregion, the Mongolian Conservation NGO Green Initiative (Mongolia), MUSE - Museo delle Scienze (Italy), and UNIL University of Lausanne (Switzerland), in partnership with the Mongolian Altai Range Protected Areas Authority, conducted in 2017 a camera trapping survey in the Tavan Bogd National Park (TB NP). The snow leopard was known to occur in this protected area but its distribution within the NP was unknown. The main aim of the study was to confirm and assess the presence of snow leopard in the target area. The study followed a first phase of the research programme that the mentioned institutions conducted in 2015 in Siilkhem B National Park (see Rovero and Augugliaro 2015), approximately 100 km to the NE along the Altai Mountains range. This report presents the main results from the study. Only qualitative results are reported here, while detailed analyses are on-going by the principal investigators of the research programme. Study area and methods The study was conducted in the Tavan Bogd National Park (48 33 N; 88 37 E) area 6,362 km 2 (http://www.infomongolia.com, see also http://whc.unesco.org/en/tentativelists/5955/), located in NW Mongolia, bordering Russia and China (Fig. 1-2). The area reaches the highest elevation in Mongolia with the Khuiten Uul Mountain (4,374 m a.s.l.). The park covers a portion of steep, rocky and dry habitat within the Altai Mountain range, and is mainly covered in grassland with valley bottom sparsely covered by shrubs and scattered larches. In comparison to Siilkhem B NP, where a similar survey was conducted in 2015, Tavan Bogd is a larger and higher elevation area, with large portions of Alpine and glacial habitat. In addition, the southern zone of the park (which were not covered by our survey), is characterized by portions of forested habitat and large lakes. 3

Figure 1. Map of Mongolia with the study area (in green) and the area surveyed in 2015 (in gold) within the general programme in the Bayan-Olgii province. Figure 2. A view of the study area towards the peaks above 4,000 m a.s.l. Within Tavan Bogd NP, we sampled the central-to-northern portion for an overall coverage of approximately 1,200 km 2 (Minimum Convex Polygon around sampling sites) through the 4

deployment of 60 camera trap stations set at an elevation range of 2,475-3,662 m a.s.l. Each station consisted in a single camera trap set at sites of presumed marking or traveling of snow leopard (Figure 3). Figure 3. Map of the study area with the 60 camera trap stations set. Spacing and location of camera trap stations was based on a predetermined design based on home range size of snow leopard, available information on snow leopard presence in the area, and results from the first survey. A general area for sampling deemed suitable to snow leopard presence was initially selected by considering elevation >2200 m a.s.l., slope >30% and ruggedness >0.7. We then designed a regular grid of camera traps spaced at the minimum distance of 3-4 km with a view of covering the largest area possible with available camera traps without leaving major gaps of un-sampled suitable habitat. Camera traps worked overall from 4 th April and 2 nd June 2017, for a minimum of 45 days of sampling per camera trap. We used digital camera traps: the majority were Reconyx HC600 and HC500 models (N=52), with no-glow flash, a trigger speed of 0.2 s, and taking only images. The remaining 8 camera traps were UOVision UV572 IR+, with no-glow flash, 1-s trigger speed and possibility to take videos. We set camera traps on rocks at a distance of approx. 4-5 m from the target trail (Fig. 4). We used alkaline batteries that outperform rechargeable ones in cold temperatures (minimum of -18 C during the study period). Date and time of image was stamped in the images 5

themselves. Camera traps saved images on 8GB SD cards. We used Garmin GPSs to record the location of the camera trap sites, and we also recorded the elevation and the day and time of start and end of sampling. Figure 4. Setting camera traps Images were retrieved from SD cards by Green Initiative s team. We screened images for species identification and metadata using dedicated, open-access software (Wild.ID, see https://www.wildlifeinsights.org/wms/#/sharedata). The software produces a database (.csv format) that we used for further analysis. Results Out of the 60 camera traps set 44 worked successfully. One camera trap was stolen, while 15 cameras either did not work or shoot continuously, recording blank images. Problematic cameras were mostly IR+, especially when set on video recording mode, however we obtained relatively high amounts of blank images from most camera traps. Besides the lower quality of IR+ relative to Reconyx, the cold temperatures, and most importantly the strong winds, have probably caused the malfunctioning and false triggering of camera traps. An additional reason 6

might be the setting in high sensitivity mode of the camera traps; this prevents missing triggers by smaller animals, such as the small carnivores, however it increases the incidence of blank images. The rate of failing camera traps was much higher than in the 2015 survey, partially reflecting the sampling in more exposed and higher elevation sites than in 2015 where elevation were lower and relatively more sites were in valley bottoms. Table 2 summarizes the sampling effort and categories of images obtained. Survey effort is scored as the total number of days cameras operated, from setting to retrieval, or to the last image taken in case of camera malfunctioning. Table 2. Summary of survey effort and of images obtained (see text for details). Sampling effort (camera days) 2,078 Mean camera days per camera 47.23 Total number of images obtained 31,315 Number of identified mammals 15,385 photos (including livestock) Number of not identified mammals 1,621 photo (small rodents) Number of bird photos 1,536 Blank and Set up/pick up photos 12,773 We obtained 15,385 images of wild and domestic mammals that we could identify to species. We also obtained 1,621 images of small mammals that we could not identify to species and 1,536 images of birds. We filtered images for independent detection events, i.e. images of the same species taken within a span of 15 minutes were scored as a single passing event. This avoids multiple scoring of the same individuals detecting within each event. Thus, we obtained 825 independent events of wild mammal species and 153 independent events of livestock and humans. We considered the events as an index of relative abundance for each species, by normalizing events for the sampling effort. We also calculated naïve occupancy as the number of sites positive to species presence to the total number of sites, which is a complementary index of abundance to the event rate. We recorded 14 species of medium-to-large wild mammals (Table 3), as well as people and livestock. 7

Table 3. Checklist of species detected by camera traps, with the number of detection events screened by 15 minutes, RAI (Relative Abundance Index) and naïve occupancy (the fraction of sites where the species was detected on the total number of sites). Latin name Common name Events (15 min) RAI Naive Occupancy Marmota baibacina Altai marmot 384 18.48 0.68 Urocitellus undulatus Long-tailed ground squirrel 155 7.46 0.09 Vulpes vulpes Red fox 67 3.22 0.48 Gulo gulo Wolverine 55 2.65 0.39 Lepus tolai Tolai hare 45 2.17 0.27 Martes foina Beech marten 33 1.59 0.23 Capra sibirica Siberian ibex 29 1.40 0.11 Canis lupus Grey wolf 16 0.77 0.18 Ovis ammon Argali sheep 11 0.53 0.07 Otocolobus manul Pallas s cat 11 0.53 0.16 Mustela eversmanii Steppe polecat 9 0.43 0.16 Ochotona alpina Alpine pika 5 0.24 0.07 Ursus arctos Brown bear 3 0.14 0.07 Panthera uncia Snow leopard 2 0.10 0.05 People and Domestic Animals Capra hircus / Ovis aries Domestic goat / sheep 102 4.91 0.18 Homo sapiens Human 30 1.44 0.20 Equus ferus Domestic horse 18 0.87 0.16 Canis lupus familiaris Domestic dog 2 0.10 0.05 Bos grunniens Yak 1 0.05 0.02 Species inventory The chart in Fig. 5 is a species accumulation curve, i.e. the number of species detected with increasing survey effort (and randomized through 1000 iterations). The profile has the expected shape, with initial high steepness as the majority of species are detected followed by a progressive decrease towards a plateau. As the curve still tends to increase at the end of the sampling, there is indication that further survey would held additional species. 8

Figure 5. Randomized species accumulation curve (mean as solid line and confidence intervals as dotted lines). The species number increases exponentially during the initial sampling and then its steepness decreases towards an asymptote. Snow leopard detections Surprisingly, camera traps detected snow leopards only at two sites and with only 2 passing events. The two series of images were of different flanks of the animal hence not enabling us to determine if they belong to one or two individuals. These sites were within a distance of 12 km (Fig. 6-7). In general, and despite the high incidence of failing camera traps, we detected very few snow leopard tracks while surveying to set camera traps, as well as 2 fresh scats. 9

Figure 6. Map of camera trap sites (black triangles) with sites that detected the snow leopard (red dots). Figure 7. Images from the two sequences of snow leopard captures. 10

Other mammals detected Detections of wild ungulates, which are presumed snow leopard prey, were also few: argali sheep (11 events) and Siberian ibex (29). The latter is likely the main wild prey of snow leopard in the area. This species was found at only 5 of the 44 sampling sites, one of them being also positive to snow leopard presence (Fig. 8-9 and 12). Figure 8. Map of camera trap sites (black triangles) with sites that detected the argali sheep (red dots). Figure 9. Map of camera trap sites (black triangles) with sites that detected the Siberian ibex (red dots). We recorded a remarkable number carnivore species (8): 3 species of mustelids, 2 of felids, 2 of canids and 1 species of bear. Two rodent species (the Altai marmot and the long-tailed ground squirrel) and two lagomorph species (the Tolai hare and the Alpine pika). A selection of photo representing the captured species is shown below (Fig. 10-12). 11

Figure 10. From the left to the right, from up to down: wolverine, grey wolf, brown bear, Pallas s cat. Figure 11. From the left to the right, from up to down: steppe polecat, beech marten, red fox, Altai marmot. 12

Figure 12. From left to right and up to down: Siberian ibex, argali sheep, long-tailed ground squirrel and Tolai hare. Wolverine was detected with relatively high frequency, with 55 independent events at 17 sites (Fig. 13). It has the second highest RAI and naïve occupancy among the carnivores after the red fox (Table 3). Among the other wild species recorded it is notable the presence of the Pallas s cat (Otocolobus manul), a IUCN Near-Threatened species (Fig. 14). Among the larger carnivores, the wolf was recorded with 16 independent events around the NP border and buffering zones (Fig. 15), while the brown bear was recorded 3 times (Fig. 16). Tracks of wolf as well as wolverine were frequently found throughout the study area. Two wolves were sighted at far distance once, by C. Groff and M. Krofel, during the camera traps deployment. Moreover, we elicited wolf howling in one occasion by simulating the howling. Tracks of brown bear were sighted in the northern part of the study area (in one case of a female with two yearlings), especially during the camera trap retrieval at the end of May. Records of reproductive individuals (and not just transient animals) are interesting for an area lacking arboreal vegetation. Two members of the team had a close encounter (15-20 m) with two adult brown bears. Maps below show the detection sites for wolverine, Pallas s cat, grey wolf and brown bear (see legend for species name). 13

Figure 13. Sites where wolverine were detected. Figure 14. Sites where Pallas s cat was detected. 14

Figure 15. Sites where wolf was detected. Figure 16. Sites where brown bear was detected. 15

Detections of livestock and people Goats and sheep were recorded through 102 events, representing the second most recorded species after the Altai marmots (Marmota baibacina). Livestock also included a few detections of horses and yak, while people were detected with 30 events (Fig. 16). Overall livestock and people were detected at 13 sites, even though herders and herders houses were present across most of the sampled area with exception of the most interior (western and north-western) areas. Siberian ibex and argali sheep detections spatially overlapped with livestock only at 1 site. Figure 16. Sites where livestock and humans were detected. Conclusions and recommendations This report presents qualitatively the results of our survey, while quantitative data analyses for scientific publications are on-going. Results show the presence in the study area of a diverse community of medium-to-large mammals with several species of conservation relevance in addition to the snow leopard. In particular, the area seems to hold relatively high presence of wolverine. The presence of argali sheep, Pallas s cat and bear is also notable. Despite using a systematic sampling that covered a relatively large portion of the northern side of the National Park, the very small number of snow leopard detections raises the concern that the species may be present in critically low densities in the study area. Reasons that could explain the low detection rate of snow leopards falls into two categories. The first is the likely low density of the species in the area and the second relates to potential sampling limitations. As for the latter, our sampling was affected by an unexpectedly high rate of camera trap failure, reducing the area effectively sampled. In 16

addition, our survey effort set at 45 days per camera, which was based on results from the previous survey (Rovero et al. in press, Oryx), may have been sub-optimal in an area with critically low density of animals. A third reason could be that snow leopard optimal habitat (with adequate density of wild prey) may extend further west into the interior part of the mountain chain stretching along the border with China relatively to the area we sampled. Unfortunately, those western areas were not accessible in the sampling period due to deep snow. Therefore, it is likely that prolonged sampling (up to 90 days) into a wider area may have yielded a greater number of snow leopard captures. Despite these limitations, we are confident that our results still point to a critically low density of snow leopard in the area, which is likely due to a combination of lowered prey density due to hunting and the direct and indirect effects of livestock grazing (see Rovero et al. in press). The low detection rate of wild ungulates (Siberian ibex and argali sheep) is indeed surprising especially when considering that we sampled at relatively higher elevation and targeting more ridges than in Siilkhem B NP. Indeed we detected the Siberian ibex at a smaller number of sites in Tavan Bogd than in Siilkhem B (naïve occupancy 0.11 versus 0.18; we did not detect argali sheep in the latter area). Unfortunately, we gathered clear evidence that hunting is widespread inside the National Park as well as in buffering areas, as especially indicated by furs displayed in herders houses (Fig. 17). We also observed that the two species of wild ungulates were very shy of people, running away at distances >300 m, which is a clear indication that they are under hunting pressure. Figure 17. Furs of fox and wolverine inside a herder house in the area buffering the National Park (left) and a brown bear paw in a herder house inside the National Park (right). We also found a steel-jaw trap in a herder house roof within the protected area, declared to be used for wolves but obviously trapping any other animals of appropriate size (Fig. 18). 17

Figure 18. A steel-jaw trap found in Tavan Bogd National Park. This is unfortunate as the law of Mongolia on special protected area (article 12) specifies that in the National Conservation Parks is prohibited to hunt, catch, scare or drive out animals, damage or demolish their nets, dens or holes with the purpose other than activities regulating the census of animals, their number, age, gender and herd composition according to approved schedule and methodology. Besides hunting, livestock grazing is also a potential threat to wildlife. We detected less presence of livestock than at Siilkhem, however herders houses and livestock occur all around the buffering area and within the eastern and northern part of the park that we sampled, while only at its interior in the period of sampling livestock was absent due to snow cover. Livestock likely impacts the occurrence and abundance of ibex and argali as it creates competition for foraging grounds with exclusion of the wild species. How livestock impacts the presence of the snow leopard remains difficult to assess. Rovero et al. (in press) found from the 2015 study that while the negative effect of livestock on Siberian ibex was clear, livestock may not have an effect on snow leopard even though the cascading effects such as retaliatory killings, decreased wild prey base and raising human-carnivore conflicts will threaten enduring protection of snow leopard. In addition, while the low number of snow leopard reduce the potential conflicts with shepherds, the retaliatory killing to wolf can indirectly threaten the snow leopard (Rovero et al. in press). Traditional livestock keeping is allowed in the limited use zones of National Parks (article 17 of the Mongolian law on special protected area; 1994). However, in the last two decades the number of livestock - mainly represented by goats due to the increased global demand of cashmere - has increased steadily across the country. Hence, the current protection regime may not be suitable for Tavan Bogd National Park, where strict protection is advocated or, alternatively, livestock numbers allowed in the park should be reduced. 18

In conclusion, we have conducted the first systematic camera trapping study of the larger mammal community in Tavan Bogd National Park, which represents the western-most and highest area of the Mongolian Altai Mountains, and provided novel information on snow leopard and other mammals. We revealed a context whereby the long-term viability of snow leopard population needs sound and timely attention to increase protection and make livestock keeping compatible with wildlife conservation. We recommend future efforts consider sampling additional populations in the same region to achieve a more robust data set to estimate the abundance and assess the conservation status of snow leopard. The field team that set camera traps in April 2017 at one of the hosting herders houses. References to 2015 survey Rovero F, Augugliaro A (2015). Searching for the ghost of the mountains. Report of a camera trapping study of the snow leopard and other mammals in the Altai Mountains of NW Mongolia. Unpublished report, available at www.muse.it/it/esplora/progetti- Speciali/Pagine/Mongolia-Snow-Leopard-2015.aspx Rovero F, Augugliaro A, Havmøller RW, Groff C, Zimmermann F, Oberosler V, Tenan S (in press). Co-occurrence of snow leopard Panthera uncia, Siberian ibex Capra sibirica and livestock: potential relationships and effects. Oryx. 19