Thermochemistry/Calorimetry. Adiabatic coefficient of gases Flammersfeld oscillator LEC 02. What you need: What you can learn about

Similar documents
CHEM 355 EXPERIMENT 7. Viscosity of gases: Estimation of molecular diameter

End of Chapter Exercises

CHEMISTRY - CLUTCH CH.5 - GASES.

DEMONSTRATION 2.1 PROPERTIES OF CO 2. Chapter 2: Gases

End of Chapter Exercises

Experiment 18 Properties of Gases

Density of Brass: Accuracy and Precision

The University of Hong Kong Department of Physics Experimental Physics Laboratory

Heat Capacity Ratio of Gases. Kaveendi Chandrasiri Office Hrs: Thursday. 11 a.m., Beaupre 305

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book.

Analysis of a KClO3 Mixture and Determination of R

Problems of Chapter 3

Chapter 5 TEST: Gases

Dalton s Law How is the total pressure of a mixture of gases related to the partial pressures of the component gases?

Determination of R: The Gas-Law Constant

A. What are the three states of matter chemists work with?

Experiment 13: Make-Up Lab for 1408/1420

Gas Laws. Introduction

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

MET 335W Fluid Mechanics Laboratory. Lab 1: Bourdon Tube Calibration. Nick Peak

Wave phenomena in a ripple tank

Classes at: - Topic: Gaseous State

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

Completed ALL 2 Warm-up IC Kinetic Molecular Theory Notes. Kinetic Molecular Theory and Pressure Worksheet

The Decomposition of Potassium Chlorate

Gases and Pressure. Main Ideas

State of Nevada Department of Transportation Materials Division METHOD OF TEST FOR SAND EQUIVALENT

Experiment 13 Molar Mass of a Gas. Purpose. Background. PV = nrt

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

Each gas sample has the same A) density B) mass C) number of molecules D) number of atoms

256 Pneumatic Pressure Indicator

Boyle s Law Practice

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

Homework #10 Due Monday, May Compute the moment of inertia of the objects below.

General Chemistry I Percent Yield of Hydrogen Gas From Magnesium and HCl

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determination of the Gas-Law Constant (R) using CO2

CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

Ripple Tank with LED-light source, complete

Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15)

Boyle s Law VC 09. Experiment 9: Gas Laws. Abstract

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

From and

OPERATING INSTRUCTIONS

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

Unit 8: Gases and States of Matter

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

PSI Chemistry: Gases Multiple Choice Review

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams.

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Properties of Gases Observing Atom Pressure of a Gas Measuring Gas Products of Chemical Inferring Molecule Reactions

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

CHM 100 / Introductory Laboratory Experiment (r10) 1/11

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

INSTRUCTOR RESOURCES

The Ideal Gas Constant

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

Student s Name: Date : Molar volume of butane

BOYLE S / CHARLES LAW APPARATUS - 1m long

Kinetic-Molecular Theory

Chapter 14 Fluids Mass Density Pressure Pressure in a Static Fluid Pascal's Principle Archimedes' Principle

introduce Grade 10 Earth and Dynamics heat transfers 2). Materials: 3. A hot plate. Procedure: heat it to a boil. 3. Remove flask or table) and

My Website:

Page 1

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering

Experiment #2. Density and Measurements

PRESSURE SENSOR - ABSOLUTE (0 TO 700 kpa)

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

PRE LABORATORY ASSIGNMENT: Lab Section Score: /10 READ THE LAB TEXT BEFORE ATTEMPTING THESE PROBLEMS!

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected.

Chemistry Chapter 11 Test Review

States of Matter Review

Chapter 15 Fluid. Density

PRESSURE-TEMPERATURE RELATIONSHIP IN GASES

AP Lab 11.3 Archimedes Principle

Practice(Packet( Chapter(5:(Gases( Practice(Packet:(Gases( ( Regents Chemistry: Dr. Shanzer ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

LAB 13: FLUIDS OBJECTIVES

Gases and Pressure SECTION 11.1

Investigation of Boyle s Law: methods

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

Name Chemistry Pre-AP

Please do not write on this test. Please use the answer sheet. 1) Please choose all conditions that would allow a gas sample to behave ideally.

Flow in a shock tube

NCERT. To study the variation in volume (V) with pressure (P) for a sample of air at constant temperature by plotting graphs between P and V, and

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

LAB 7. ROTATION. 7.1 Problem. 7.2 Equipment. 7.3 Activities

Vibration isolation system 1VIS10W. User manual

Gas Laws. 2 HCl(aq) + CaCO 3 (s) H 2 O(l) + CO 2 (g) + CaCl 2 (aq) HCl(aq) + NaHCO 3 (s) H 2 O(l) + CO 2 (g) + NaCl(aq)

PHYS 102 Quiz Problems Chapter 19 : Kinetic Theory of Gases Dr. M. F. Al-Kuhaili

The exit velocity of a compressed air cannon


Name Hour. The Behavior of Gases. Practice B

Transcription:

LEC 02 Thermochemistry/Calorimetry Adiabatic coefficient of gases Flammersfeld oscillator What you can learn about Equation of adiabatic change of state Polytropic equation Rüchardt s experiment Thermal capacity of gases Principle and tasks A mass oscillates on a volume of gas in a precision glass tube. The oscillation is maintained by leading escaping gas back into the system. The adiabatic coefficient of various gases is determined from the periodic time of the oscillation. What you need: Gas oscillator, Flammersfeld 04368.00 1 Graduated cylinder, 1000 ml 36632.00 1 Aspirator bottle, 1000 ml 34175.00 1 Air control valve 37003.00 1 Light barrier with counter 11207.30 1 Power supply 5 VDC / 2.4 A 11076.99 1 Micrometer 03012.00 1 Glass tubes, right-angled 36701.52 1 Rubber stopper, d = 17 / 22 mm, 1 hole 39255.01 1 Rubber stopper, d = 26 / 32 mm, 1 hole 39258.01 1 Rubber tubing, d i = 6 mm 39282.00 2 Sliding weight balance, 101 g 44012.01 1 Aquarium pump, 230 VAC 64565.93 1 Aneroid barometer 03097.00 1 Stop watch, digital, 1/100 s 03071.01 1 Tripod base -PASS- 02002.55 1 Support rod -PASS-, square, l = 400 mm 02026.55 1 Right angle clamp -PASS- 02040.55 2 Universal clamp 37715.00 1 Reducing valve for carbon dioxide / helium 33481.00 1 Reducing valve for nitrogen 33483.00 1 Steel cylinder, carbon dioxide, 10 l, filled 41761.00 1 Steel cylinder, nitrogen,10 l, filled 41763.00 1 Adiabatic coefficient of gases Flammersfeld oscillator PHYWE Systeme GmbH & Co. KG D- 37070 Göttingen Laboratory Experiments Chemistry 23

Adiabatic coefficient of gases Flammersfeld oscillator LEC Related concepts Equation of adiabatic change of state, polytropic equation, Rüchardt s experiment, thermal capacity of gases. Principle A mass oscillates on a volume of gas in a precision glass tube. The oscillation is maintained by leading escaping gas back into the system. The adiabatic coefficient of various gases is determined from the periodic time of the oscillation. Equipment Gas oscillator, Flammersfeld 04368.00 1 Graduated cylinder 1000 ml 36632.00 1 Aspirator bottle, 1000 ml 34175.00 1 Air control valve 37003.00 1 Light barrier with counter 11207.30 1 Power supply 5 V DC / 2.4 A 11076.99 1 Micrometer 03012.00 1 Glass tubes, right-angled 36701.52 1 Rubber stopper, d = 17 / 22 mm, 1 hole 39255.01 1 Rubber stopper, d = 26 / 32 mm, 1 hole 39258.01 1 Rubber tubing, d i = 6 mm 39282.00 2 Sliding weight balance, 101 g 44012.01 1 Aquarium pump, 230 V AC 64565.93 1 Aneroid barometer 03097.00 1 Stop watch, digital, 1/100 s 03071.01 1 Tripod base -PASS- 02002.55 1 Support rod -PASS-, square, l = 400 mm 02026.55 1 Right angle clamp -PASS- 02040.55 2 Universal clamp 37715.00 1 Reducing valve for carbon dioxide / helium 33481.00 1 Reducing valve for nitrogen 33483.00 1 Steel cylinder, carbon dioxide, 10 l, filled 41761.00 1 Steel cylinder, nitrogen,10 l, filled 41763.00 1 Tasks Determine the adiabatic coefficient of air, nitrogen and carbon dioxide (and also of argon, if available) from the periodic time of the oscillation T of the mass m on the volume V of gas. Fig. 1: Experimental set-up: Adiabatic coefficient of gases Flammersfeld oscillator. PHYWE series of publications Laboratory Experiments Chemistry PHYWE SYSTEME GMBH & Co. KG D-37070 Göttingen 1

LEC Adiabatic coefficient of gases Flammersfeld oscillator Set-up and procedure If the experiment is to be performed with air, then the required pressure is generated with a small pump (Fig. 1). Place an aspirator bottle between the gas oscillator and the pump to act as a buffer, and insert a glass tube filled with cotton wool into the supply tube of the oscillator to trap any moisture. If other gases are used for the experiment, then these can be taken directly from the steel cylinder and passed via a reducing valve (with a fine range of adjustment) into the gas oscillator. Clean the precision glass tube thoroughly (dust-free) with alcohol, set it up vertically, and insert the oscillator. Align the beam of light from the light barrier so that it goes right through the tube. The trigger threshold of the light barrier is set automatically by pressing the RESET button. Select the operating mode COUNT in order to determine the number n of oscillations of the oscillator. With the reducing valve on the steel cylinder and the fine control valve on the aspirator, set the flow rate of the gas so that the oscillator oscillates symmetrically about the slit. The blue rings serve as a guide for this purpose. If the centre of oscillation clearly lies over the slit, and if the oscillation ceases when the gas pressure is reduced slightly, then dust has evidently found its way into the system and the glass tube must be cleaned again. The motion of the plastic body in the glass tube can produce static charges which distort the readings. This effect can be avoided by applying a thin coating of graphite to the oscillator. The simplest way of doing this is to rub the oscillator with the lead of a soft pencil. It may also be advantageous to treat the glass tube with an antistatic agent, such as a 3% solution of calcium chloride. Important: The oscillator is a precision part and must be treated with care accordingly. Insert the oscillator into the tube only after the glas flow has been switched on, and place the hand lightly over the opening of the tube until a constant amplitude has been attained, in order to prevent the oscillator from being ejected. If the oscillator becomes wedged on the lower end of the tube, remove the glass tube and carefully loosen the oscillator with the blunt end of a pencil. It is advisable to measure a series of gases in the order of their specific gravities to ensure that each lighter gas is expelled completely from the volume. Measure the mass m of the oscillator by weighing. Measure the diameter 2r of the oscillator carefully with a micrometer gauge using the ratchet. If necessary, take the mean value from several measurements at different positions, since the result depends to a considerable extent on the accuracy of this reading. The volume of the gas is determined as follows: first weigh the glass flask with precision tube empty, then fill it with water up to the slit and weigh it again. Determine the volume from the density of water (dependent on the water temperature). The volume can also be determined by emptying the water into a graduated measuring cylinder. Theory and evaluation In order to maintain a stable, undamped oscillation, the gas escaping through the inevitable clearance between the precision glass tube and the oscillator is led back to the system via a tube. Secondly, there is a small opening in the centre of the glass tube. The oscillator may initially be located below the opening. The gas flowing back into the system now causes a slight excess pressure to build up and this forces the oscillator upwards. As soon as the oscillator has cleared the opening, the excess pressure escapes, the oscillator drops and the process is repeated. In this way, the actual free oscillation is superimposed by a small, inphase excitation. If the body now swings out of the equilibrium position by the small distance x, then p changes by p, and the expression for the forces which occur is: m r g p L Mass of the oscillator; Radius of the oscillator; Acceleration due to gravity; External atmospheric pressure. = internal gas pressure; Since the oscillatory process takes place relatively quickly, we can regard it as being adiabatic and set up the adiabatic equation: p V x = const. V Volume of gas Differentiation gives Substitution of (2), with V = r 2 x, in (1) now gives the differential equation of the harmonic oscillator for which the known solution for the angular velocity is: Further, the periodic time of the oscillation, Time t for a large number n of oscillations is measured (stop watch) and used to calculate period time T. Hence m d2 x dt 2 pr2 p p p L m g pr 2 p px V V d 2 x dt x p2 r 4 px 2 mv v B xp 2 r 4 p mv T 2p v x 4 mv T 2 pr 4 0 The adiabatic coefficient can be predicted from the kinetic theory of gases irrespective of the type of gas solely from the number of f degrees of freedom of the gas molecule. f is dependent upon the number of atoms from which the molecule is composed. A monatomic gas has only 3 degrees of translation, a diatomic gas has an additional 2 degrees of rotation, and triatomic gases have 3 degrees of rotational freedom and 3 of translational freedom, making 6 in all. (1) (2) (3) (4) (5) 2 PHYWE series of publications Laboratory Experiments Chemistry PHYWE SYSTEME GMBH & Co. KG D-37070 Göttingen

Adiabatic coefficient of gases Flammersfeld oscillator LEC (The vibrational degrees of freedom are disregarded at the temperatures under consideration). This means that from the kinetic theory of gases, and irrespective of the type of gas, the adiabatic coefficient is given by: x f 2 f For monatomic gases: f = 3, = 1.67 For diatomic gases: f = 5, = 1.40 For triatomic gases: f = 6, = 1.33 With the values: m = 4.59 10 3 kg V = 1.14 10 3 m 3 p L = 99.56 10 +3 kg m 1 s 2 r = 5.95 10 3 m Ten measurements, each of about n = 300 oscillations, gave for the adiabatic coefficients Argon = 1.62 ± 0.09 Nitrogen = 1.39 ± 0.07 Carbon dioxide = 1.28 ± 0.08 Air = 1.38 ± 0.08 PHYWE series of publications Laboratory Experiments Chemistry PHYWE SYSTEME GMBH & Co. KG D-37070 Göttingen 3

LEC Adiabatic coefficient of gases Flammersfeld oscillator 4 PHYWE series of publications Laboratory Experiments Chemistry PHYWE SYSTEME GMBH & Co. KG D-37070 Göttingen