Rapid Estimation of Water Content of Sour Natural Gases

Similar documents
2011 年東北地方太平洋沖地震の強震動生成のための震源モデル (2011 年 8 月 17 日修正版 )

A Decision Making Method using Wants Chain Analysis for Business-model Design

平成 29 年度金沢学院大学入学試験問題 3 月 17 日 ( 金 ) Ⅰ 注意事項解答用紙に 英語 と記入 マークしてから解答してください 問題は1ページから8ページまであります 問題は持ち帰ってもよいですが コピーして配布 使用するのは法律で禁じられています

Distributions of Road Spaces in Tokyo Ward Area While Focusing on Pedestrian Spaces

川のながれ River Flows. Outline

Certificate of Accreditation

Development of Sirocco Fan Featuring Dragonfly Wing Characteristics

Water Vapor Delivery for Thin Film Vacuum Processes Said Boumsellek Implant Sciences Corp., San Diego, California, USA

The Potential Effects of the Tokyo 2020 Olympic and Paralympic Games on Physical Activity Participation at the Population Level

The Map of the Listed Areas of War Risk Navigation Limitations

Impact of Building Layouts on Wind Turbine Power Output in the Built Environment: A Case Study of Tsu City

始まりのブザーが鳴るまで問題冊子 解答用紙に手を触れずに

Japan Fest Year 2016 Board Members

国際スポーツクライミング協会 INTERNATIONAL FEDERATION OF SPORT CLIMBING IFSC

常葉大学短期大学部一般入学試験前期日程 1. 試験開始の合図があるまで 問題用紙 解答用紙の中を見てはいけません

Ensuring the Safety and Health of Technical Intern Trainees Involved in Cultivation Agriculture

Survey on Professional Baseball

発育発達と Scammon の発育曲線. Scammon s Growth Curve & Growth and Development. Abstract. Katsunori FUJII

自動運転に関するいくつかの論点 ー SAE J3016(2016 年版 ) を中心にー 筑波大学副学長 理事 稲垣敏之.

National Diet Library 2011

人の認知 判断の特性と限界を考慮した 自動走行システムと法制度の設計

Report of Trolling Fishing Practice (T/V Tenyo-Maru s 242nd voyage) in Japan Sea.

Preliminary report on west-to-south movement rate of juvenile southern bluefin tuna determined by acoustic tagging in Western Australia

REVISED TECHNICAL INTERPRETATION OF ANNEX 1 TO PIC/S GMP GUIDE

Contemporary Attitudes Towards the Senpai-Kōhai Relationship

リオ オリンピック参加資格取得 ( ロード男子 ) < 個人ロード > ワールド国別ランキング国別あたり選手数計 1-5 位 5 名 25 名 6-15 位 4 名 40 名

Global Leadership Training Programme in Africa 2016

Preparation of high precision standards (with ± 1 ppm) using a gravimetric method for measuring atmospheric oxygen

平成 30 年度一般入学試験 B 日程学科試験問題 ( コミュニケーション英語 Ⅰ Ⅱ)

SUUNTO CORE USER GUIDE

Ruby for one day game programming camp for beginners

Challenge! Open Governance 2017 Application Form for Citizens & Students

コミュニケーション英語 Ⅲ 英語表現 Ⅰ 英語表現 Ⅱ) 試験時間 120 分 文学部, 教育学部, 法学部, 理学部, 医学部, 工学部 3. 試験開始後, この冊子又は解答紙に落丁 乱丁及び印刷の不鮮明な箇所などがあれば, 手を挙げて監督者に知らせなさい

この英語の試験は 文法 / 語彙 / 長文読解と聞き取りの 2 つの部分からなり 時間は全部で 100 分です ( 説明を含む ) 試験開始から 70 分で文法 / 語彙 / 長文読解 そして残りの約 30 分で聞き取りテストを行います 受験番号氏名

( 工 経営情報 国際関係 人文 応用生物 生命健康科 現代教育学部 )

Shohei Juku Aikido Canada

Development of Electric Fan Propeller Featuring Chestnut Tiger Butterfly Wing Characteristics

Efficient harvest and management of mangrove crab Scylla paramamosain in Gau Island, Fiji

Shohei Juku Aikido Canada

BURAsl Ultegra Fulcrum Racing 5 LG. NAZARÉsl Ultegra 8000

REPORT. By Continental Cycling Center Shuzenji

CHALLENGE CLUB 2Gr.Time Attack 2 回目 Sector Time Chart

走錨防止. Preventing an Anchor from Dragging. P&I ロス プリベンション ガイド P&I Loss Prevention Bulletin. JAPAN P& I CLUB 第 25 号 2013 年 7 月 Vol.

v.s. (GW) USD ( 07)/Wp 0.6 USD/Wp 1.8 MW

The report for 2012 MOBILE SUB CENTER (Training Camp) at BANGKOK THAILAND And Thailand National Championships (Track round 5)

PART 6bis BMX Freestyle Competitions BMX フリースタイル競技 (version in force on )

PIR Sensor partial withdrawal(japan produced item)

自動レーン変更と自動駐車のためのシミュレーション環境の構築

SKIS& BOOTS COLLECTION 16/17

ANIMANIA FESTIVAL WORLD COSPLAY SUMMIT AUSTRALIAN TEAM PRE-SELECTION 2008 PORTFOLIO Please submit your portfolio to:

2019 LPGA PRO TEST APPLICATION FACT SHEET

Report on Post Tsunami Survey along the Myanmar Coast for the December 2004 Sumatra-Andaman Earthquake

A. 次の問い ( 問 1~ 問 3) において, 下線部の発音がほかの三つの場合と異なるものを, それ B. 次の問い ( 問 4, 問 5) において, 第一アクセント ( 強勢 ) の位置がほかの三つの場合と異な ぞれ 1~4 の中から一つずつ選びなさい

Company Profile カルソニックカンセイ 会社案内 カルソニックカンセイ株式会社. Calsonic Kansei Corporation 研究開発センター 本社

F A C U L T Y JOURNAL OF INTERDISCIPLINARY RESEARCH IN HUMAN AND SOCIAL SCIENCES UNIVERSITY OF TSUKUBA (JAPAN)

2 爪平行グリッパ ロングストロークタイプ GEH6040IL

Ishibashi Soundscape

自動車車体技術発展の系統化調査 6. A Systematic Survey of Technical Development of Vehicle Bodies. Setsuji Yamaguchi

スマイルフォトブック : S サイズ 24 ページの見本です この見本は データ量を抑えるために低画質にて保存しています 入稿の際は画質を圧縮無しの高画質で保存してください

蒲地政文 Masa Kamachi. 海洋漂流物のモデルシミュレーション Model Simulation of Japan Tsunami Marine Debris (JTMD) ( 海洋研究開発機構 / 地球情報基盤センター JAMSTEC/CEIST)

1 前提となる背景的事実や出来事について答えることが難しい 2 前提となる背景的事実や出来事について答えることができる 2 前提 発問 3 中心の命題 ( イイタイコト ) について答えることができる 3 命題 発問 4 背後の理由や詳細情報などの展開について答えることができる 4 展開 発問

Baseball-science meets practice

Contnts 操作方法 3 オフェンス操作 ムーブメント 戦術 6 ディフェンス操作 7 ゴールキーパー 8 セットプレー 9 スキルムーブ 13 ゲームの始め方 17 メインメニュー 18 試合の進め方 19 オフラインゲームモード 23 オンラインプレイ 28

篠栗新四国霊場における現代の修行活動 Contemporary ascetic practices in New Shikoku Reijyo in Japan: case study of Sasaguri, a pilgrimage town in Fukuoka prefecture

蒲地政文 Masa Kamachi. 海洋漂流物のモデルシミュレーション Model Simulation of Japan Tsunami Marine Debris (JTMD) ( 海洋研究開発機構 / 地球情報基盤センター JAMSTEC/CEIST)

HEMT. Outlook for GaN HEMT Technology 常信和清 吉川俊英 増田哲 渡部慶二. あらまし GaN HEMT High Electron Mobility Transistor GaN HEMT. Abstract

P&I Loss Prevention Bulletin. The Japan Ship Owners Mutual Protection & Indemnity Association Loss Prevention and Ship Inspection Department

TABLE OF CONTENTS. Page. Page 2 of 38

Fig.1 A bridge along the shore in expressways

Evolutionary studies on sex steroid hormone in the hagfish : plasma concentrations and biosynthetic enzymes ( ヌタウナギからみた性ステロイドホルモンの進化的研究 : 血中濃度と合成酵素 )

Traffic Management using Moving Light Guide System. Hiroyuki Oneyama Tokyo Metropolitan University July 8, 2017

UK-JAPAN INTERNATIONAL HIGH SCHOOL RUGBY, CULTURAL EXCHANGE & FRIENDSHIP TOURS

Ship Maneuvering Technical Reference. Panama Canal Gatun Lock

Paralympic Legacy Learning from Sydney 2000 to Prepare for Tokyo 2020

SAFETY GUIDE. Waseda University. Nishi-Waseda Campus Safety and Health Committee

NE2R757GT-P6 Pb-free Reflow Soldering Application RoHS Compliant

Pilot operated check valves 4CG

Zhuyeqing Tea. GO Congress Bordeaux BULLETIN #1 July. 23 rd

Yukio ONODA. Abstract

Drawing the Useful and Clear Swimmer Plot Using PROC SGPLOT

2019 年日本代表選考部門に関わる規則を抜粋のうえ翻訳しています

PREPARING SOLUBILITY DATA FOR USE UPDATING KEY RESOURCES BY THE GAS PROCESSING INDUSTRY:

電気通信大学脳科学ライフサポート研究センター特別講演会 平成 25 年 5 月 14 日 脳血流のバイオメカニクス 谷下一夫 早稲田大学ナノ理工学研究機構

A Proposal for the Inclusion of Calorimeters in Animal Experiments in Which the Physical Activity is a Pivotal Theme : A Pilot Study.

TRAINING PROJECT IN JAPAN FOR CAMBODIAN YOUTH CLIMBERS

Shohei Juku Aikido Canada

Information for Runners

History of Traffic Safety Measures: Relevant Legislation, Organization and Policy

2 KUNG FU PANDA Lesson6 Copyright 2012 by etoc-surely work-all Rights Reserved MANTIS: Trust me, it will. It's just not easy finding the right nerve p

Dream league 2017 gk kits Address Submit

Civil Engineering Research Institute for Cold Region Hirotaka Takechi, Masaru Matsuzawa, Yasuhiko Ito and Tetsuya Kokubu. Hokkaido.

Experimental Determination of Water Content of Sweet Natural Gas with Methane Component Below 70%

The Third International Symposium on Manila (Asari) Clam -International Collaboration for Manila clam (Asari) Studies-

Fisheries Policy Maker s Future Perspective to a Sustainable Society Adapting Climate Changes

The Occurrence of a Rare Pagurid Hermit Crab,

Japan America Society of Minnesota

Novel empirical correlations for estimation of bubble point pressure, saturated viscosity and gas solubility of crude oils

Japan America Society of Minnesota

Natural Gas Desulfurization Process By MEA Amine: The preferable Engineering Design Procedure

ダウンロード オンラインで読む. 7 人 7 色の天賦の才を楽曲にあわせてカスタマイズする E girls ボーカル & パフォーマー 7 人の それぞれの 素顔 と 想

Transcription:

70 Journal of the Japan Petroleum Institute, 5, (5), 70-74 (009) [Research Note] Rapid Estimation of Water Content of Sour Natural Gases Alireza Bahadori 1)*, Hari B. Vuthaluru 1), and Saeid Mokhatab ) 1) Dept. of Chemical Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA, 6845, AUSTRALIA ) Gas Engineering Consultant, Vancouver, BC, CANADA (Received July 4, 008) Water is associated with natural gas from the reservoir, through production and processing and is a concern in transmission. Also the water content of sour natural gases is an important parameter in the design of facilities for the natural gas production, transmission, and processing. The aim of this study is to develop an easy-to-use method which is simpler than current available models involving a large number of parameters and requiring more complicated and longer computations, for an appropriate estimation of water content of sour natural gas mixtures containing up to 40% acid gas components (CO and H S). The new developed method works for pressures ranging from 1000 to 15,000 kpa and temperatures from 15 to 10. Simple-to-use approach can be of immense practical value for the engineers and scientists to have a quick check on the water content of sour natural gases at various temperatures and pressures without performing any experimental measurements. In particular, gas process engineers would find the proposed approach to be user friendly involving no complex expressions with transparent calculations. Results have been compared with the reported data and excellent agreement has been obtained between the predicted results and observed values. The average absolute deviations from the reported data were found to be 3.5%. Keywords Natural gas, Water content, Sour gas, Correlation, Gas processing, Acid gas 1. Introduction facilities and estimating water production with sour gas in the plant inlet separator 1). Natural gas reservoirs always have water associated There are numerous methods available for determinwith them and hence the gas in the reservoir is water ing water content of natural gases. In general, for acid saturated. When the gas is produced there is a simul- gas concentrations less than about 30%, existing methods taneous production of water as well. Some of this are satisfactory. However, for higher acid gas concenwater is produced water from the reservoir directly. trations (above 50%), particularly at higher pressures, Other water produced with the gas is a result of water existing methods can lead to serious errors in estimatcondensation due to the variations in pressure and tem- ing water contents ). An appropriate method has been perature during production. Accurate determination recently introduced 3). It is chart based method which of water content of sour natural gases therefore requires provides good estimates of the equilibrium water vapor a careful study of the existing literature information and content of sour natural gas for a range of conditions, inavailable experimental data. In most cases, using ad- cluding HS contents of 3-38 mol% with CO contents ditional experimental data is the best way to verify the of 3-43 mol%, pressures ranging from 000 to model based predictions. Natural, associated, or tail 70,000 kpa, and temperatures from 10 to 175. The gas usually contains water, either in liquid or vapor overall average error of this method is less than 1%. form, at source as well as due to sweetening with an However, a few points showed a discrepancy of more aqueous solution. Operating experience and thorough than ±10%. In the method the water content of the engineering have proved that it is necessary to reduce sour gas is calculated by the multiplication of correcand control the water content of gas to ensure safe pro- tion factor, and the water content of sweet gas from the cessing and transmission. The first step in evaluating McKetta-Wehe chart 4). For most gas systems the and/or designing a gas dehydration system is therefore McKetta-Wehe chart, generated from empirical data, to determine the water content of the gas. This data is provides the standard for water content determination. most critical when designing sour gas dehydration This chart can be used to predict the saturated water content of sweet, pipeline quality natural gas. However, * To whom correspondence should be addressed. this chart is so difficult to read. Kobayashi et al. 5) pre- * E-mail: alireza.bahadori@postgrad.curtin.edu.au sented a correlation for the curves plotted in the J. Jpn. Petrol. Inst., Vol. 5, No. 5, 009

71 Table 1 Tuned Coefficients Used in Proposed Correlations of Determining the Water Contents of HC and Effective Water Contents of H S and CO in Natural Gas Mixture Coefficients Sweet gas water content Effective water content of H S Effective water content of CO A 1-19.4673607 -.8473455055 10 6-1.5170599796 10 6 B 1 0.06741341 410.134356738 53.953558137 C 1.384473436 10-4 -0.0338709497-0.01877987107 D 1-5.67389907 10-7 1.55604987964 10-7 7.0019967753 10-7 A 30.071017148.856986175 10 4 1.5469319504 10 4 B -0.1710870779-4.89133081 -.754313908 C.6883134 10-4.841095695 10-4.5154089058 10-4 D 3.13350518 10-8 -4.3533471889 10-9 -8.3730517559 10-9 A 3-15.134374-76.4984711141-5.8444857343 B 3 0.10010487 0.0149369558 9.97118369879 10-3 C 3 -.165793851 10-4 -1.110565987 10-6 -9.59405334 10-7 D 3 1.34843385 10-7.34671115643 10-11 3.3037558183 10-11 A 4 1.955498754 0.0857373579771 0.0605410197916 B 4-0.0139669916-1.7348475 10-5 -1.063099063 10-5 C 4 3.6486805 10-5 1.4105589053 10-9 1.166951101 10-9 D 4 -.40109873 10-8 -3.5666883871 10-14 -4.3160504734 10-14 McKetta-Wehe chart. However, their equation is quite complicated and is only applicable for temperatures up to 49 and pressures up to 14,000 kpa. Therefore, as a first step to predict water content of natural gases, an appropriate equation representing the McKetta-Wehe (1958) chart is required. Both HS and CO contain more water at saturation than sweet natural gas mixtures. The relative amounts vary considerably with temperature and pressure. Saturated water contents of pure CO and HS can be significantly higher than that of sweet natural gas, particularly at pressures above about 4800 kpa (abs) at ambient temperatures. Corrections for HS and CO should be applied when the gas mixture contains more than 5% HS and/or CO at pressures above 4800 kpa (abs). These corrections become increasingly significant at higher concentrations and higher pressures.. Methodology to Develop New Correlation The required data to develop this correlation includes the reported data for effective water content of HS and CO from reference 6 as well as temperature and pressure of sour natural gases. In this work, the water content of sour natural gas is predicted rapidly by proposing a novel correlation, which has been developed, based on newly proposed numerical model 7),8). The following methodology has been applied to develop this correlation. Firstly, effective water content of CO and HS and sweet natural gases are correlated as a function of temperature for various reported pressures. Then, the calculated coefficients for these polynomials are correlated as a function of pressure. The derived polynomials are applied to calculate new coefficients for Eq. (1) to predict the effective water content of CO and HS. Table 1 shows the tuned coefficients for Eqs. () to (5). The same procedure is repeated for sweet natural gases to derive the polynomial coefficients for Eqs. (7) to (10). In brief, the following steps are repeated to tune the correlation s coefficients. 1. Correlate the reported effective water content of HS and CO or sweet natural gases as a function of pressure for the selected pressure.. Repeat steps and 3 for other data and other pressures. 3. Correlate corresponding polynomial coefficients, which were obtained for different pressures versus temperatures, a=f(t), b=f(t), c=f(t), d=f(m) [see Eqs. ()-(5) and Eqs. (7)-(10)]. 4. Calculate the effective water content of HS and CO and sweet natural gases water content as a function of temperature from Eqs. (1) and (6), respectively. 3. Novel Proposed Correlation The proposed approach consists of two main sets of equations and a table containing tuned coefficients based on the data reported in the Gas Processor and Suppliers Association (GPSA) Engineering Data Book 6). Equation (1) presents the new correlation for predicting water content of sweet gases, in which four coefficients are used to correlate water content and pressure of a gas. W HC = Where: 10 3 ( a+ b log ( P)+ c (log ( P)) + d (log( P)) ) (1) a = A + B T + C T + D T 3 () 1 1 1 1 b = A + B T + C T + D T 3 (3) c = A + B T + C T + D T 3 (4) 3 3 3 3 J. Jpn. Petrol. Inst., Vol. 5, No. 5, 009

7 d = A + B T + C T + D T 3 (5) 4 4 4 4 In the above equations, WHC is the water content of sweet hydrocarbons (mg/m 3 ), and parameters T and P are temperature and the pressure of natural gas in K and kpa, respectively. The tuned coefficients are also given in Table 1. Second set of equations provides a correlation for estimating effective water content of natural gas mixtures containing up to 40% acid gas components. Equation (6) calculates HS and CO effective water contents in natural gas mixtures: W NHC = α + βp + γ P + θp 3 (6) Where: Fig. 1 Determination of Water Content of Sweet Natural Gases α = A 1 + B T + 1 + D T 3 (7) 1 C T 1 β = A + B T + C T + 3 D T (8) γ = A 3 + B3 T + C 3 T + D3 T 3 (9) θ = A 4 + B T + 4 + D T 3 (10) 4 C T 4 In Eq. (6), WNHC is the effective water content of CO and HS components in natural gas mixtures (mg/m 3 ). The tuned coefficients for Eqs. (7) to (10) are given in Table 1, which can be also retuned if more accurate data are available. Finally, Eq. (11) is applied to calculate the saturated water content of sour natural gases W in mg/(m 3 (Std.)). W = yhc W HC + y CO W CO + y H S W H S (11) Note that Eq. (6) provides values for what is termed the effective water content of CO and HS in natural gas mixtures to be used only in Eq. (11). These are not for pure CO and HS water contents. Fig. Determination of CO Effective Water Content in Natural Gas Mixtures Based on the New Proposed Method and Reported Data 6) 4. Results Figure 1 illustrates the obtained results for the prediction of water content of sweet natural gases. Figures and 3 show the obtained results of new proposed correlations for predicting the effective water contents of CO and HS components in natural gas mixtures, respectively. As can be seen, the obtained results show good agreement with the reported data. Table shows that the proposed correlation has good agreement with the reported data (reference 6) and the average absolute deviation being around 3.5%. 4. 1. Example of Sour Gas Containing and CO Determine the saturated water content of a mixture containing 80% CH4 and 0% CO at 70 and 13,800 kpa (abs). The reported water content is 560 mg/(m 3 (Std.)). Fig. 3 Determination of H S Effective Water Content in Natural Gas Mixtures Based on the New Proposed Method and Reported Data 6) WHC=603 mg/(m 3 (Std.)) (from Eq. (1)) WCO =191 mg/(m 3 (Std.)) (from Eq. (6)) W=(0.80)(603)+(0.0)(191) =464 mg/(m 3 (Std.)) is 3.9%. 4.. Example of Sour Gas Containing CH4 and HS Determine the saturated water content of a mixture J. Jpn. Petrol. Inst., Vol. 5, No. 5, 009

73 Table Comparison of Obtained Results of New Proposed Method for Predicting Water Content of Sour Gases with the Reported Data Equivalent H S mole fraction and experimental and predicted water content Temperature Pressure Equivalent H S Hydrocarbon Predicted water content of sour Absolute [ ] [kpa] H S mole Reported water content water content gases using new method deviation fraction data 6) [mg/m 3 ] [mg/m 3 ] [mg/m 3 ] percentage 34 961 0.16 1086 637 753 794 5.4 39.11 6965.5 0.17 155 1036 114 1150.3 39.11 413.8 0.19 077 1518 164 1580.8 39.11 469 0.1 673 363 48 460 1.3 39.11 9600 0.75 1370 88 977 940 3.9 39.11 6379.3 0.9 169 1104 156 100 4.7 Average Absolute Deviation Percentage (AADP) 3.5% containing 84% CH4 and 16% HS at 34 and 961 kpa (abs). The reported water content is 794 mg/(m 3 (Std.)). WHC=637 mg/(m 3 (Std.)) (from Eq. (1)) WH S=1086 mg/(m 3 (Std.)) (from Eq. (6)) W=(0.84)(637)+(0.0)(1086)=753 mg/(m 3 (Std.)) is 5.1%. 4. 3. Example of Sour Gas Containing, CH4, CO, and HS Calculate the saturated water content of a mixture containing 70% CH4, 15% HS and 15% CO at 40 and 7000 kpa (abs). The reported water content is 16 mg/(m 3 (Std.)). WHC=1079 mg/(m 3 (Std.)) (from Eq. (1)) WH S=1590 mg/(m 3 (Std.)) (from Eq. (6)) WCO =1609 mg/(m 3 (Std.)) (from Eq. (6)) W=(0.70)(1079)+(0.15)(1609)+(0.15)(1590) =135 mg/(m 3 (Std.)) is.1%. 5. Conclusions In the present work, a simple-to-use method for accurate estimation of water content of sour natural gas mixtures containing up to 40% acid gas components has been developed. The obtained results show good agreement with the reported data, where the new developed method works for pressures ranging from 1000 to 15,000 kpa and temperatures from 15 to 10. The proposed correlation has good agreement with the reported data. Simple-to-use approach can be of immense practical value for the engineers and scientists to have a quick check on the water content of sour natural gases at various temperatures and pressures without performing any experimental measurements. In particular, gas process engineers would find the proposed approach to be user friendly involving no complex expressions with transparent calculations. Acknowledgments The lead author acknowledges the Australian Department of Education, Science and Training for Endeavour International Postgraduate Research Scholarship (EIPRS). The Office of Research & Development at Curtin University of Technology, Perth, Western Australia for providing Curtin University Postgraduate Research Scholarship and the State of Western Australia for providing Top-up scholarship through Western Australia Energy Research Alliance (WA: ERA). Useful comments from two anonymous reviewers and the editor that improved the original version of the paper are acknowledged. Nomenclatures A : tuned coefficient [ ] B : tuned coefficient [ ] C : tuned coefficient [ ] D : tuned coefficient [ ] P : pressure [kpa] Std. : standard [ ] T : temperature [K] W : sour gas water content [mg/(m 3 (Std.))] W HC : sweet gas water content [mg/(m 3 (Std.))] W NHC : effective water content of CO and H S [mg/(m 3 (Std.))] y CO : carbon dioxide mole fraction [ ] y HS : hydrogen sulfide mole fraction [ ] y HC : hydrocarbons fraction [ ] References 1) Mokhatab, S., Poe, W. A., Speight, J. G., Handbook of Natural Gas Transmission & Processing, 1st Ed., Gulf Professional Publishing, Burlington, MA, USA (006). ) Hubbard, R., nd Technical Meeting of Gas Processors Association GCC Chapter, Bahrain, Oct. 7, 1993. 3) Wichert, G. C., Wichert, E., Oil & Gas Journal, 101, (41), 64 (003). 4) McKetta, J. J., Wehe, A. H., Petroleum Refiner (Hydrocarbon Processing), 37, (8), 153 (1958). 5) Kobayashi, R., Song, K. Y., Sloan, E. D., Phase Behavior of J. Jpn. Petrol. Inst., Vol. 5, No. 5, 009

74 6) Water/Hydrocarbon Systems, ed. by Bradley, H. B., Petroleum Engineers Handbook, Society of Petroleum Engineers, Richardson, TX, USA (1987). GPSA Engineering Data Book, 11th Ed., Gas Processors Suppliers Association (GPSA), Tulsa, OK, USA (1998). 7) 8) Bahadori, A., Vuthaluru, H. B., Mokhatab, S., Journal of Natural Gas Chemistry, 17, (1), 51 (008). Bahadori, A., Vuthaluru, H. B., Mokhatab, S., Chemical Engineering & Technology, 31, (9), 1369 (008). 要 旨 サワーガスの水分量の迅速評価 Alireza Bahadori 1), Hari B. Vuthaluru 1), and Saeid Mokhatab ) 1) Dept. of Chemical Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA, 6845, AUSTRALIA 3) Gas Engineering Consultant, Vancouver, BC, CANADA 生産および処理を通じて貯留層から天然ガスに水は密接に結びついており, 輸送時における重大な関心事である 高硫黄分を含む天然ガス ( サワーガス ) の水分含有量も, 天然ガスの生産, 輸送, 処理のための設備設計において重要なパラメーターである 本研究の目的は,40% 程度の酸性ガス (CO と H S) を含むサワーガスの水分量の評価に対し, 多数のパラメーターやより複雑で長い計算を含む現状のモデルより簡単で使い勝手の良い方法を開発することにある 新規に開発した方法は, 1000 ~ 15,000 kpa の圧力範囲や 15 ~ 10 の温度に対して使 用できる あらゆる温度や圧力においても実験による測定をすることなく, サワーガス中の水含有量を迅速に調べるのに取扱いが容易な手法は, 技術者や科学者にとっては計りしれない実用的な価値がある 特にガス処理技術者は, 明解な計算で複雑な数式を全く含まない提案された手法がユーザーにとって親切であることに気付くであろう 計算結果を報告値と比較したところ, 予想値と測定値では優れた一致を得ることができた 報告値からの標準偏差は3.5% であることが分かった J. Jpn. Petrol. Inst., Vol. 5, No. 5, 009