Research on Profile Control and Water Shut-off Performance of Pre-crosslinked Gel Particles and Matching Relationship between Particle and Pore Size 1

Similar documents
Effect of Gas-wetness on Gas-water Two-phase Seepage in Visual Microscopic Pore Models

Flow in Porous Media. Module 1.c Fundamental Properties of Porous Media Shahab Gerami

Carbon Dioxide Flooding. Dr. Helmy Sayyouh Petroleum Engineering Cairo University

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS

EVALUATION OF GAS BUBBLE DURING FOAMY OIL DEPLETION EXPERIMENT USING CT SCANNING

Compaction, Permeability, and Fluid Flow in Brent-type Reservoirs Under Depletion and Pressure Blowdown

4 RESERVOIR ENGINEERING

Simposium Nasional dan Kongres X Jakarta, November 2008 Makalah Profesional IATMI

Accurate Measurement of Steam Flow Properties

A07 Surfactant Induced Solubilization and Transfer Resistance in Gas-Water and Gas-Oil Systems

SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM

HTHP Filter Press for Ceramic Disks with 175-mL, Double-Capped Test Cell and CO 2 # : (115 V) # : (230 V) Instruction Manual

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c

CHAPTER 6: PERMEABILITY MEASUREMENT

ARTICLE. Overcome casing integrity issues in your plug-and-perf operations

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance.

Chapter 8: Reservoir Mechanics

The Mechanism Study of Vortex Tools Drainage Gas Recovery of Gas Well

Method of Determining the Threshold Pressure Gradient

AN EXPERIMENTAL STUDY OF IRREDUCIBLE WATER SATURATION ESTABILISHMENT

W I L D W E L L C O N T R O L FLUIDS

A STUDY ON THE ENTRAPPED AIR BUBBLE IN THE PLASTICIZING PROCESS

Permeability. Darcy's Law

COPYRIGHT. Reservoir Rock Properties Fundamentals. Saturation and Contacts. By the end of this lesson, you will be able to:

A VALID APPROACH TO CORRECT CAPILLARY PRESSURE CURVES- A CASE STUDY OF BEREA AND TIGHT GAS SANDS

Experimental Research on Oxygen-enriched Air Supply System for Gasoline Engine

Structural Design and Analysis of the New Mobile Refuge Chamber

Development of High-speed Gas Dissolution Device

67. Sectional normalization and recognization on the PV-Diagram of reciprocating compressor

Modelling of Tail Production by Optimizing Depressurization

WATER OIL RELATIVE PERMEABILITY COMPARATIVE STUDY: STEADY VERSUS UNSTEADY STATE

Improving Conventional Flotation Methods to Treat EOR Polymer Rich Produced Water

RESEARCH OF BLOCKAGE SEGMENT DETECTION IN WATER SUPPLY PIPELINE BASED ON FLUID TRANSIENT ANALYSIS ABSTRACT

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Oil Mobility in Transition Zones

PRODUCTION AND OPERATIONAL ISSUES

Journal of Chemical and Pharmaceutical Research, 2014, 6(3): Research Article

Handlebar Bi-Directional Portable Pump on Vehicle Yingying Tang1, Yang Jiang1, Yugang Xin1 and Baida Yang1

A Fault Diagnosis Monitoring System of Reciprocating Pump

Investigation of Winning Factors of Miami Heat in NBA Playoff Season

John Downs Cabot Specialty Fluids SPE European Formation Damage Conference

A New Piston Gauge to Improve the Definition of High Gas Pressure and to Facilitate the Gas to Oil Transition in a Pressure Calibration Chain

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

Effect of Fluid Density and Temperature on Discharge Coefficient of Ogee Spillways Using Physical Models

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc.

THREE-PHASE UNSTEADY-STATE RELATIVE PERMEABILITY MEASUREMENTS IN CONSOLIDATED CORES USING THREE IMMISCIBLE LIQUIDS

Numerical Simulation of the Basketball Flight Trajectory based on FLUENT Fluid Solid Coupling Mechanics Yanhong Pan

CFD Analysis and Experiment Study of the Rotary Two-Stage Inverter Compressor with Vapor Injection

2. Determine how the mass transfer rate is affected by gas flow rate and liquid flow rate.

Extended leak off testing

W I L D W E L L C O N T R O L PRESSURE BASICS AND CONCEPTS

Analysis of Pressure Rise During Internal Arc Faults in Switchgear

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

PMI Pulse Decay Permeameter for Shale Rock Characterization Yang Yu, Scientist Porous Materials Inc., 20 Dutch Mill Road, Ithaca NY 14850

Captains Meeting 2009 Introduction to Well Testing- Expro. Edwin Schoorl

Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media

Numerical Simulation And Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil under Low-Reynolds 1

High production indexes and key factors influencing coalbed methane (CBM) horizontal well productivity

The Discussion of this exercise covers the following points:

Yuele Jia Computer Science School, Southwest Petroleum University, Chengdu , Sichuan, China

THERMODYNAMIC ASPECTS OF DEVELOPMENT OF GAS RESERVES CONFINED TO COMPACT DEEP-SEATED RESERVOIR BEDS

Influencing Factors Study of the Variable Speed Scroll Compressor with EVI Technology

CHDT Cased Hole Dynamics Tester. Pressure testing and sampling in cased wells

SPE Copyright 2012, Society of Petroleum Engineers

THE PRESSURE SIGNAL CALIBRATION TECHNOLOGY OF THE COMPREHENSIVE TEST

UNIT 2 PATTERNS OF NATURAL

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision

APPENDIX A1 - Drilling and completion work programme

Elastic-Plastic Finite Element Analysis for Zhongwei--guiyang Natural Gas Pipeline Endangered by Collapse

Tube rupture in a natural gas heater

Optimization of rotor profiles for energy efficiency by using chamber-based screw model

Applied Fluid Mechanics

TECHNICAL BENEFITS OF CJS / RAISE HSP. Technical Advantages

Journal of Engineering Science and Technology Review 6 (5) (2013) Research Article

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C

Perforation Design for Well Stimulation. R. D. Barree Barree & Associates LLC

THE PMI ADVANCED PERM POROMETER

The tensile capacity of suction caissons in sand under rapid loading

Study on Mixing Property of Circulation/Shear Coupling Mechanism-Double Impeller Configuration

FREQUENTLY ASKED QUESTIONS

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14.

Oil-Lubricated Compressors for Regenerative Cryocoolers Using an Elastic Membrane

Application of Simulation Technology to Mitsubishi Air Lubrication System

Distribution of the Sizes of Rock Cuttings in Gas Drilling At Various Depths

Advanced Applications of Wireline Cased-Hole Formation Testers. Adriaan Gisolf, Vladislav Achourov, Mario Ardila, Schlumberger

A LIFE OF THE WELL ARTIFICIAL LIFT STRATEGY FOR UNCONVENTIONAL WELLS

Hydraulic Evaluation of the Flow over Polyhedral Morning Glory Spillways

Laboratory studies of water column separation

Aerodynamic Shape Design of the Bow Network Monitoring Equipment of High-speed Train

Squeeze Cementing. Brett W. Williams Cementing Technical Advisor January 2016 Tulsa API Meeting

Tribology Prof. Dr. Harish Hirani Department of Mechanical Engineering Indian Institute of Technology, Delhi

Keywords: multiple linear regression; pedestrian crossing delay; right-turn car flow; the number of pedestrians;

Determination of Capillary pressure & relative permeability curves

Influence of Ventilation Tube Rupture from Fires on Gas Distribution in Tunnel

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Flow and Mixing in the Liquid between Bubbles

Reservoir Engineering 3 (Flow through Porous Media and Applied Reservoir Engineering)

ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE

Using sea bed roughness as a wave energy dissipater

MATCHING EXPERIMENTAL SATURATION PROFILES BY NUMERICAL SIMULATION OF COMBINED AND COUNTER-CURRENT SPONTANEOUS IMBIBITION

Transcription:

Advances in Natural Science ISSN 1715-7862 Vol. 2, No.2, 29 Canadian Research & Development Center of Sciences and Cultures 31/12/29 Http://www.cscanada.org Http://www.cscanada.net E-mail: ans@cscanada.net; caooc@hotmail.com Research on Profile Control and Water Shut-off Performance of Pre-crosslinked Gel Particles and Matching Relationship between Particle and Pore Size 1 SONG Xin-wang 2 CAO Xu-long 3 CHI Qing-sheng 4 LI Dong-xu 5 HOU Ji-rui 6 Abstract: Experiments on injectivity and profile control performance of pre-crosslinked gel particles widely used in oilfields were done.the results show that, the injectivity of pre-crosslinked gel particle is poor Most of particles pile up in the front of sand pack, and the migration distance of pre-crosslinked gel particles is less than twenty centimeter, which lead to the formation of filter cake and the poor effects of depth profile control. The injection of pre-crosslinked gel particle is selectivity. In the early stage of profile control, the diversion rate of low permeability layer increases slightly. After long-term waterflooding, due to the easily breakthrough in higher permeability layers, the diversion rate of low permeability layer declines in comparison that before the operation. It is indicated that pre-crosslinked gel particles will harm low permeability layers. It is calculated and analyzed that the diameters of current pre-crosslinked gel particles are bigger than pore size. Theoretically, current pre-crosslinked gel particles are difficult to be applied in depth profile control. Key words: pre-crosslinked gel particle; profile control and Water Shutoff; particles diameter; pore size 1 Foundation Item: The tenth five years National research programs, " Deep block and the stimulation key technologies research in Low Permeability heterogeneous sandstone reservoir " (23BA613-7) in the part. 2 Research Institute of Geological Science of Shengli Oil Field, Sinopec, Dongying 25715, Shandong, China. 3 Research Institute of Geological Science of Shengli Oil Field, Sinopec, Dongying 25715, Shandong, China 4 The 3rd Oil production Area of Huanxiling Oil Production Factory, Huanxiling Liaohe Oilfield, 124114 5 The Center of EOR, China University of Petroleum, Beijing 12249 6 The Center of EOR, China University of Petroleum, Beijing 12249 *Received 1 August 29; accepted 1 November 29 36

Many oil fields in China has entered the high water cut production period or period of high water cut, oil production wells water production rate has reached 8% or even more than 9%. Oilfield Injection Water has formed a lot of inefficient or ineffective circulation, which not only reduces the oil production efficiency but also reduces China's strategic energy oil production, with affecting the national energy security. it is an important measure to ensure national energy security by the effective water shutoff and profile control operations. Water shutoff profile control technology as an important measures to improve the efficiency of water injection to achieve stable oil production and controll the water production, has always been concerned. In recent years we proposed a new type of water shutoff and profile modification that is pre-crosslinked gel particles.this paper Carried out experimental analysis for its injection and profile modification. 1. INJECTION EXPERIMENT MODEL This experiment used 1m long unconsolidated sand as a model,which has five pressure measuring points,it could record and monitor the pressure distribution along the way. It determine the size of the pre-crosslinking of different particles of the characteristics of migration and blocking at different permeability conditions ; Such as Figure 1. Fig 1. The Experminent Model for Injectivity Evaluation The middle container with simulated formation water b. The middle container with pre-crosslinked gel particles c.three control valves d.sand tube e.pressure sensors f.computer g.pressure sensor module h.measuring cylinder i. Advection pump j.six-way valve K.Incubator 37

2. THE MIGRATION FEATURES OF THE PRE-CROSSLINKED GEL PARTICLES 2.1 The Migration Features of the pre-crosslinked gel particles In this experiment Model were average divided into 5 by four pressure tests point. When the segment test point pressure rises, you can explain pre-crosslinked gel particles arrive at the paragraph. and it has certain degree of plugging effect. Model uses 6 mesh quartz filling. permeability is grade Ⅱ,permeability is about 8mD.when we inject pre-crosslinked gel particles of 15 mesh. The following is the pressure curve..315 mesh the pre-crosslinked gel particles inject 6 mesh sand model pressure variation curve Pressure(kpa) 3 2 1 The first presure test The second presure test The third presure test The forth presure test.5 1 1.5 2 2.5 a. Injecting 1 the pre-crosslinked gel particles of 15 mesh on the 6 mesh sand model 38

Pressure(kpa) 4 3 2 1 The first presure test The second presure test The third presure test The forth presure test.5 1 b. Injecting.3 the pre-crosslinked gel particles of 1 mesh on the 6 mesh sand model Pressure(kpa) 6 4 2 The first presure test The second presure test The third presure test The forth presure test.5 1 1.5 c. Injecting.6 the pre-crosslinked gel particles of 1 mesh on the 6 mesh sand model 39

Pressure(kpa) 16 12 8 4 The first presure test The second presure test The third presure test The forth presure test.5 1 1.5 2 d. Injecting 1 the pre-crosslinked gel particles of 1 mesh on the 6 mesh sand model Fig.2 The pressure change curves The maximum entrance pressure variation curve The maximum pressure (KPa) 4 3 2 1.2.4.6.8 1 1.2 Fig.3 The maximum entrance pressure variation curve As Fig.2 shows, 1the pre-crosslinked gel particles did not achieve the desired effect of long-distance migration. When we inject relatively small, the pressure point without the entrance pressure measure point all were not significantly show. When injected only 1 the first pressure measuring point produce pressure.it Shows that the majority of the injected particles deposited on the front of the unconsolidated sand, failed to achieve the long-distance migration, let alone achieve the desired depth profile modification. 2as figure 3 shows. The maximum injection pressure increased with the increase of the number of the. 3If it has not stable injection pressure,it can not injected well. 4

2.2 Injection characteristics of preformed gel particles Usually pre-crosslinked gel particles through porous media has the following several ways:1, smooth injection, that is, the water-swelling diameter of pre-crosslinked gel particle is smaller than the core throat diameter. Or according to the 1/3 bridging theory, it is possible to pass smoothly when the pre-crosslinked gel particle diameter is smaller than one-third of the core throat diameter. However, particles of this size injected into the core to carry on the water plugging and profile control operation, its function is obviously invalid.2, deformation and injection, when the pre-crosslinked gel particle is larger than the core diameter, particles form the stack at the injection end and a large number of pre-crosslinked gel carrying liquid inject into the core. 3, extrusion broken and injection, when the pre-crosslinked gel particle is much larger than the core throat diameter, the carrier fluid will massively enter into the core leaving the particles deposited on the injection face. When the concentration of the pre-crosslinked gel particles solution increased to a certain extent, the particles will gradually enter to the core due to the role of force. In this process, the particles will be cut into tiny particles and the particles can be injected on this condition.4, squeezing deformation of injection. When the difference between particles and core-hole throat is extremely large, the particles are more concentrated after the massive de-solvent. Because of the pressure of solution continuing to step-up, large amount of particles accumulate at the surface. At the same time, those particles will be squeezed into the core and the particles will be transformed from bulk to banding. Also the diameter change will be dozens of times. 2.3 Pre-crosslinked gel particles plugging performance Here are the several kinds of evaluation index of water plugging profile modification agent: (1) Residual resistance coefficient of water phase (RRW): the ratio of water phase permeability before and after the water shut-off. The formula is : F rrw = K w a/ K wb In the formula: K wa water phase permeability before the treatment; K wb water phase permeability after the treatment. (2)water plugging rate(e):it refers to the extent of the blocking agent to reduce core permeability. Expression: E =[1 - K wb / K wa ] 1 % (3) Breakthrough pressure P o : the critical pressure of injected water breakthrough the plugging slug. The Summary of plugging index using different mash pre-crosslinked gel particles plugging different sand packs: As we can seen in Table 1:(1) Under the condition of same medium and mesh of pre-crosslinked gel particles,, Residual resistance coefficient, water plugging rate, Breakthrough pressure and other parameters go up with the increase of. (2) The particles mostly piles up at the surface of injection and in the transportation pipeline, has not been able to enter in the sand packs when 1 mash particles inject into 6 mash sand pack by.3 and.6. Therefore the residual resistance coefficient and water plugging rate are smaller than the ones of 15 mesh particles. (3) When 1 mash particles inject into 6 mash sand pack and the injection volume is 1, residual resistance coefficient and water plugging rate increased sharply. This phenomenon is mainly due to particles and pore throat does not match, so the particles can not be successfully injected. Then the broken particles pushed into the sand pack and sealed blocked the water channels, this caused the sharply increase situation.(4) the residual resistance coefficient and water plugging ratio values are higher when 4 mesh of sand pack is injected by 12 mesh of particles. This indicates that the particle diameter is larger than the pore throat diameter and the injection method is already the extrusion broken and injection at this time. Pre-crosslinked gel particles 41

are entirely in the form of colloidal instead of particles. Table 1: Blocking Evaluation Parameters 6 mesh sand packs 4 mesh sand packs 15 mash pre-crosslinked gel particles 1 mash pre-crosslinked gel particles 12 mash pre-crosslinked gel particles F RRW E(%) Po(KPa) The maximum pressure during injection(kpa).3 2.24 55.39 183 726.6 2.45 59.18 192 1783 1 2.98 66.47 216 3454.3 1.69 4.85 73 336.6 2. 49.87 1769 5867 1 22.8 95.61 555 15299.3 298.17 99.66 5677 16395.6.6 357.8 99.72 8738 29258.9 3. PRE-CROSSLINKED GEL PARTICLES PROFILE CONTROL CHARACTERISTICS 3.1 Experimental model of profile control The injection medium is a two-tier heterogeneous core, the upper core s permeability is 8md, the lower core s permeability is 32md, permeability radio is 4 and there is an impenetrable layer in the middle. This model uses the same-in-different-out pattern which means the injection end is at the same end but the out side is divided into upper and lower faces. We use two cylinders to measure the shunt flow volume of each layer. Using this way we can get different shunt flow volume and permeability to aqueous data in the case of different diameter of injected pre-crosslinked gel particles, so we can evaluate the selective plugging ability of pre-crosslinking body and identify the tenability of pre-crosslinked gel particles on the non-homogeneous layer. ⑾ 5 6 7 2 3 1 1 4 Fig.4 Experimental chart for profile control 42

1The middle container with simulated formation water, 2The middle container with pre-crosslinked gel particles, 3Three control valves, 4Core holder, 5.Pressure sensors, 6Pressure sensor module, 7Computer, 8Advection pump, 9Six-way valve, 1Measuring cylinder, 11.Incubator. 3.2 Results and discussion of profile control characteristics experiment (kpa) 2 15 1 5 volume of highpermeability layer volume of lowpermeability layer.5 1 1.5 2 1% Fig. 5 Profile control performance of A1-type pre-crosslinked gel particles into the four-fold differential model 8% 6% 4% 2% % (kpa) 6 5 4 3 2 1 volume of high-permeability layer volume of low-permeability layer %.5 1 1.5 2 2.5 pv 数 1% Fig. 6 Profile control performance of A2-type pre-crosslinked gel particles into the four-fold differential model 8% 6% 4% 2% 43

Table 2: Blocking Evaluation Parameters of profile control experiments Types RRW E% P(KPa) The maximum pressure during injection(kpa) the original Shunt rate (%) A1 3.86 74.12 343 1623 1.71 12.5 A2 19. 94.74 4954 5371 6.25 8.26 The shunt rate after treatment (%) We can get the following conclusion from Table 2: (1) the plugging effect of pre-crosslinked gel is good. The water plugging rate were 74.2% and 94.74%, the residual resistance coefficient were 3.86 and 19 respectively. (2) AS it shown in the Fig. 5 and 6, the shunt rates before and after treatment have not improved, and the shunt flow volume of low-permeability layer is still continuing at a very low level which means the profile control is less effective. (3) After injected much of simulation formation water into the two models above we can find that almost all of the injected water passed through the high permeability layers instead of the lower one. The reason for this phenomenon is duo to the diameter of pre-crosslinked gel did not fit well with the core throat, causing the particles were squeezed into the rock and the characteristic of pre-crosslinked gel particles that can selectively access to the high permeability layer could not be represented. When carried on the following water flood, the water flood breakthrough in high permeability layer is much earlier than in the low permeability layer after the pre-crosslinked gel particles were squeezed both into High-permeability layer and low permeability layer, because the low permeability layer is still being blocked by the pre-crosslinked gel particles. Therefore, during a high water flooding, the flow of high-permeability layer is getting larger and larger and the Low-permeability layer has not still been activated. 4. PRE-CROSSLINKED GEL PARTICLES AND CORE THROAT DIAMETER COMPATIBILITY COMPUTATION As we can see in the profile control performance test, the plugging is very effective but not profile control. The main reason for this result is that the pre-crosslinked gel is compatible with the diameter of core throat that means the diameter of particle is much larger than the pore throat radius. Under this condition, the pre-crosslinked gel particles are both injected in the low and high permeability layer at the same time that causes the overall decline of permeability. During the succeeding water flooding, the earlier breakthrough in high permeability layer causes the inefficient profile control and the decline of shunt rate in low permeability layer during a high water flooding. 4.1 Calculation method of permeability and pore throat radius Accord to the Poiseuille equation, the capillary bundle flow q(cm3/s): 4 n r p q 8 L (4.1) Flow can also be calculated by Darcy equation as follows: 44

KA p q L (4.2) 2 And: A n r (4.3) By equation (4.1) (4.2) and (4.3): r 8k (4.4) According the research of zhu huaijiang et al., in the common range of permeability (8~16mD), the natural core s pore throat median radius is 5. 48~8. 17μm, the pore median radius is 37. 17~4. 18μm ; the quartz sand cemented core s pore throat median radius is 3.71~5.48μm, the pore median radius is 52. 48~57. 21μm. The measurement results showed that: the measured pore throat radius is different from the calculated results but the difference is only a few microns. The results showed that the average of throat radius is in the range of 4~16μm. 4.2 Determination of pre-crosslinked gel particle diameter Base on the 1/3 bridging theory or 2/3 bridging theory, generally it is appropriate for the particle-based blocking agent s diameter to be 1 / 3 ~ 2 / 3 of the formation average pore diameter. According to the above formula we can get the particle s diameter against different permeability as table 3. From Table 3 we can see that if the formation s permeability ratio is 4 and respectively, the permeability is 4 md and 32 md, the particle size after expansion will be at micron level. At present we can produce the pre-crosslinked gel particle at the micron level, but the particle will expand 3~2 times 7 after the contact with water, so it is difficult for particle to be at a micron magnitude after the expansion. It will be very difficult to inject the particles which are ten or a hundred times larger than the throat diameter. Usually they will be crushed and squeezed into the formation. Because of this, those pre-crosslinked gel particles will not have the selectivity during the profile control operation and this will cause the overall block. As the relationship between size of the pre-crosslinked gel particle and the throat diameter, the 1/3 bridging theory will not available for the particle during the migration and blocking. As it shown in fig 5, the particles will accumulate at the end of the injection surface instead of entering the core entirely due to the mismatch between the particle diameter and the pore throat diameter. If the accumulation does not form at the goal stratum, the injected particles will be harmful to the other formation. So when carry on the pre-crosslinked gel profile control operation, we should use the layered injection but not the general injection. Otherwise, not only will not achieve the desired results, but also may play a role in the opposite. Table 3: Correspondence table of permeability and pre-crosslinked gel diameter K R(μm) Average particle diameter(μm)1/3~2/3.4d 8.8 2.69 5.39.8D 11.43 3.81 7.62 1.6D 16.16 5.39 1.77 3.2D 22.86 7.62 15.24 6.4D 32.32 1.77 21.55 12.8D 45.71 15.24 3.48 45

Fig. 7 Pre-crosslinked gel stack at the injection end Based on the experimental results and conclusions, we can the information that the prospect of particulate water shutoff profile control is very broad, but it is quite strict for the particle. The ideal pellet should have the following several natures: 1. the expanded particles should still occupy a micron dimension so that the particles can be successfully injected into the deep reservoirs and complete the flowing diversion. 2. The particles should have good flexibility, so that they can pass through the pore by Deformation. The particle should be very good at anti-shear that is a certain intensity, to fight for the shearing during the migration process.4 low costs and can obtain the promotion and the application in the majority oil fields. 5. CONCLUSION AND SUGGESTION 1) This pre-crosslinked gel particle for long-distance migration has not been able to realize so it have not the function of depth profile control.. 2) From the analysis of water phase residual resistance, water plugging rate and breakthrough pressure we can get conclusion that the pre-crosslinked gel particles plugging is effective. 3) When carry on the profile control performance experiment, the pre-crosslinked gel particle plays weak in overall profile control and diversion rate during the initial period of subsequent water flooding, it is harmful for the low permeability formation after the large injection. 4) The results of calculations show that the size of pre-crosslinked gel particles dose not match with the pore throat diameter which means that the particles can almost not be injected into the core smoothly and does not have the selectivity when use the general injection, so they are harmful for the non-target zones. 5) In order to achieve the selectivity of injection and depth profile control, the pre-crosslinked gel particles need to carry on a very big improvement. 46