Lake Tanganyika s Demersal Fishery and Biology of a Species Abundant in the Catch

Similar documents
Demersal Fish Resources from Test Gill Netting in Lake Tanganyika, around Kigoma Town, Tanzania

ASSESSMENT OF THE STATUS OF LATES STAPPERSII (CENTROPOMIDAE) STOCK IN LIFT-NET FISHERY IN LAKE TANGANYIKA, KIGOMA, TANZANIA

An investigation of the effect of zooplankton abundance on the fish catches, Lake Tanganyika (Kigoma, Tanzania)

Maturity and Spawning of the Small Yellow Croaker, Larimichthys polyactis

GCP/RAF/271/FIN-TD/41 (En) September 1995 CATCH ASSESSMENT SURVEY IN ZAMBIAN WATERS OF LAKE TANGANYIKA IN P. D. Plisnier

Dauphin Lake Fishery. Status of Walleye Stocks and Conservation Measures

West Coast Rock Lobster. Description of sector. History of the fishery: Catch history

.Conservation of the Fisheries of Lakes Victoria, Kyoga and Nabugabo

SMOOTH HAMMERHEAD SHARK (HHS)

!"#$%&'() Mola mola *+,+-./

AFRICAN GREAT LAKES CONFERENCE. Dynamics of Fish Stocks of Commercial Importance in Lake Victoria, East Africa: Implications for Management

ASMFC Stock Assessment Overview: Red Drum

Reproductive Biology of the Indian Oil Sardine Sardinella longiceps From Al-Seeb Waters off Oman

Advice June 2014

ASMFC Stock Assessment Overview: Red Drum

Catch per unit effort of coastal prawn trammel net fishery in Izmir Bay, Aegean Sea

Blue cod 5 (BCO5) pot mesh size review

Management of eel species: a modelling problem

Potomac River Fisheries Commission s. American Shad Fishing / Recovery Plan. Submitted to the Atlantic States Marine Fisheries Commission

Management advisory for the Bay of Bengal Indian mackerel fishery

Species Profile: Red Drum Benchmark Assessment Finds Resource Relatively Stable with Overfishing Not Occurring

Have you ever thought that it would be cool to have parrots

Sheepshead Fishery Overview South Atlantic State/Federal Management Board May 2014 Introduction Life History Landings

Pelagic fishery for Sebastes mentella in the Irminger Sea

Red Sea bream in Subareas VI, VII and VIII

Hana Community FAD Project Report

Factors influencing production

The Changes Observed in Atlantic Bonito (Sarda sarda) Populations During the Autumn-Winter Migration in the Suthern Black Sea Coast

A Combined Recruitment Index for Demersal Juvenile Cod in NAFO Divisions 3K and 3L

Hakes Assessment SARC 51. Whiting NEFMC PDT Meeting February 14, 2011 Milford, MA

SC China s Annual report Part II: The Squid Jigging Fishery Gang Li, Xinjun Chen and Bilin Liu

Eastern and South Shore Nova Scotia Lobster LFAs The Fishery. DFO Atlantic Fisheries Stock Status Report 96/117E.

History and Status of the Oregon Dungeness Crab Fishery

Gulf of St. Lawrence (4RST) Greenland Halibut

Fishery, biology and stock assessment of Cynoglossus macrostomus (Norman) off Malabar coast

Jason Blackburn, Paul Hvenegaard, Dave Jackson, Tyler Johns, Chad Judd, Scott Seward and Juanna Thompson

6 th Meeting of the Scientific Committee Puerto Varas, Chile, 9-14 September 2018

Map Showing NAFO Management Units

6 th Meeting of the Scientific Committee Puerto Varas, Chile, 9-14 September 2018

Kenai River Sockeye Escapement Goals. United Cook Inlet Drift Association

AMBLYGASTER SIRM (WALBAUM) OFF THE NEGOMBO COAST

SHRIMP OF THE ESTUARY AND GULF OF ST. LAWRENCE IN 2004

The South African and Namibian horse mackerel fisheries Prepared by Dave Japp and Melanie Smith. The South African horse mackerel

Minnesota Department of Natural Resources Fisheries Division, Lake Superior Area

STATUS OF THE JACK MACKEREL RESOURCE AND ITS MANAGEMENT

Southern Gulf of St. Lawrence (4T) Herring

2012 Maryland FMP Report (July 2013) Section 15. Red Drum (Sciaenops ocellatus)

Some Biological Parameters of Bigeye and Yellowfin Tunas Distributed in Surrounding Waters of Taiwan

Essential Fish Habitat in the Mediterranean and its implications for Ecosystem Based Approach to Fishery Management

2015 Winnebago System Walleye Report

Fish Conservation and Management

2016 ANNUAL FISH TRAWL SURVEY REPORT

DAGAA FISHERY OF LAKE VICTORIA

Summary of 2012 DNR and Partners Fisheries Surveys in St. Clair/Lake Erie and Fishery Forecast for 2013

Lake Opeongo Creel Survey

ASSESSMENT OF SHRIMP STOCKS IN THE ESTUARY AND GULF OF ST. LAWRENCE IN 2011

FISH COMMUNITIES AND FISHERIES OF THE THOUSAND ISLANDS AND MIDDLE CORRIDOR

STOCK STATUS OF SOUTHERN BLUEFIN TUNA

Management advisory for the Bay of Bengal hilsa fishery June 2012

Year Avg. TAC Can Others Totals

UPPER COOK INLET COMMERCIAL HEFGUNG AND SMELT FISHERIES, 1998

Serial No. N4859 NAFO SCR Doc. 03/41 SCIENTIFIC COUNCIL MEETING JUNE 2003

M. James Allen and Robert M. Voglin COMMERCIAL FISH CATCHES

A century of change in a marine fish assemblage. Martin Genner

North Carolina. Striped Mullet FMP. Update

ASSESSMENT OF THE WEST COAST OF NEWFOUNDLAND (DIVISION 4R) HERRING STOCKS IN 2011

OBSERVATIONS ON SOME ASPECTS OF BIOLOGY OF JOHNIUS (JOHNIEOPS) VOGLERI (BLEEKER) AND PENNAHIA MACROPHTHALMUS (BLEEKER) IN THE KAKINADA REGION

Cedar Lake Comprehensive Survey Report Steve Hogler and Steve Surendonk WDNR-Mishicot

STUDY PERFORMANCE REPORT

8.9 SWO-ATL ATLANTIC SWORDFISH

Stock Annex: template

Current Status and Management Recommendations for the Fishery in the Cloverleaf Chain of Lakes

Trophy hunting & sustainability: Temporal dynamics in trophy size & harvesting patterns of wild herbivores

Estimation and Analysis of Fish Catches by Category Based on Multidimensional Time Series Database on Sea Fishery in Greece

Creel Survey. Nonouti Island Kiribati. November Rateiti Vaimalie. Research and Monitoring Unit. Coastal Fisheries Division

SWG JACK MACKEREL FISHERY IN CHILE

MEFISTO PREPARED APPLICATIONS MODELLING FISHERIES MANAGEMENT STRATEGIES IN THE MEDITERRANEAN

Southern Gulf of St. Lawrence (4T) Herring

Annual Pink Shrimp Review

Project Limulus on Napatree Point: Horseshoe Crab Surveys in 2017

Kingfishes (whitings), Menticirrhus spp.

Why Bass is a political fish

Current Status of Crab Fishery in the Artisanal Sector along Gulf of Mannar and Palk bay Coasts

Biocomplexity and fisheries sustainability. Ray Hilborn Tom Quinn Daniel Schindler School of Aquatic and Fishery Sciences University of Washington

and found that there exist a significant overlap between the billfish resources and the exploitation activities targeting tunas and mahi mahi.

Advice October 2013

3.4.3 Advice June Barents Sea and Norwegian Sea Cod in Subareas I and II (Norwegian coastal waters cod)

6 th Meeting of the Scientific Committee Puerto Varas, Chile, 9-14 September SC6-Doc15 The Russian Federation s Annual Report

Stock Annex: Greater silver smelt (Argentina silus) in divisions 5.b and 6.a (Faroes grounds and west of Scotland)

2014 Winnebago System Walleye Report

Balance in the Bay. An introduction to ecosystem-based management and the Monterey Bay market squid fishery.

Size and spatial distribution of the blue shark, Prionace glauca, caught by Taiwanese large-scale. longline fishery in the North Pacific Ocean

SILVER WAREHOU (SWA) (Seriolella punctata)

Fecundity & Spawning. LO: extrapolate effects of physical conditions on fecundity and spawning of fish

A REVIEW AND EVALUATION OF NATURAL MORTALITY FOR THE ASSESSMENT AND MANAGEMENT OF YELLOWFIN TUNA IN THE EASTERN PACIFIC OCEAN

CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE RECOMMENDATIONS ON ADDITIONAL WINTER-RUN PROTECTIONS IN 2016 OCEAN FISHERIES

Striped Bass and White Hybrid (x) Striped Bass Management and Fishing in Pennsylvania

Paper prepared by the Secretariat

Co-Principal Investigators Stephen C. Jewett, Ph.D. Paul C. Rusanowski, Ph.D.

Agenda and minutes. Minnesota 1837 Ceded Territory Fisheries Committee January 17, 2018, 10:00 a.m. WebEx

Transcription:

Lake Tanganyika s Demersal Fishery and Biology of a Species Abundant in the Catch Student: Corey Anderson Mentors: Ishmael Kimirei and Catherine O Reilly Introduction The fisheries of Lake Tanganyika are an important source of income for its riparian communities. Tanganyika is the second largest lake in the world, both by volume and depth, and its fisheries help sustain the countries of Burundi, D. R. Congo, Tanzania, and Zambia. Two categories of fishery exist on the lake, offshore (pelagic) and inshore (demersal). The pelagic fishery has historically been the more important one on the lake, yielding over 167, metric tons per year. The lake s demersal gillnet fishery is less well-studied than the pelagic lift-net fishery. Nonetheless, the demersal fishery is a large contributor of inexpensive animal protein to surrounding areas. The recent trend of declining pelagic catch (Chitamwebwa and Kimirei 25) has directed increased study focus to the demersal gillnet fishery. The socioeconomic aspect of this study was conducted to determine fisherman age, experience, and income demographics, as well as reasons for entering the fishery. Whereas the pelagic fishery is comprised primarily of two clupeid species and a centropomid predator, the demersal catch includes over 1 species (Patterson and Makin 1998), mostly of the family Cichlidae. This paper includes a survey of fishermen in the demersal fishery of the Kigoma Region, Tanzania. Further, biometric data for one of the most abundant cichlids in the catch, Benthochromis tricoti (Poll 1948), is herein analyzed. This information assists in assessment of the health and sustainability of the demersal fishery. Materials and Methods Two local landing beaches were chosen as locations to interview fishermen. These were Kibirizi at the North of Kigoma Bay, and Katonga, which lies East of Bangwe Point, outside the bay. These were the two mostused landing beaches in the Kigoma area. A survey was used to ask fishermen about socio-economic factors and their fishing patterns. A total of 34 questionnaires were administered to 22 fishermen. Some fishermen were interviewed two or more times. Questions included age, experience in the fishery, previous experience, reason for entering the fishery, and expected income per catch. Fishing related questions asked net mesh size, depth net was set at, net dimensions, set time and haul time, and species targeted. The fisherman s opinion was asked about the best fishing period to determine a pattern of seasonality and moon phase variability related to the fishery. Catch composition information was taken by separating the catch to the genus or species level when possible and taking the weight of these groups. Catch per unit effort (CPUE) was calculated for each landing. For the biometric analysis Benthochromis tricoti, a fish species abundant in the catch, was chosen. Two hundred thirty one specimens were purchased from demersal fishermen for analysis. Total length to the millimeter and weight to.1 grams were measured. Dissection was used to determine sex and maturity stage modified from Aro (1993). Gonad and liver weights were taken to.1 grams for use in calculating gonadosomatic and hepatosomatic indices (GSI, HSI). Condition factor, K, was calculated using the equation TL K= * 1 2.5122 W and relative condition, K n, calculated with the equation W K n ( 2E 5)( TL 2.7895 ) where TL is total length in mm and W is weight in grams. The constant 2.5122 is derived from Log 1 transformed length-weight regression and 2.7859 from power function length-weight regression. 77

Results Expected daily incomes of fishermen ranged from 5 Tanzanian Shillings to 2, TSh per catch. There was no correlation between fishing experience with expected income, and the range given was often quite broad (between 45 and 19,5 TSh). Fishermen stated that income varied between seasons and between moon phases. Moon phase during this study ranged of one cycle from new moon at the start (July 13, 27) to full moon at the end (July 27, 27). The most frequent reason given for entrance into the fishery was self-employment. Many of the interviewed fishermen also cited the benefits of the demersal fishery as their reason for entrance, but specific benefits were not listed. Fisherman age ranged from 19 to 4 years old, with a mean of 29. Fishing experience ranged from less than one year to 3 years (mean 1 years). Only two of the interviewees had previous experience in other fisheries, one from the pelagic sardine fishery and the other from line fishing. According to the fishermen interviewed, the wet season yields a better catch than the dry season. There is a discrepancy as to which moon phase has better fishing, however. Those that prefer to fish shallower (5 m 2 m) said that the new moon yields more catch, while those who are willing to fish deeper (5 m 2 m) stated that the full moon yields more. Many fishermen switched from fishing shallow during the new moon to fishing further offshore in deeper water during the full moon period. Shallow catch weight decreased over the study period while deep catch weight increased (Fig. 1). Catch weight and CPUE were positively correlated with increasing fishing depth (p<.5, r 2 =.33; p<.5, r 2 =.32 respectively). Number of species caught showed no significant correlation with fishing depth, as reported by Lowe (26). Benthochromis tricoti was more abundant in catches at the northern site, Kibirizi (n = 77), than at the southern site, Katonga (n = 161). This species was most often (95%) caught in 1.5 inch mesh gillnets set between 15 and 2 meters (mode 1 m) depth. Lengths of B. tricoti were normally distributed (Fig. 2) (mean 162 mm, SD 9.2, n = 231) and indicated 4+ year classes. Weights for combined sexes were also distributed normally (Fig. 3) (Mean 33.6 g, SD 6.59, n = 231). Mean weights between males (32.5 g, SD 6.83, n = 68) and females (34.5, SD 6.39, n = 153) were found to be significantly different (Table 1). Length weight regression is given for combined sexes (Fig. 4). The sex ratio of sampled fish was 2.33 females per 1 male. Sixty-eight males were caught and 153 females, 1 fish were not differentiable. Calculated biometric indices are given in Table 2. A comparison of biometric data, including mean male weights and lengths, and combined sex weights, was made with that collected by Lowe et al. (26) and significant differences from 27 data are given in Table 1. Other comparisons of mean length, weight, hepatosomatic and gonadosomatic indices and condition and relative condition factors not significant are not herein listed. Discussion Because of the influence of climate change lowering primary productivity of the lake (O Reilly et al. 23, Verburg et al. 23) the pelagic fishery is thought to be in decline (Chitamwebwa and Kimerei 25). It was hypothesized that fishermen may be making a switch to the demersal fishery from the more cost-intensive (Lowe et al. 26) pelagic sardine fishery. Only two fishermen had previous experience in another fishery, and only one was from the sardine fishery. However, as of this study there is not an influx of fishermen from the pelagic to the demersal fishery. It remains for future studies to determine any trend of migration. Benthochromis tricoti is only one of the major species caught by demersal fishermen. It is one of the more abundant deep-water cichlids, along with Bathybates spp. and Hemibates stenosoma. Because of the small size of B. tricoti (mean 162mm), it is only attractive as a local food fish and not suitable for export (i.e. dried sardines or frozen Nile perch from Lake Victoria). Nevertheless the study of this fish s biology is important for fishery 78

management purposes (Coulter et al. 1965) because it is an important part of the catch and a contributor of inexpensive animal protein to the riparian communities. Although the demersal fishery is not very species selective, certain species can be targeted by using different mesh sizes and fishing at varying depths. At one point when specimens were needed, fishermen were asked to target B. tricoti. Few were landed, except by a single fisherman identified as having the correct mesh size by the other fishermen. Using 1.5-inch mesh he landed over 1 specimens of B. tricoti. Generally, species composition of the catch between 5-2m is quite different than that of 5-1m. This is because of physiological and niche differences in certain species restricting them to different areas of the lake. The shallow areas show a greater diversity of small cichlids and juvenile fish, while the deeper areas have lower diversity but greater biomass of catchable-sized fish. Fishing depth for deeper water species often exceeds the oxycline depth of 79 m observed by Hohoff (27). This is likely due to the rudimentary method of gauging depth. A weighted line of predetermined length is lowered to the bottom, but it may be carried by currents and hang diagonally, misgauging actual depth. Net floats may hang slack in shallower water or hang diagonally if there is strong current. This may be very common in depths over 5 m. The maturity staging information, along with the minimum size of 133 mm, indicates that the catch of B. tricoti is composed mostly of sexually mature individuals. Because of the relatively small size of the gonads, however, accurate staging was difficult. Few immature or juvenile fish were harvested by the gillnet fishermen, attesting to the sustainability of the fishery for this species. Although the ratio of females to males is higher than that of Lowe et al. (26), on the final sampling interview 689 Benthochromis tricoti were landed at Kibirizi, mostly mature males, which were not collected for the biometric analysis. One sampled female had three juveniles (size approx 2 mm) protruding from the mouth when collected. This is an indicator that at least part of the population has already spawned and is mouth brooding young by July. It is unknown if female fish tend to spit their young from the buccal cavity when caught in a gillnet. If so, this may account for the low occurrence of juveniles in the sample. The low amount of different sized eggs found in ripe females (9-3) also indicates that this species has either a protracted or year-round breeding season. Future studies should be conducted on the biology of Bathybates and Hemibates spp., Chrystichthys spp., and Afromastacembelus cunningtoni, as these fish can be most abundant in the deep-water demersal catch. Studies of Benthochromis migration and populations should be undertaken to determine how localized populations are. Genetic methods would seem to be the most effective methods for this, as a tagging study seems unfeasible in a lake of Tanganyika s size. Future sampling studies should also be conducted over longer periods so that population dynamic parameters could be estimated for this species. At present the state of the demersal fishery appears stable. There is no major influx of fishermen from one fishery to another and the catch appears sustainable. Some fishermen explained that the catch was better in the past and that this could be due to heavier fishing pressure or increased population in the Kigoma area. This is a probable speculation as in developed countries nonpoint-source pollution from urban areas is known to have deleterious effects on fisheries. Generally the fishery around Kigoma supplies a good income for most fishermen and contributes significantly to the food source of riparian villages. Acknowledgements The author would like to thank Dr. Catherine O Reilly and Ishmael Kimirei for their mentorship. Additionally Mbonde, A.S.E. is thanked for assistance with fieldwork. The Nyanza Project and TAFIRI are thanked for use of their resources. This work was financed by the Nyanza Project (NSF grant #s ATM 22392 and DBI- 68774). 79

References Aro, E. 1993. Guidelines for sampling pelagic fish catches on Lake Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-FM/4. Chitamwebwa, D.B.R., and I. A. Kimirei. 25. Present fish catch at Kigoma, Tanzania. Verh. Internat. Verein. Limnol. 29:373-376. Hohoff, T. 27. Climate change impacts on the biological parameters of the pelagic zone of Lake Tanganyika. Nyanza Project Annual Report. This Volume. Lowe, B., A. Kalangali, H. Mgana, I.A. Kimirei, and C.M. O Reilly. 26. Potential impact of the demersal fishery on Lake Tanganyika, Kigoma Tanzania. Nyanza Project Annual Report. O Reilly, C.M., S.R. Alin, P.-D. Plisnier, A.S. Cohen, and B.A. McKee. 23. Climate change decreases aquatic ecosystem productivity on Lake Tanganyika, Africa. Nature 424:766-768. Patterson, G. and J. Makin. 1998. The state of biodiversity in Lake Tanganyika A literature review. Natural Resources Institute. Chatham, UK. Verburg, P. R.E. Hecky, and H. Kling. 23. Ecological consequences of a century of warming in Lake Tanganyika. Science 31:55-57. Table 1. Comparison among July 27 and between July 26 and 27 biometric data for Benthochromis tricoti from Kigoma area, Lake Tanganyika, Tanzania. Unpaired t-test with Welch s correction. P values two-tailed, not assuming equal variances. $ indicates significant, very significant, extremely significant. P value t statistic df Significance Mean weight of males vs. females, 27.447 2.29 121 $ Mean K of males vs. females, 27.84 2.696 89 Mean TL of males, 26 vs. 27.4 3.649 19 Mean weight of males, 26 vs. 27.494 1.986 112 $ Mean weight of combined sexes, 26 vs. 27 <.1 4.224 52 Table 2. Mean biometric indices for Benthochromis tricoti caught in gillnets. Kigoma area, Lake Tanganyika, Tanzania. July 27. Mean SD n GSI.14.582 211 HSI.781.33426 219 K 2.77 1.18 231 K n 1.143.1265 231 8

Catch Wt (g) 4 3 2 1 y = -115.9x + 41.4 R 2 =.1366 15 2 25 3 Day of Month, July 27 Catch Wt (g) 25 2 15 1 5 y = 78.86x - 12755 R 2 =.2529 15 2 25 3 Day of Month, July 27 Figure 1. Fish catch weight vs. day of month, for demersal fishery, Lake Tanganyika, Kigoma, Tanzania. July 27. Shallow depths 5-2 m (left) and Deep depths 5-2 m (right). Moon phase was new on July 12 and full on July 28. 2 Frequency 15 1 5 133 141 149 157 165 173 181 189 197 TL (mm) Figure 2. Length frequency distribution for Benthochromis tricoti caught in gillnets. Kigoma area, Lake Tanganyika, Tanzania. July 27. Frequency 25 2 15 1 5 2 25 3 35 4 45 5 55 6 65 7 Weight (g) Figure 3. Weight frequency distribution for Benthochromis tricoti caught in gillnets. Kigoma area, Lake Tanganyika, Tanzania. July 27. 81

Log1 Weight (g) 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 y = 2.5122x - 4.47 R 2 =.4974 1 2.1 2.12 2.14 2.16 2.18 2.2 2.22 2.24 2.26 2.28 2.3 2.32 Log 1 Length (mm) Figure 4. Length-weight regression for Benthochromis tricoti caught in gillnets. Kigoma area, Lake Tanganyika, Tanzania. July 27. 82