Cliffs. Elena Tolkova NorthWest Research Associates, Redmond, WA. NTHMP Benchmarking workshop: Tsunami currents Portland, OR Feb 9-10, 2015

Similar documents
NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents

NOAA NTHMP Mapping & Modeling Subcommittee Benchmarking Workshop: Tsunami Current. NEOWAVE Validation

Coastal Sediment Transport Modeling Ocean Beach & San Francisco Bight, CA

Applications of ELCIRC at LNEC

Numerical simulation on fluctuation in wellhead pressure of geothermal well

Fish Farm Consent Modelling. Poll na Gille

A parametric study of an offshore concrete pile under combined loading conditions using finite element method

LONG WAVE RUN-UP OVER SUBMERGED REEF AND BREAKWATER

Ch. 11 Mass transfer principles

Wave Force on Coastal Dike due to Tsunami

Stable bipedal walking with a swing-leg protraction strategy

Flow modelling hills complex terrain and other issues

High Ping Rate Profile Water Mode 12

Lecture 14. Heat lows and the TCZ

STUDY ON TSUNAMI PROPAGATION INTO RIVERS

Goal: Develop quantitative understanding of ENSO genesis, evolution, and impacts

Kathleen Dohan. Wind-Driven Surface Currents. Earth and Space Research, Seattle, WA

Training program on Modelling: A Case study Hydro-dynamic Model of Zanzibar channel

Fish Habitat Design, Operation and Reclamation Worksheets for

On the buoyancy-driven theory of the Atlantic Meridional Overturning Circulation

Waves Part II. non-dispersive (C g =C)

Welcome! Did You Know...? Aquatic Centre Dock Rebuild. Key Objectives

OPEN CHANNEL FLOW WORKSHEET 3 WATER SURFACE PROFILES

Currents measurements in the coast of Montevideo, Uruguay

Announcements. Project 2 due Nov 7 th Topics for today: Big waves. Tsunamis, seiches and tidal waves. Tsunamis and seiches

IX. Upper Ocean Circulation

Numerical Simulation of Wave Loads on Static Offshore Structures

Transactions on Ecology and the Environment vol 12, 1996 WIT Press, ISSN

The purpose of this experiment is to find this acceleration for a puck moving on an inclined air table.

EVALUATION OF TSUNAMI FLUID FORCE ACTING ON THE BRIDGE DECK

Measurement of tsunami wave eigenfunctions in deep, intermediate and shallower regions RESEARCH COMMUNICATIONS

Figure 1 Example feature overview.

Wind-driven driven Response of the Northern Indian Ocean to Climate Extremes

TIDE-TSUNAMI INTERACTIONS

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company

FAR-FIELD CHARACTERISTICS OF THE TSUNAMI OF 26 DECEMBER 2004

MODELLING OF WATER FLOW ON SMALL VESSEL S DECK

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

Long term observations of internal waves with shore based video cameras. Ata Suanda and John A. Barth

Table 1. Sequence of bubble and dredging tests with prevailing tide stage and number of bucket cycles recorded for each test.

THe rip currents are very fast moving narrow channels,

Simulating Method of Ship s Turning-basins Designing

Lecture 7. More on BL wind profiles and turbulent eddy structures. In this lecture

Modeling changes to the historic Lower Columbia River Estuary using Delft3D. Drew Mahedy Lumas Helaire Stefan Talke David Jay May 30, 2014

Modeling Historic Columbia River Flood Impacts

Estimation of Wind Drift Current in the Soya Strait

B. Radium Isotope Mass Balance Model Used to Derive Submarine Groundwater Discharge

PHYSICAL MODELING FOR MEASURING THE EFFECTIVENESS OF SINGLE CURTAIN PILE FOUNDATION BREAKWATER IN INTERMEDIATE WATER DEPTH

Exercise 1 Network Planning Design. Teresa Grilo Dep. of Engineering and Management Instituto Superior Técnico Lisbon, Portugal

DUKC Chart Overlay. Presentation to IHO TWL and DQ Working Groups Wollongong, March 2014

ESCI 485 Air/sea Interaction Lesson 9 Equatorial Adjustment and El Nino Dr. DeCaria

Physical limnology WETA151

Yasuyuki Hirose 1. Abstract

Undertow - Zonation of Flow in Broken Wave Bores

Numerical Simulation of Wind Wave Field

ANDRA Benchmark Workshop (Paris-Orly, April 2007)

Salmon: Introduction to ocean waves

An IOOS Operational Wave Observation Plan Supported by NOAA IOOS Program & USACE

2016 NC Coastal Local Governments Annual Meeting

EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT

Physical Science You will need a calculator today!!

FORMATION OF BREAKING BORES IN FUKUSHIMA PREFECTURE DUE TO THE 2011 TOHOKU TSUNAMI. Shinji Sato 1 and Shohei Ohkuma 2

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

Testing TELEMAC-2D suitability for tsunami propagation from source to near shore

DYNAMIC TIDAL EFFECTS ON TSUNAMI COASTAL HAZARD IN LARGE ESTUARIES: CASE OF THE CHESAPEAKE BAY/JAMES RIVER, USA

Undertow - Zonation of Flow in Broken Wave Bores

CONSTRUCTION OF LNG RECEIVING TERMINAL ON THE SAINT LAWRENCE TIDAL CURRENT CONDITIONS IN THE LEVIS AREA

Presented by. Mr.Danish.D.R. M.Tech Coastal Management Institute for Ocean Management Anna University, Chennai Tamil Nadu, India.

RECTIFICATION OF THE MADDEN-JULIAN OSCILLATION INTO THE ENSO CYCLE

Pore-Air Entrapment during Infiltration

A Numerical Prediction of Wash Wave and Wave Resistance of High Speed Displacement Ships in Deep and Shallow Water

Student name: + is valid for C =. The vorticity

8/29/20098 SAHRA - Watershed Visualization

Physical Map Revisions in Connecticut due to Updated Coastal Flood Hazards F8: Maps in Transition

OFFICE OF STRUCTURES MANUAL FOR HYDROLOGIC AND HYDRAULIC DESIGN CHAPTER 11 APPENDIX B TIDEROUT 2 USERS MANUAL

Three-dimensional High-resolution Numerical Study of the Tide and Tidal Current in the Jiaozhou Bay and Olympic Sailing Site

Saturated-Unsaturated Consolidation

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

COASTAL UPWELLING - MONTEREY BAY CALIFORNIA (modified from The Maury Project, AMS)

SPH applied to coastal engineering problems

Monitoring tidal movements in Cook Inlet, Alaska, using the integration of remote sensing data, GIS, and inundation models

COASTAL ENVIRONMENTS. 454 lecture 12

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected)

SURFACE CURRENTS AND TIDES

FULL-WAVEFORM INVERSION

CHAPTER 57 BORE-LIKE SURF BEAT ON REEF COASTS. 1) 2) 3) Eizo NAKAZA,' Seiko TSUKAYAMA and Mikio HINO

C6Hi (g) 6 H2O + 6 C02(g) + energy

The Coriolis force, geostrophy, Rossby waves and the westward intensification

IMPROVED SPECTRAL WAVE MODELLING OF WHITE-CAPPING DISSIPATION IN SWELL SEA SYSTEMS

Directional Wave Spectra from Video Images Data and SWAN Model. Keywords: Directional wave spectra; SWAN; video images; pixels

CHAPTER 46 LABORATORY EXPERIMENTS ON THE INFLUENCE OF WIND ON NEARSHORE WAVE BREAKING. Scott L. Douglass, A.M. ASCE X J. Richard Weggel, F.

Garrett McNamara, Portugal, 30 Jan What is a wave?

Wave Setup at River and Inlet Entrances Due to an Extreme Event

Ocean circulation and surface buoyancy fluxes: dynamics and energetics!

2.6 Related Rates Worksheet Calculus AB. dy /dt!when!x=8

Kinematics of Vorticity

Impact of Dredging the Lower Narrow River on Circulation and Flushing

ABSTRACT. KEY WORDS: Navigation safety; numerical modeling; waves; current; sediment transport; channel infilling; morphology change.

SHORT- AND LONG- TERM MODELLING IN SUPPORT OF SEA LICE BATH TREATMENTS AZAMETHIPHOS, CYPERMETHRIN AND DELTAMETHRIN

The inner shelf is a friction-dominated realm where surface and bottom boundary layers overlap.

Transcription:

Cliffs Elena Tolkova NorthWest Research Associates, Redond, WA NTHMP Bencharking workshop: Tsunai currents Portland, OR Feb 9-, 25!

Shallow-Water Equations (atrix notation) Solution ethod: Titov and Synolakis, 995, 998 2D becoes a sequence of Ds Transition to Rieann Invariants 3 single convection probles

Difference Schee Taylor expansion: Maintain steady state: Possible difference schees: () j- j j+ centered difference or average between left and right cells (2)

Difference Schee Taylor expansion: Maintain steady state: VTCS (Titov & Synolakis 995): MOST, Cliffs Cliffs-2

MOST: sub-critical flow iplied wall in the edge wet node Cliffs: no iplications, irror ghost node wall in-between wet and dry nodes Wall in MOST, when coputing: in x-dir (rows) and in y-dir (coluns) Wall in Cliffs, any dir

E ( 5 J) 3 2.8.7.6.5.4 Cliffs MOST 22 h decay ECliffs=3% EMOST Energy of 2 Tohoku tsunai Pacific-wide vs tie after EQ, log scale Surface elevation at Monterey Bay gage, local odel forced by the ocean-wide run: gage record MOST Cliffs 5 5 2 hrs after quake MOST kept the correct signal level for 3 h, Cliffs - for twice as long c c 5 5 5 5 2 3 4 5 6 7 8 2 3 4 5 6 7 8 hour after quake

Fro vertical wall to sloping beach flooding depth hin u Cliffs Birth Certificate: E. Tolkova. Land-Water Boundary Treatent for a Tsunai Model With Diensional Splitting. Pure and Applied Geophysics, Vol. 7, Issue 9 (24), pp. 2289-234 Cliffs Code: GitHub, CSDMS, http://elena.tolkov.co/cliffs.ht

Benchark Proble # Flow over suberged cone!

n=; dx=2.5 c (394 x 6); dt=.2 s aniation confr.ov

n=.; dx=2.5 c (394 x 6); dt=.3 s aniation confr.ov

n=.5; dx=2.5 c (394 x 6); dt=.3 s aniation con_fr5.ov

n= u (/s) v (/s).2.. 5 5 2.2.2 5 5 2 u2 (/s).2. 5 5 2.2 v2 (/s).2 5 5 2 sec

n=. Cliffs, data v2 (/s) u2 (/s) v (/s) u (/s).. 5 5 2...5. 5 5 2.5 5 5 2.. 5 5 2 sec

n=.5 Cliffs, data v2 (/s) u2 (/s) v (/s) u (/s).. 2 25 3 35 4.. 2 25 3 35 4.5..5 2 25 3 35 4.. 2 25 3 35 4 sec

Benchark Proble # 2 Paraeters lon x lat (cells) dx () dt (s) n 4 x 383 5.25.25 7 x 692.5.25 35 x 346 2..25

.5 Input Control Point c.5 5 5 2 25 in Control Point Input.5.5 8 8.5 9 9.5.5.5 2 hr

Control Point.5.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 2 Hilo gage 2 7.5 8 8.5 9 9.5.5.5 2 2.5 3 Tie after EQ (hrs)

Control Point Cliffs Prescribed.5.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 2 Hilo gage 2 Cliffs data 7.5 8 8.5 9 9.5.5.5 2 2.5 3 Tie after EQ (hrs)

.3 HA25, W E current.2. /s..2 Cliffs Cliffs 2 data 7.5 8 8.5 9 9.5.5.5 2 2.5 3 HA25, S N current Cliffs Cliffs 2 data.5 /s.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 Tie after EQ (hrs) 2 resolution

.3 HA25, W E current.2. /s..2 Cliffs Cliffs 2 data 7.5 8 8.5 9 9.5.5.5 2 2.5 3 HA25, S N current Cliffs Cliffs 2 data.5 /s.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 Tie after EQ (hrs) resolution

.3 HA25, W E current.2. /s..2 Cliffs Cliffs 2 data 7.5 8 8.5 9 9.5.5.5 2 2.5 3 HA25, S N current Cliffs Cliffs 2 data.5 /s.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 Tie after EQ (hrs) 5 resolution

HA26, W E current.5 /s.5 Cliffs Cliffs 2 data 7.5 8 8.5 9 9.5.5.5 2 2.5 3 HA26, S N current Cliffs Cliffs 2 data.5 /s.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 Tie after EQ (hrs) 2 resolution

HA26, W E current Cliffs Cliffs 2 data.5 /s.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 HA26, S N current Cliffs Cliffs 2 data.5 /s.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 Tie after EQ (hrs) resolution

HA26, W E current Cliffs Cliffs 2 data.5 /s.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 HA26, S N current Cliffs Cliffs 2 data.5 /s.5 7.5 8 8.5 9 9.5.5.5 2 2.5 3 Tie after EQ (hrs) 5 resolution

Maxial Current (/s) at resolution: 2 5 Cliffs Cliffs-2

Benchark Proble # 3 A Beacon Motoriki ADCP Tug B Sulphur P 837 x 747, dx=3, dt=.2 s, n=.25

.4 Input coputed by deconvolution.2.2 Response at Control Point Control P. Input.4 2 4 6 8 2 22 24 26 28 3 hr Input Control Point.5 c.5.5 2 3 4 5 in.5 5 5 2 25 3 35 4 hr Input o Response =!.6.4 Control P. Input ControlPoint.2.2.4.6.8 5 5 2 25 3 35 4 hr

.5 ABeacon: Tsunai only.5 5 2 25 3 35 4 ABeacon: Tsunai+tide 5 2 25 3 35 4 ABeacon: Tide only 5 2 25 3 35 4 hour

.5 ABeacon: Tsunai only Cliffs data.5 5 2 25 3 35 4 ABeacon: Tsunai+tide 5 2 25 3 35 4 ABeacon: Tide only 5 2 25 3 35 4 hour

.5 TugBerth: Tsunai only.5 5 2 25 3 35 4 TugBerth: Tsunai+tide 5 2 25 3 35 4 TugBerth: Tide only 5 2 25 3 35 4 hour

.5 TugBerth: Tsunai only.5 Cliffs data 5 2 25 3 35 4 TugBerth: Tsunai+tide 5 2 25 3 35 4 TugBerth: Tide only 5 2 25 3 35 4 hour

.5 SulphyrP: Tsunai only.5 5 2 25 3 35 4 SulphyrP: Tsunai+tide 5 2 25 3 35 4 SulphyrP: Tide only 5 2 25 3 35 4 hour

.5 SulphyrP: Tsunai only Cliffs data.5 5 2 25 3 35 4 SulphyrP: Tsunai+tide 5 2 25 3 35 4 SulphyrP: Tide only 5 2 25 3 35 4 hour

.5 Motoriki: Tsunai only.5 5 2 25 3 35 4 Motoriki: Tsunai+tide 5 2 25 3 35 4 Motoriki: Tide only 5 2 25 3 35 4 hour

.5 Motoriki: Tsunai only Cliffs data.5 5 2 25 3 35 4 Motoriki: Tsunai+tide 5 2 25 3 35 4 Motoriki: Tide only 5 2 25 3 35 4 hour

.5 ADCP: Tsunai only /s.5 3 5 2 25 3 35 4 ADCP: Tsunai+tide /s 2 2 5 2 25 3 35 4 ADCP: Tide only /s 5 2 25 3 35 4 hour

/s.5.5 ADCP: Tsunai only Cliffs data 3 5 2 25 3 35 4 ADCP: Tsunai+tide /s 2 2 5 2 25 3 35 4 ADCP: Tide only /s 5 2 25 3 35 4 hour

ADCPexact: Tsunai only /s.5.5 5 2 25 3 35 4 ADCPexact: Tsunai+tide /s.5 5 2 25 3 35 4 ADCPexact: Tide only /s.5 5 2 25 3 35 4 hour

/s.5.5 ADCPexact: Tsunai only Cliffs data 3 5 2 25 3 35 4 ADCPexact: Tsunai+tide /s 2 2 5 2 25 3 35 4 ADCPexact: Tide only /s 5 2 25 3 35 4 hour

Non-linearity? X velocity 2 /s 2 total su 2 4 6 8 2 22 24 26 28 3.6.4.2 Y velocity total su /s.2.4 2 4 6 8 2 22 24 26 28 3 hour total=tsunai&tide, su=(tsunai only) + (tide only)

Maxial Current

Benchark Proble # 4 Input: WG (5 ) thru left boundary WG3 B B4 B6 B9 Paraeters: x:.8... 43.6 ; dx:.97....3 (depth following) y: -7.... 8.49 ; dy:.3 dt =.5 s; n =.5

Benchark Proble # 4 aniation seaside.ov

Surface Elevation at WG 3.2 WG3, data Cliffs.5..5 5 2 25 3 35 4 45 s

Water Surface Elevation: Cliffs, data.2 B.2 B4.5.5..5 2 3 4 5..5 2 3 4 5.2 B6.2 B9.5.5..5 2 3 4 5 s..5 2 3 4 5 s

U-velocity: Cliffs, data 2.5 2 B 2.5 2 B4 /s /s.5.5 2.5.5.5 2 3 4 5 2 B6 2 3 4 5 s.5.5 2.5.5.5 2 3 4 5 2 B9 2 3 4 5 s

Moentu flux: Cliffs, data.8 B.8.6 B4 3 / c 2.6.4.4.2.2 3 / c 2.25.2.5..5 2 3 4 5 B6 2 3 4 5 s.4.3.2. 2 3 4 5 B9 2 3 4 5 s

No houses, Surface Elevation: Cliffs, data.2 B.2 B4.5.5..5 2 3 4 5..5 2 3 4 5.2 B6.2 B9.5.5..5 2 3 4 5 s..5 2 3 4 5 s

No houses, U-velocity: Cliffs, data 2.5 2 B 2.5 2 B4 /s /s.5.5 2.5.5.5 2 3 4 5 2 B6 2 3 4 5 s.5.5 2.5.5.5 2 3 4 5 2 B9 2 3 4 5 s

No houses, Moentu Flux: Cliffs, data.8 B.8.6 B4 3 / c 2.6.4.4.2.2 3 / c 2.4.3.2. 2 3 4 5 B6.2.5..5 2 3 4 5 B9 2 3 4 5 s 2 3 4 5 s

Benchark Proble # 5 aniation conisland.ov

().4.2 X=7.5, Y= X=7.5, Y=5. ().4.2 X=3., Y= X=3., Y=5. ().4.2 X=2., Y= X=2., Y=5. () ().4.2 X=25, Y=.4.2 X=25, Y=. 5 5 2 Tie (sec) X=25, Y=5. 5 5 2 Tie (sec) WGs: Cliffs data

U&V velocities: Cliffs data /s 2 U.5 X=3, Y= V /s /s 2 2 2 2 U U X=2, Y=.5 2.5 X=2, Y=-5.5 2.5 V V 2 Tie (sec).5 2 Tie (sec)

aniation Tohoku2AK.ov ; http://elena.tolkov.co/dart2alaska.ht

Thank you!